Pathogenic Vibrio Species

3 *Vibrio* species are most responsible for the majority of Vibrio-borne human illness:

Vibrio parahaemolyticus (Vp) Vibrio vulnificus (Vv) Vibrio cholerae (Vc)

Not all strains of these species are equally capable of causing disease. Non-pathogenic strains exist; this is not well understood.

In the Northeast

-8 Vp cases from oysters harvested from Cape Cod Bay, MA in 2010-11; ->25 Vp cases from oysters harvested from Cape Cod Bay, MA in 2013; two closures with recalls in August from Duxbury & Martha's Vineyard.

-Vp cases in Maine ~ doubled from 2011 to 2012, and ~ doubled again in 2013;
-Vc case in southern Maine associated with oysters, possibly from Maine

Cases of "Vibriosis" in Gulf of Maine states: 2000-12

Data from CDC, MA DPH and ME CDC

What factors could explain these trends?

Oyster River:

Prohibited site warmer reduced salinity higher nutrients more heterogeneous

Nannie Island:

Approved site Cooler higher salinity lower nutrients more consistent

Approach: Analysis of oysters, water & sediment

enrichment and enumeration

growth on media (TCBS & CPC agars) CHROMagar

multiplex PCR

or use q-PCR

Vibrio abundance is seasonal in the GBE

Inter-annual Vibrio parahaemolyticus concentrations in oysters from the Oyster River: 2007-10

V. parahaemolyticus levels at Nannie Island (NI) and Oyster River (OR) were different in 1993-95. They were not different in 2007-09.

Environmental conditions and

Vibrio spp. concentrations in oysters

<u>1993-1995:</u> Multiple Stepwise Regression (14 variables) Log *V. vulnificus* = 0.03 Temp + 0.16PO4 + <u>0.13 DOC</u> Log *V. parahaemolyticus* = 0.09Temp + 0.05 TSS +0.25 PO4 - 0.09 TSSorg

2008-2009: Multiple Stepwise Regression (4 variables)

V. cholerae (non-O1 serotypes): temperature, <u>rainfall</u>*, salinity (DO)
 Vp & Vv: many different significant relationships, depending on site, year

Abundance and environmental factor correlations							
	T o tal N	laximum MPN	N Oyster	Maximum MP	N Water Max	Water Maximum	
MPN							
	Pearson	Stepwise	Pearson				
	Correlation	Regression	Correlatio	Stepwise	Pearson	Stepwise	
	b	а	n	Regression	Correlation	Regression	
Temperature							
12hr	0.355*	NC	0.230	NC	0.271	NC	
72hr	0.389*	NC	0.270	NC	0.266	NC	
Salinity							
12hr	-0.369*	NC	-0.355*	NC	-0.236	NC	
72hr	-0.461*	0.1768	-0.375*	0.378	-0.367	0.450	
Rain							
72hr	0.472**	0.049*	0.112	0.4753	0.623**	< 0.001**	
96 hr	0.566**	0.006*	0.555**	0.001**	0.228	0.976	
Dissolved O ₂							
Percent	-0.333*	NC	-0.261	NC	-0.223	NC	
mg/L	-0.355*	NC	-0.247	NC	-0.255	NC	
Turbidity	0.112	NC	0.134	NC	0.112	NC	

Vibrio cholerae in the Oyster River-Schuster et al. 2011

 ^{a}p statistic is given otherwise the environmental condition was excluded from the stepwise model and no correlation (NC) is reported

 ^{b}r statistic is given

* *p* < 0.05

** *p* < 0.001

NOTE: *Vp* & *Vv* also correlate with, and may be predicted by, these environmental conditions

V. vulnificus concentrations (MPN/100 g) in freshly harvested and relayed oysters at Spinney Creek Shellfish.

Sample date	Fresh oysters	Relayed oysters		
8/21/93	930	24		
8/28/93	4600	4.3		
9/4/93	1500	<3		
9/19/93	150	<3		
10/3/93	4.3	<3		
10/16/93	<3	<3		
11/7/93	<3	<3		

NOTE: Similar reductions have been shown with relaying for *V. parahemolyticus*

GBE Vibrios are culturable under unique conditions and have rare clinical markers

Extreme temperatures:

Detection of Vp in oysters at -0.5°C (January 2011)

Detection of Vc in water at 13.6°C (October 2008)

Wide salinity tolerance range:

Growth of Vc at 8% NaCl

Clinical marker detection:

Not detected in 4 years *EXCEPT: tdh/trh* in Vp by qPCR in temperature abused oysters (28°C for 18h) collected during August, 2009, more frequent during 2012, infrequent in 2013

The V. parahaemolyticus population is extremely diverse.

Multilocus sequence typing (MLST) with 7 housekeeping genes: -154 Sequence Types of 188 isolates: only 29% in clonal complexes

The Vp population diversity appears to vary with season/water temperature.

Diversity increases as water temperatures rise above 15° C

Are there pathogenic *Vibrio* strains in New Hampshire? Some V. parahaemolyticus and V. cholerae strains that we have found in Great Bay are closely related genetically to known clinical strains from other areas of the world.

Again, most strains of ¹³⁴⁰ these species are probably not capable of causing disease, especially in colder climates.

1-1 Genotyping of Vp outbreak strains

T3662

					13002	TUUUL				
Strains	tlhª	tdhb	trh°	ORF8d	vscC2e	vopPf	MTases	vopCh	VPA1376 ⁱ	
3	+	+	-	+	+	+	+	+	+	
4,6	+	+	12	<u>a</u> 27.	+	+	+	+	+	
9	+	+	-	-	+	3 83	+	-	+	
7	+	-	+	-	+	-	-	-	+	
19	+	-	+	-	-				+	
10,14	+	-	+	-	+	-	+	-	+	
11	+	2	+	-	-	<u>-</u>	+	+	+	
13	+	-	+	-	-	3 (3	-	-	: - -	
1,20,21,22	+	+	+	-0	-	5 - 63	-	-	+	
,23,25										
5,16	+	+	+	 0	+	+	+	+	+	
8	+	+	+	-	-	-	+	<u>.</u>	2 -	
12, 17, 18	+	+	+	-	+	-	+		+	
24	+	+	+	-	+	-	- 1	-	+	
15	+	+	+	<u>a</u> 22	-	(1 1)	+	20	2 - 2	
NH-A	+	+	+	-	-	3 83	-		8 8	
ME	+	+	+	-	-	-	-	-	11 - 1	
2	+	-	-	-	-	-	-	-	-	

Virulence of strains in an alternative invertebrate infection model

Figure 4. Quantification of virulence using a nematode gastric model. Four clinical strains form MA, including a member of the dominant endemic pathogenic lineage (11EN1382-12), one harboring no known virulence genes (MA11EN1379-2) and four environmental strains from the GBE, including nonpathogenic reference strain (G61) were compared to a highly virulence VpPCC strain (MDOH-04-5M732) and a non-pathogenic E.coli (food). All clinical strains reduced the motility of nematodes. Only environmental strains 149 and 360 showed significant albeit less virulence compared to the clinical strains based on ANOVA. Error bars represent SD from two replicates of 15 worms per treatment.