
*Leaching System Credit Ratings
*Leaching trenches, leaching galleries, and proprietary leaching products are credited based on a specified effective leaching area (ELA) credit per linear foot
*Leaching pits are credited based on side wall wetted perimeter

Effective Leaching Area Credit

*A credit rating is assessed for every foot of a particular leaching product (except for leaching pits)
*Galleries
*The higher/ taller the gallery the larger the credit
*Trenches
*The higher and wider the trench the larger the credit

Leaching System Sizing (pg. 43)

*Residential Buildings
*Sized using Table 6 - Residential Building
*Sizing based on percolation rate and the number of bedrooms
$*_{150}$ GPD/ Bedroom up to 3 and 75 GPD for each bedroom thereafter (single family only)
*No reduction for multi-family homes

(ph) Leaching System Sizing

*Design flows for residential buildings are based on the number of bedrooms in the dwelling

* A design flow of 150 gallons per day (GPD) per bedroom, except for additional bedrooms beyond 3 in a single-family home which have a 75 GPD per bedroom design flow.

Table 6 Pg. 43

Sizing Residential Buildings

*Determine the minimum required ELA for a 3-bedroom house. Percolation rate $=15$ min/inch.

$\begin{aligned} & \hline \text { Percolation Rate } \\ & \hline \text { (Minutes to Drop } \\ & \text { One Inch) } \end{aligned}$	Square Feet of Requre		red Effective Leaching Area (ELA)	
	2-Bedroom Building	3-Bedroom Builtfing	For Each Bedroom Above 3	
			Single Family	Multi-family
LESS THAN 10.1	375	45	82.5	165
$\longrightarrow 10.1-20.0$	500	675	112.5	225
20.1-30.0	565	750	125	250
30.1-45.0	675	900	150	300
45.1-60.0	745	990	165	330

*Restaurants/Laundromats/ Residential Institutions with Problematic Sewage

*Sized per Table 7 (Page 43)
*Sizing based on percolation rate and daily design flow

$$
\text { *Required ELA }=\frac{\text { Design Flow }}{\text { Application Rate }}
$$

*Non-Residential Buildings with Non-Problematic Sewage

*Sized in accordance with Table 8 (Pg 43)
*Sizing based on daily design flow and percolation rate (Application rates are higher in Table 8 than in Table 7)

```
*Required ELA = Design Flow
    Application Rate
```


Sizing Residential Buildings

*Determine the minimum required ELA for a 5 bedroom single family house with a percolation rate of $25 \mathrm{~min} / \mathrm{inch}$

Percolation Rate	Square Feet of Reeuired Effective Leaching Area (ELA)			
$\begin{gathered} \text { (Minutes to Drop } \\ \text { One Inch) } \\ \hline \end{gathered}$	2-Bedroom Building	3-Bddroom	For Each Bedroom Above 3	
			Single Fanily	Multi-fanily
LESS THAN 10.1	375	495	82.5	165
10.1-20.0	500	45	112.	225
$\xrightarrow{20.1-30.0}$	565	(50)	(12)	250
30.1-45.0	675	900	150	300
45.1-60.0	745	990	165	330

*Restaurants/Laundromats/ Residential Institutions with Problematic Sewage

*Calculate the ELA required for a 25-seat restaurant w/toilets (breakfast/lunch only) and percolation rate of $\mathbf{2 5} \mathbf{~ m i n} / \mathrm{inch}$
*Design flow $=25$ seats $\times 30$ GPD $=750$ GPD
(Flow from Table 4)
*Required ELA = Design Flow / Application Rate = 750 GPD / (0, 6 GPD/ SF) $=1250$ SF
(Application Rate from Table 7)
10

Non-Residential Buildings

*Calculate the ELA required for an office building with a daily design flow of 1000 GPD and percolation rate of 17 min/inch

$$
\begin{gathered}
\text { ELA = Design Flow / Application Rate } \\
1000 \text { GPD } /(1.2 \mathrm{GPD} / \mathrm{SF})=833.3 \mathrm{SF} \\
\text { Table } 8
\end{gathered}
$$

Effectiye Leaching Area Determination

DPH

$*^{\prime}=$ feet $\quad 66^{\prime}=66$ feet
*" $=$ inch $\quad 8^{\prime \prime}=8$ inches
*LF - Linear feet
$*_{\text {SF }}$ - Square feet
*ELA - Effective leaching area

Leaching Trenches pg. 37

figure No. 11 - LEACHING TRENCHES

For the purposes of Section VIIIF $\& \& G$, the effective leaching area of leaching trenches and corresponding minimum center to center spacing between trenches shall be as follows:

Trench Depth (inches)	Trench Width (inches)	Effective Leaching Credit (SFLF)	Center to Center Spacing (feet)
18	18	2.1	7
18	24	2.4	7
18	30	2.7	7
18	36	3.0	7
12	48	3.0	8

PPH) Leaching Trenches pg. 37

FIGURE NO. 11 - LEACHING TRENCHES

For the purposes of Section VIIIF $\& \in G$, the effective leaching area of leaching trenches and corresponding minimum center to center spacing between trenches shall be as follows:

Trench Depth (inches)	Trench Widdh (inches)	Effective Leaching Credit (SFLLF)	Center to Ceny Spacing /(feet)
18	18	2.1	7
18	24	2.4	7
18	30	2.7	7
18	36	3.0	7
12	48	3.0	8

75 LF x 3 SF / LF = 225 SF
18

Leaching Pits

*Minimum center-to-center spacing: 4 x diameter of the structure (not including aggregate)
*ELA = diameter of excavation $\times 3.14 \times$ pit depth (maximum height pit can be flooded)
${ }^{*}$ No. 4 stone only

Leaching Pits: Calculations

*What is the minimum center-tocenter spacing of 2 leaching pits sized per previous example?

Center-to-center spacing $=4 \times$ diameter of structure

$$
4 \times 6 \text { feet }=24 \text { feet }
$$

DPRH Leaching Pits: Calculations

*Calculate the ELA of a 6 feet deep and 6 feet diameter leaching pit, surround by 1 foot of aggregate. Pit can be fully utilized

$$
\text { Diameter of excavation = } \mathbf{1}^{\prime}+6^{\prime}+\mathbf{1}^{\prime}=8 \text { feet }
$$ $8 \times 3.14 \times 6=$?

DPH) Leaching Galleries

Gallery Height (inches)	Effective Leaching Credit (SF/LF)	Center to Center Spacing (feet)
48	9.2	12
36	8.0	12
30	7.4	12
27	7.1	12
24	6.8	12
18	6.2	12
12	5.9	12

28

융 Gallery Configuration

*Plastic proprietary leaching chambers can be installed side by side in a gallery configuration (see figure \#16, Page 38)
*Must be installed in a 6 foot wide excavation
surrounded with stone to receive equivalent gallery credit

