1985

STATE OF CONNECTICUT ANNUAL AIR QUALITY SUMMARY

()

William A. O'Neill Governor

Leslie Carothers Commissioner

TABLE OF CONTENTS

(____)

		PAGE
LIST	OF TABLES	iii
LIST	OF FIGURES	v
1.	INTRODUCTION	1
	A. Overview of Air Pollutant Concentrations in Connecticut	1
	 Total Suspended Particulates Sulfur Dioxide Ozone Nitrogen Dioxide Carbon Monoxide Lead 	1 1 2 2 5
	B. Trends	5
	1. TSP 2. SO ₂	5 8
	C. Air Monitoring Network	11
	D. Pollutant Standards Index	16
	E. Quality Assurance	18
	1. Precision	18 19
П.	TOTAL SUSPENDED PARTICULATES	20
Ш.	SULFUR DIOXIDE	95
IV.	OZONE	115
V.	NITROGEN DIOXIDE	130
VI.	CARBON MONOXIDE	136
VII.	LEAD	154
VIII.	ACID PRECIPITATION	196
IX.	CLIMATOLOGICAL DATA	220
Х.	ATTAINMENT AND NON-ATTAINMENT OF NAAQS IN CONNECTICUT'S AQCR'S	227

TABLE OF CONTENTS

PAGE

XI.	CONNECTICUT SLAMS AND NAMS NETWORK	230
XII.	EMISSIONS INVENTORY	241
XIII.	PUBLICATIONS	259
XIV.	ERRATA	262

LIST OF TABLES

TABLE NUMBER	TITLE OF TABLE	PAGE
1	Assessment of Ambient Air Quality	3
2	Air Quality Standards Exceeded in Connecticut in 1985 Based on Measured Concentrations	4
3	TSP Trends: 1975 - 1985 (Paired <i>t</i> Test)	6
4	SO ₂ Trends from Continuous Data: 1978 - 1985 (Paired <i>t</i> Test)	7
5	1983 -1985 TSP Annual Averages and Statistical Projections	25
6	Compliance with Annual TSP Standards during 1985 (95% Confidence Interval)	31
7	1985 Maximum 24-Hour TSP Concentrations	32
8	Summary of the Statistically Predicted Number of Hi-vol Sites Exceeding the 24-Hour TSP Standards	36
9	Quarterly Chemical Characterization of 1985 Hi-vol TSP	37
10	Monthly Chemical Characterization of 1985 Lo-vol TSP	77
11	1985 Ten Highest 24-Hour Average TSP Days with Wind Data	79
12	1985 Annual Arithmetic Averages of Sulfur Dioxide at Sites with Continuous Monitors	99
13	1983 -1985 SO ₂ Annual Averages and Statistical Projections	100
14	1985 Maximum Calendar Day Average SO ₂ Concentrations	. 102
15	Comparisons of First and Second High Calendar Day and 24-Hour Running SO ₂ Averages	. 104
16	1985 Maximum 3-Hour Running Average SO ₂ Concentrations	. 105
17	1985 Ten Highest 24-Hour Average SO ₂ Days with Wind Data \ldots	. 107
18	Number of Days When the 1-Hour Ozone Standard Was Exceeded in 1985	. 119
19	Number of Exceedances of the 1-Hour Ozone Standard in 1985 .	. 120
20	1985 Maximum 1-Hour Ozone Concentrations	. 121

LIST OF TABLES

TABLE NUMBER	TITLE OF TABLE	PAGE
21	1985 Ten Highest 1-Hour Average Ozone Days with Wind Data	122
22	1983 -1985 Nitrogen Dioxide Annual Averages and Statistical Projections	133
23	1985 Ten Highest 1-Hour Average NO ₂ Days with Wind Data \ldots	134
24	1985 Carbon Monoxide Standards Assessment Summary	140
25	1985 Carbon Monoxide Seasonal Features	141
26	1985 Ten Highest 1-Hour Average CO Days with Wind Data	142
26a	Exceedances of the 8-hour CO Standard	146
27	1985 3-Month Running Average Lead Concentrations	160
28	Atmospheric Deposition Data for the Plainfield Site	200
29	Atmospheric Deposition Data for the Morris Dam Site	204
30	Atmospheric Deposition Data for the Marlborough Site	208
31	1984 and 1985 Climatological Data, Bradley International Airport, Windsor Locks	221
32	1984 and 1985 Climatological Data, Sikorsky International Airport, Stratford	222
33	Connecticut's Compliance by AQCR with the NAAQS in 1985	229
34	U.S. EPA-Approved Monitoring Methods Used in Connecticut in 1985	233
35	1985 SLAMS and NAMS Sites in Connecticut	234
36	Summary of Probe Siting Criteria	239
37	1985 Connecticut Emissions Inventory by County	242

