Building Partnerships and Resources to Support Mathematical Argumentation

Jillian Cavanna
University of Connecticut

Cathy Mazzotta

Manchester High School

Standards of Mathematical Practice

- 1. Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- 8. Look for and express regularity in repeated reasoning.

Bridging Math Practices

Math-Science Partnership Grant

2014-2015: Phase I of Grant (40 teachers)

2016: Continuation Grant (30 teachers)

Partnership

- UConn Neag School of Education
- UConn –Math Department
- Manchester Public Schools
- Mansfield Public Schools
- Hartford Public Schools

Overarching Goal

Build the capacity of math teachers and coaches (grades 3 – 12) to support students' mathematical reasoning and argumentation

Highlights of Results: Phase I

- Significant changes (p<.01) in teachers' confidence in their knowledge of argumentation and abilities to develop students' capacity with argumentation
- Levels-of-Use questionnaire indicated high degrees of integration with practice (60 – 70% reported at top 2 levels)
- Teachers reported high value of the experience.
 - Gaining a better understanding of the argumentation process
 - Collaboration with other teachers from other districts and sharing ideas
- Medium to large effect sizes in gains of teachers' math content knowledge for teaching

Bridging Math Practices Products http://bridges.education.uconn.edu

Task Repository

Argumentation Resource Packets

Student A

This argument is considered Higgs. The students' claim is that they disagree with Javier. They use a pictorial representation to show that 3/8 is less than ½. They explain in words that if they add 1/8 to 3/8 it would equal ½. The response could be extended by including a statement explaining in words that ½ and 4/8 are equivalent fractions. The pictorial representation that compares ¼ and 5/8 could be elaborated on to show the relationship comparing ¼ and 3/8.

Argumentation Components	
Claim	Evidence
The claim is clearly stated: "We disagree."	The students drew a pictorial representation of ½ and 3/8 and it clearly shows that ½ has more shaded. They also included a pictorial representation of ½ and 4/8 to show equivalence. They then state that 3/8 is 1/8 less than ½.
Warrants	Language & Computation
The students explicitly state that "If you add one more 1/8 to 3/8 then it will equal ½."	All mathematical computations and statements are true.

Self-paced Learning Modules

5-Module Sequence "Course" Materials

- 1 What is an argument?
- 2 Tasks to support argumentation
- 3 Norms and Routines
- 4 Classroom Discourse
- 5 Providing feedback on student work

Other Project Products

- Expanded capacity
 - Districts, schools
 - Teacher prep, partnerships
- New knowledge
- New materials and tools

Building Capacity-Manchester

What happened to advance the practices, and to improve student engagement and learning outcomes? With what impact?

Building Capacity-Manchester

District-level

- Shared rubrics for written work
- Inclusion of MP3 on K-5 report card
- Task Repository part of online curriculum materials

Building-level

- PD sessions for MS & HS math department (argumentation resource packets)
- Argumentation-related SLOs (at MHS)
- PLC work
- Internship to support argumentation (HS, elem)

Classroom-level

- Using rubrics, tasks/tools from repository
- Teaching with argumentation
- Coaching cycles that focus on argumentation (elem)

Impact

Teachers

- Attention to own language, how they explain things
- Shift from "what's easy for them" and "shortcuts" to "how do we wrestle with this?"
- Focus on "unifying ideas;" must incorporate conceptual
- Assuming less asking that follow up

Students

- Changes in orientation and disposition (changes in classroom culture)
- Willingness to try (not one right way)
- Asking different kinds of questions. "This doesn't make sense"
- Valuable for all students
- Student work samples

Algebra II – graduation requirement

Beginning of Year

IDK

End of Year

Why Mathematical Argumentation?

- Because argumentation is the essence of mathematics
- Because more students become better math thinkers
- Because this is what the world now demands

Deeper conceptual understanding

Students

- Builds on their specific prior knowledge
- Make connections
- Reflect, communicate, explain to others

Teachers

- Learn what students know, how reasoning
- Targeted, efficient instruction

Overall, builds a connected body of knowledge

Is It a Half?

Sorting task

3rd grade – Manchester school Teacher Bridges Participant 2014-2015

Questions about "Is it a Half?" Video

- What kinds of questions are being asked?
- How is argumentation being supported?

 As a teacher what would you do next to continue supporting these students to develop argumentation?

Questions for Discussion

- What kind of professional development and/or supports might teachers need to engage students in the Common Core Math Practices?
 - Construct viable arguments and critique the reasoning of others
- What is already happening in classrooms that could be modified to promote argumentation?
- Other questions or comments?

Thank You

- Jillian Cavanna jillian.cavanna@uconn.edu
- Cathy Mazzotta b11cmazz@mpspride.org

http://bridges.education.uconn.edu/