Properties: Day 2 Dr. Yvonne Kielhorn

Student Name: _____ Section:____

<u>Today's Goal:</u> Figure out how scientists use measurements to design experiments to solve problems.

How do you measure a photo finish?

Image Source: Pearson Chemistry

Sprint times are often measured to the nearest hundredth of a second (0.01 s). Chemistry also requires making accurate and often very small measurements. A <u>measurement</u> is a quantity that has both a number and a unit. Your height (66 inches), your age (15 years), and your body temperature (37°C) are examples of measurements.

Properties: Day 2	Dr. Yvonne Kielhorn	
Student Name:	Section:	
Design of Experiments: Measurements		
Experiment 1: Examine Physical Properties		
List 3 safety precautions for this experiment: 1.		
2.		
3		

Sample	State of Matter	Color	Predicted Melting Point (oC)	Predicted Boiling Point (oC)

Reflection:

Properties: Day 2	Dr. Yvonne Kielhorn
Student Name:	Section:
Experiment 2: Measure Dimensions (Le	ngth, Width, Height)
List 3 safety precautions for this expe	eriment:
2.	
3	

Sample	Length	Width	Height

Reflection:

Properties: Day 2	Dr. Yvonne Kielhorn
Student Name:	Section:
Experiment 3: Measure Mass	
List 3 safety precautions for this experiment: 1.	
2.	
3.	

Sample	Triple Beam Balance Mass (g)

Reflection:

Properties: Day 2	Dr. Yvonne Kielhorn
Student Name:	Section:
Experiment 4: Measuring Volume of Liquids List 3 safety precautions for this experiment: 1.	
2.	
2	

Type of Graduated Cylinder (mL)	Smallest Increment	Volume of Water (mL)

Reflection:

Properties : Day	Dr. Yvonne Kielhorn
Student Name:	Section:
Experiment 5: using water	esign an experiment to measure the volume of your cubes

Sample	Volume of Water (mL)	Volume of Water and Sample (mL)	Volume of Water Displaced (mL)

Reflection

- 1. Read "Units of Measurement" article like a scientist
- 2. In the space below summarize what you learned from reading "Units of Measurement" like a scientist

Properties: Day 2	Dr. Yvonne Kielhorn
Student Name:	Section:

Design of Experiments: Identifying Variables

You will conduct computer experiments to investigate how changing the type of material, mass and volume influence an object's ability to float by following the procedure below:

- 1. Select 3 materials to investigate and answer the questions below.
- 2. Which materials float and why?
- 3. Which materials sink and why?
- 4. What do you observe when you investigate different materials with the same mass?
- 5. What do you observe when you investigate different materials with the same mass?

Summarize the results of your computer simulations in the table below.

Material	Sinks	Floats	Why?