LIST OF FIGURES

(______ :

FIGURE NUMBER	TITLE OF FIGURE	PAGE
1	Total Suspended Particulate Matter Trend	9
2	Sulfur Dioxide Trend from Continuous Data	10
2A	Annual Geometric Mean Concentrations of SO ₂ (PPB) for 1980 -1985 at Each of Five Concurrently Operating Sites	12
2B	The Average of the Annual Geometric Mean SO ₂ Concentrations at Five Concurrently Operating Sites	13
2C	Trend of theAnnual Geometric Mean SO ₂ Concentrations at Five Concurrently Operating Sites for 1980 -1985	14
2D	Three-Year Running Averages of the Annual Geometric Mean SO ₂ Concentrations at Five Concurrently Operating Sites	15
3	Pollutant Standards Index	17
4	Location of 1985 Total Suspended Particulate Matter	24
Х	Compliance with the Annual TSP Standards Using 95% Confidence Limits about the Annual Geometric Mean Concentration	30
5	Location of 1985 Continuous Sulfur Dioxide Instruments	98
6	Location of 1985 Chemiluminescent Ozone Instruments	118
7	Wind Rose for April-September 1984, Bradley International Airport, Windsor Locks, Connecticut	126
8	Wind Rose for April-September 1985, Bradley International Airport, Windsor Locks, Connecticut	127
9	Wind Rose for April-September 1984, Newark International Airport, Newark, New Jersey	128
10	Wind Rose for April-September 1985, Newark International Airport, Newark, New Jersey	129
11	Location of 1985 Nitrogen Dioxide Instruments	132
12	Location of 1985 Carbon Monoxide Instruments	139
13	Exceedances of the 8-hour CO Standard	147

LIST OF FIGURES

FIGURE NUMBER	TITLE OF FIGURE	PAGE
14	36-Month Running Averages of the Hourly CO Concentrations	150
А	Statewide Annual Lead Emissions from Gasoline and Statewide Annual Average Lead Concentrations	157
В	Statewide Annual Lead Emissions from Gasoline vs. Statewide Annual Average Lead Concentrations	158
15	Location of 1985 Lead Instruments	159
16	3-Month Running Averages for Lead	161
С	Annual Average Lead Concentrations	182
D	3-Year Running Average Lead Concentrations	189
17	Location of Precipitation Collectors	199
18	Inches of Precipitation, Plainfield Site, 1985	211
19	Acidity of Precipitation, Plainfield Site, 1985	212
20	Specific Conductance of Precipitation, Plainfield Site, 1985	213
21	Inches of Precipitation, Morris Dam Site, 1985	214
22	Acidity of Precipitation, Morris Dam Site, 1985	215
23	Specific Conductance of Precipitation, Morris Dam Site, 1985	216
24	Inches of Precipitation, Marlborough Site, 1985	217
25	Acidity of Precipitation, Marlborough Site, 1985	218
26	Specific Conductance of Precipitation, Marlborough Site, 1985	219
27	Annual Wind Rose for 1984, Bradley International Airport, Windsor Locks, Connecticut	223
28	Annual Wind Rose for 1985, Bradley International Airport, Windsor Locks, Connecticut	224
29	Annual Wind Rose for 1984, Newark International Airport, Newark, New Jersey	225

LIST OF FIGURES

 $\left(\begin{array}{c} & \\ & \end{array} \right)$

(____)

FIGURE NUMBER	TITLE OF FIGURE	PAGE
30	Annual Wind Rose for 1985, Newark International Airport, Newark, New Jersey	226
31	Connecticut's Air Quality Control Regions	228
32	State of Connecticut County Map	243
33	1985 Connecticut Emissions Inventory by County, Total Suspended Particulates	244
34	1985 Total Suspended Particulates, Total Emissions by County	245
35	1985 Total Suspended Particulates, Total Emissions by County, Three-Dimensional View of TSP Emissions	246
36	1985 Connecticut Emissions Inventory by County, Sulfur Dioxide .	247
37	1985 Sulfur Dioxide, Total Emissions by County	248
38	1985 Sulfur Dioxide, Total Emissions by County, Three-Dimensional View of SO ₂ Emissions	249
39	1985 Connecticut Emissions Inventory by County, Carbon Monoxide	250
40	1985 Carbon Monoxide, Total Emissions by County	251
41	1985 Carbon Monoxide, Total Emissions by County, Three-Dimensional View of CO Emissions	252
42	1985 Connecticut Emissions Inventory by County, Volatile Organic Compounds	. 253
43	1985 Volatile Organic Compounds, Total Emissions by County	. 254
44	1985 Volatile Organic Compounds, Total Emissions by County, Three-Dimensional View of VOC Emissions	. 255
45	1985 Connecticut Emissions Inventory by County, Nitrogen Oxides (Expressed as Nitrogen Dioxide)	. 256
46	1985 Nitrogen Oxides (Expressed as Nitrogen Dioxide), Total Emissions by County	. 257
47	1985 Nitrogen Oxides (Expressed as Nitrogen Dioxide), Total Emissions by County, Three-Dimensional View of NO2 Emissions	. 258

I. INTRODUCTION

The 1985 Air Quality Summary of Ambient Air Quality in Connecticut is a compilation of all air pollutant measurements made at the Department of Environmental Protection (DEP) air monitoring network sites.

A. OVERVIEW OF AIR POLLUTANT CONCENTRATIONS IN CONNECTICUT

The assessment of ambient air quality in Connecticut is made by comparing the measured concentrations of a pollutant to each of two Federal air quality standards. The first is the primary standard which is established to protect public health with an adequate margin of safety. The second is the secondary standard which is established to protect plants and animals and to prevent economic damage. The specific air quality standards are listed in Table 1 along with the time constraints imposed on each.

The following section briefly describes the status of Connecticut's air quality for the year 1985. More detailed discussions of each of the six pollutants are provided in subsequent sections of this Air Quality Summary.

1. TOTAL SUSPENDED PARTICULATES (TSP)

Measured total suspended particulate (TSP) levels did not exceed the primary annual standard of 75 μ g/m³ or the secondary annual standard of 60 μ g/m³ in Connecticut during 1985. The primary 24-hour standard of 260 μ g/m³ was not exceeded at any site in 1985. However, the secondary 24-hour standard of 150 μ g/m³ was exceeded at two sites (see Table 2). Two exceedances of a standard are required at a particular site for the standard to be violated. No site recorded violations of any particulate standard in 1985.

In general, measured TSP levels in Connecticut were higher in 1985, in terms of annual average concentration values, than they were in 1984 (see Table 3).

2. SULFUR DIOXIDE (SO_2)

None of the air quality standards for sulfur dioxide were exceeded in Connecticut in 1985. Measured concentrations were below the 80 μ g/m³ primary annual standard, the 365 μ g/m³ primary 24-hour standard, and the 1300 μ g/m³ secondary 3-hour standard.

The results of continuous SO_2 monitoring indicate that sulfur dioxide levels in 1985 were not significantly different from those in 1984 (see Table 4). Temperature is an important factor in determining SO_2 emissions. The lack of change in measured SO_2 levels may have been due to the fact that, for coastal Connecticut, 1985 was not appreciably warmer than 1984. This can be shown by the number of "degree days" : a measure of heating requirement (see Tables 31 and 32). As the number of degree days increases, the amount of fuel that must be burned to heat buildings also increases. Consequently, as more fossil fuel is burned, the emissions of sulfur oxides are proportionately increased. There was only about a 1% increase in degree days for Connecticut as a whole from 1984 to 1985.

3. $OZONE(O_3)$

National Ambient Air Quality Standards (NAAQS) - On February 8, 1979, the U.S. Environmental Protection Agency (EPA) established an ambient air quality standard for ozone of 0.12 ppm for a one-hour average. That level is not to be exceeded more than once per year. Furthermore, in order to determine compliance with the 0.12 ppm ozone standard, EPA directs the states to record the number of daily exceedances of 0.12 ppm at a given monitoring site over a consecutive 3-year period and then calculate the average number of daily exceedances for this interval. If the resulting average value is less than or equal to 1.0, (that is, if the fourth highest daily value in a consecutive 3-year period is less than or equal to 0.12 ppm), the ozone standard is considered to be attained. The definition of the pollutant was also changed, along with the numerical value of the standard, partly because the instruments used to measure photochemical oxidants in the air really measure only ozone. Ozone is one of a group of chemicals which are formed photochemically in the air and are called photochemical oxidants. In the past, the two terms have often been used interchangeably. This 1985 Air Quality Summary uses the term "ozone" in conjunction with the new NAAQS to reflect the changes in both the numerical value of the NAAQS and the definition of the pollutant.

The primary 1-hour ozone standard was exceeded at all the DEP monitoring sites in 1985 (see Table 2).

The incidence of ozone levels in excess of the 1-hour 0.12 ppm ozone standard decreased significantly from 1984 to 1985 (see Tables 18 and 19). Most of this difference is attributable to the changes in meteorological factors which occur from year-to-year. The formation of ozone is facilitated by high temperatures and strong sunlight in the presence of hydrocarbons and oxides of nitrogen. The prevailing southwest wind transports hydrocarbons and nitrogen oxides generated in the New Jersey - New York City Metropolitan Area into Connecticut. Along the way, these chemicals react in the presence of strong sunlight, forming ozone. Consequently, the ozone levels across Connecticut are highest when the prevailing wind flow is out of the southwest (see Table 21). However, there are recorded exceedences of the NAAQS for ozone on non-southwest wind days. This suggests that pollution control programs currently being implemented in this state are needed to protect the public health of Connecticut's citizenry on days when Connecticut is responsible for its own pollution.

4. <u>NITROGEN DIOXIDE</u> (NO₂)

The annual average NO₂ standard of 100 μ g/m³ was not exceeded at any site in Connecticut in 1985.

5. CARBON MONOXIDE (CO)

The primary eight-hour standard of 9 ppm was exceeded at three of the five carbon monoxide monitoring sites in Connecticut during 1985 (see Table 2). The standard was exceeded owce three times at Stamford 020, six times at Hartford 017 and once at Bridgeport 004. Two exceedances at a particular site are required for a standard to be violated. This means that the eight-hour standard was violated at Stamford 020 and Hartford 017 in 1985. This was also the case in 1984. AT DETH HARTFORD 017 AND STAMPORD 020.

There were no violations of the primary one-hour standard of 35 ppm in 1985.

TABLE 1

ASSESSMENT OF AMBIENT AIR QUALITY

				AMBIEN	IT AIR QUA	LITY STAN	DARDS
POLLITANT	SAMPLING PERIOD	DATA REDITCTION	CTATICTICAL BACE	PRIM	ARY	SECON	DARY
				pg/m3	mqq	µg/m³	Mdd
Total Suspended	24 Hours		Annual Geometric Mean	75		60*	
Particulates	(every sixth day)	24-mour Average	24-Hour Average ³	260		150	
Sulfur Oxides			Annual Arithmetic Mean	80	0.03		
(measured as sulfur dioxide)	Continuous ²	1-Hour Average	24-Hour Average ³	365	0.14		
			3-Hour Average ³			1300	, 11. (* 11. (* 11. (* 11. (* 11. (* 11. (* 11. (* 11. (* 11. (* 11. (* 11. (* 11. (* 11. (* 11. (* 11. (* 11
Nitrogen Dioxide	Continuous ²	1-Hour Average	Annual Arithmetic Mean	100	0.05	100	0.05
Ozone	Continuous ²	1-Hour Average	1-Hour Average ⁴	235	0.12	235	0.12
Lead	24 Hours (every sixth day) ⁵	Monthly Composite	Weighted 3-Month Average	1.5		<u>ئ</u> . ت	
Carbon Monoxide	Continuous ²	1-Hour Average	8-Hour Average ³	10** 10*	o	10**	െ
)	1-Hour Average ³	40**	35	40**	35

¹ EPA assessment criteria require at least 5 samples per calendar quarter and, if one month has no samples, then the other two months in that quarter must have at least two samples each.

² EPA assessment criteria require at least 75% of the possible data to compute a valid average.

³ Not to be exceeded more than once per year.

⁴ Not to be exceeded more than an average of once per year in three years.

⁵ State of Connecticut assessment criteria require 75% of the possible data to compute a valid average.

 * A guide to be used in assessing implementation plans to achieve the 24-hour standard.

** Units are mg/m³.

TABLE 2

AIR QUALITY STANDARDS EXCEEDED IN CONNECTICUT IN 1985 BASED ON MEASURED CONCENTRATIONS

						ULAIES
	Level Ex 1-H Stano	cceeding lour dard	Level Exce 8-Hou Standa	eding r rd	Level Ex Secondar Stan	ceeding y 24-Hour dard
SITE	Highest Observed Level (ppm)	Number of Days Standard Exceeded	Highest Observed Level 8-Hour / 1-Hour (ppm)	Number of Times Standard Exceeded	Highest Observed Level (<u>µg/m</u> <u>3)</u>	Number of Times Standard Exceeded
004	ı	ı	by the second se	\succ	ľ	ı
123	0.196	ব	I	, 1	·	•
123	0.149	4	ı	ı	ł	1
003	0.149	m	ı	ł	·	
017	0.171	13	·	ı	·	1
008	0.184	თ	ı	ı	ı	ı
017	ı	ı	12.2	10 2 9	ł	ı
002	0.204	7	ı	ı	ı	ı
007	0.219	10	•	ı	ı	·
123	0.181	9	•	ı	l	ı
002	ı	ı			159	6
001	0.166	4		ı	ı	I
001	ı	ı	ı	ı	165	
020	I	ı	10.2	Z	1	ı
007	0.189	13	·	1	·	ı

- : The pollutant is not monitored at the site.

(

6. <u>LEAD</u> (Pb)

The primary and secondary ambient air quality standard for lead is 1.5 µg/m³, maximum arithmetic mean averaged over three consecutive calendar months. As was the case in 1984, the lead standard was not exceeded at any site in Connecticut during 1985.

A downward trend in measured concentrations of lead has been observed since 1978. This trend is probably due to the decreasing use of leaded gasoline.

B. TRENDS

Any attempt to assess statewide trends in air pollution levels must account for the tendency of local changes to obscure the statewide pattern. In order to reach some statistically valid conclusions concerning trends in pollutant levels in Connecticut, the DEP has applied a statistical test called a paired t test (referred to hereafter as the t test) to the annual average data for two pollutants. The t test has been applied to 1975-1985 total suspended particulate (TSP) data and to 1978-1985 continuous SO₂ data.

The t test is a parametric test which can ascertain statistically significant changes (increases or decreases) in the annual average pollutant concentrations at all the monitoring sites in Connecticut. The t test makes it possible to overcome the trend analysis problems which arise due to the changes in the number and location of monitoring sites from year-to-year, as well as problems associated with making equitable comparisons among sites. The annual mean pollutant concentrations for consecutive years are compared at each site; there is no inter-site comparison. Data for two consecutive years are required and the size of the change (increase or decrease) is noted. For example, if a high proportion of sites experienced an increase and/or if the magnitude of the increases at several sites is of much greater importance than the magnitude of the decreases at other sites, the t test will show that the increase was statistically significant for those two years.

The results of the *t* test for TSP and continuous SO2 data are presented in Tables 3 and 4, respectively. These analyses were performed only on data computed for sites at which the EPA's minimum sampling criteria were met. The years of data that were paired, the number of sites used, and the statewide average and standard deviation of the geometric mean pollutant concentrations at the sites are provided in the first four columns of each table. The statistical significance of any change in the statewide pollutant average is provided in the remaining columns. The significance of a change is indicated by an arrow for each confidence limit, and is also given numerically as the number of chances in 10,000 of not occurring under the heading "actual significance of change". For example, the statewide annual average for TSP decreased between 1977 and 1978 from 54.8 to 52.7. This change represented a significant decrease at the 95% confidence level, but it did not represent a significant change at the 99% confidence level. The "actual significance of change" is given as 0.0216, meaning that there are 216 chances in 10,000 that this measured decrease in TSP levels did not occur.

1. <u>TSP</u>

The results of the *t* test for TSP (see Table 3) show that total suspended particulate levels in Connecticut remained relatively constant from 1975 to 1977, decreased from 1977 to 1978, and remained unchanged from 1978 to 1979. Between 1979 and 1980 there was a significant drop in measured TSP levels. This has been attributed to the elimination of passive sampling error through the use of retractable lids on the hi-vol monitors. TSP levels alternately decreased and increased significantly from 1980 to 1984. From 1984 to 1985, TSP levels showed a significant increase at the 95% confidence level.

TABLE 3

TSP TRENDS: 1975 - 1985

(PAIRED t TEST)

				<u>S</u>	GNIFICA	<u>NCE LEVEL</u>
PAIRED YEARS	NUMBER OF SITES	OF ANNUAL GEOMETRIC MEANS (µg/m ³)	STANDARD DEVIATION (µg/m³)	TREN 95% <u>LEVEL</u>	ID AT 99% <u>LEVEL</u>	PROBABILITY THAT CHANGE IS NOT SIGNIFICANT
75 76	29 29	53.3 53.3	9.8 9.5	N.C.	N.C.	0.9588
76 77	35 35	53.6 53.7	8.8 9.2	N.C.	N.C.	0.8715
77 78	30 30	54.8 52.7	9.8 9.3	Ŷ	N.C.	0.0216
78 79	32 32	51.4 49.9	12.1 12.5	N.C	N.C.	0.1530
79 80	32 32	49.3 45.4	13.2 10.0	¥	Ŷ	0.0001
80 81	26 26	45.2 38.0	10.1 8.4	↓	¥	0.0001
81 82	37 37	38.3 40.5	6.8 8.0	î	î	0.0001
82 83	36 36	41.3 39.5	7.3 6.7	Ŷ	Ŷ	0.0001
83 84	38 38	39.6 40.5	6.7 6.5	î	î	0.0008
84 85	36 36	40.7 41.9	6.3 7.5	î	N.C.	0.0141

Key to Symbols : ψ = Significant downward trend

f = Significant upward trend

N.C. = No significant change

TABLE 4

SO2 TRENDS FROM CONTINUOUS DATA: 1978 - 1985

(PAIRED t TEST)

		AVERAGE		S	GNIFICA	NCE LEVEL
PAIRED YEARS	NUMBER OF SITES	OF ANNUAL GEOMETRIC MEANS (µg/m ³)	STANDARD DEVIATION (µg/m <u>3)</u>	TREN 95% <u>LEVEL</u>	D AT 99% <u>LEVEL</u>	PROBABILITY THAT CHANGE IS NOT SIGNIFICANT
78 79	9 9	23.8 21.3	6.1 5.3	N.C	N.C.	0.1238
79 80	10 10	21.8 19.8	4.5 5.2	Ŷ	N.C.	0.0215
80 81	8 8	21.1 20.9	4.1 4.4	N.C.	N.C.	0.9100
81 82	8	20.9 21.0	4.4 4.5	N.C.	N.C.	0.9522
82 83	8 8	20.0 18.1	5.0 5.1	Ŷ	Ŷ	0.0002
83 84	8 8	18.1 18.2	5.1 4.5	N.C.	N.C.	0.9237
84 85	15 14 15 14	16.4 16.3 16.5 16.7	4.4.4.5	N.C.	N.C.	0.6753 - 0.965 4

Key to Symbols : 🕴 = Significant downward trend

f = Significant upward trend

N.C. = No significant change

These trend analyses do not account for the uncertainty associated with the individual annual mean computed for each TSP site. Most TSP sampling is conducted only every sixth day, producing a maximum possible total of 61 samples per year. Therefore, the *t* test really compares year-to-year averages of the sampled concentrations, not actual annual averages. However, the every-sixth-day sampling schedule is believed to be sufficient to produce representative annual averages. The every-sixth-day schedule for TSP sampling began in 1971.

Significant changes in annual TSP levels can be caused by a number of things. Among these are simple changes of weather, particularly the wind; changes in annual fuel use associated with conservation efforts or heating demand; the frequency of precipitation events, which wash out particulates from the atmosphere; changes in average wind speed, since higher winds result in greater dilution of emissions; and a change in the frequency of southwesterly winds, which affect the amount of particulate matter transported into Connecticut from the New York City metropolitan area and from other sources of emissions located to the southwest.

Figure 1 shows the long-term trend of TSP concentrations in Connecticut in graphical form. The trend chart is based on data obtained from high volume sampling devices. High volume sampler data at a site are included only if there was a sufficient number of samples taken in a year to compute a valid annual geometric mean concentration.

2. <u>SO</u>2

Connecticut has been measuring ambient levels of sulfur dioxide since prior to the inception of the SO₂ standards in 1971. Several monitoring methods have been employed including bubblers, sulfation plates, and various types of continuous instruments. The bubblers became the EPA reference method, but unfortunately the field data have turned out to be very unreliable. The sulfation plates were in use for 15 years, but they do not measure SO₂ directly. Sulfation rate-derived SO₂ values were thought to be reliable, but recent information has cast doubt on their reliability. Continuous monitors presently yield reliable data, but this has not always been the case. The earliest continuous monitors (conductometric and coulometric) were subject to interference from many chemicals other than SO₂ and also had difficulties with quality control. Later generations of instruments (flame photometric and pulsed fluorescent) alleviated these problems, and there has been a corresponding increase in the reliability of the data, especially since 1978.

In order to perform a valid trend analysis, the data for the period of interest must be adequate, reliable and from similar sampling methods. Up until 1978, the only method which consistently fit these criteria was the sulfation plate. Between 1978 and 1982 there were approximately three times as much sulfation rate data as continuous SO₂ data and the former method was used for the purpose of analyzing SO₂ trends. However, recent information now indicates that sulfation rate-derived SO₂ values may not be as accurate as once thought. Sulfation rate data are dependent on relative humidity and wind speed -- being extremely sensitive to the latter -- and the precision of the data suffers even under uniform conditions. Furthermore, EPA has requested that DEP use continuous SO₂ data. The data are restricted to the period 1976-1985 because earlier data are judged not to be adequate or reliable. The results are summarized in Table 4 and Figure 2. Table 4 does not present a trend analysis for the period 1976-1977 or the period 1977-1978 because the number of monitors that operated for the duration of each period was 2 and 3, respectively -- too few to establish an accurate statewide trend.

In response to the skyrocketing prices of low sulfur fuels in the late 1970's, most states relaxed their sulfur-in-fuel requirements to the full extent the law allowed, creating considerable

FIGURE 1

(

TOTAL SUSPENDED PARTICULATE MATTER TREND "PERCENT OF SITES WITHIN EACH RANGE"

PRIMARY ANNUAL STANDARD = 75 μg/m³ SECONDARY ANNUAL STANDARD = 60 μg/m³ FIGURE 2

SULFUR DIOXIDE TREND FROM CONTINUOUS DATA "PERCENT OF SITES WITHIN EACH RANGE"

* ANNUAL ARITHMETIC MEAN ($\mu g/m^3$)

PRIMARY ANNUAL STANDARD = $80 \mu g/m^3$

pressure on Connecticut to follow suit. This caused Connecticut to reevaluate its philosophy for controlling sulfur oxide emissions in 1981. To meet the challenge of increased costs of fuel in the economy, DEP restructured its air pollution control requirements for fuel burning sources. Under this new "three-pronged" program Connecticut's businesses and industries are (1) now allowed (effective November 1981) to burn a less expensive grade of oil with a higher sulfur content -- one percent (1.0%) sulfur oil, and (2) allowed to burn higher sulfur content oil in exchange for reductions in energy use. The third aspect of the program is the repeal of the 24-hour secondary air quality standard for sulfur oxides.

This action increased statewide allowable sulfur oxide emissions by almost 60%. (Sulfur oxide emissions were not doubled by going from 0.5% to 1.0% sulfur-in-fuel since residential fuel users, which account for almost one-third of annual statewide sulfur oxide emissions, use distillate fuel oil with a sulfur content of less than 0.5%.) One would expect measured SO_2 levels to increase in 1982 and subsequent years, as compared to 1981, due to the use of 1.0% sulfur oil. However, no significant trend was apparent in 1982; and in 1983 SO_2 levels actually declined (see Table 4). This may be attributable to the year-to-year fluctuations in meteorology or the decreased fuel use caused by the increased price of this energy source.

The long-term trend of SO₂ concentrations is shown in graphical form in Figure 2. An improvement in SO₂ levels is demonstrated by the decrease over time of concentrations in excess of 40 μ g/m³. Table 4 shows the year-to-year trend in ambient SO₂ levels. Decreases in SO₂ concentrations from 1979 to 1980 and from 1982 to 1983 are evident.

Continuous SO_2 monitors were operated each year at five (5) sites between 1980 and 1985. Based on measurements at these five (5) locations, mean SO_2 levels are depicted in Figures 2A and 2B. Figure 2A shows SO_2 levels clearly decreasing at the Bridgeport, Danbury and Hartford sites. Figure 2B shows the average of the mean SO_2 concentrations for all the sites steadily decreasing over the 5-year period. Figure 2C is a linear regression analysis of this data which also shows a downward trend in SO_2 levels since 1980. Using the data presented in Figure 2B, Figure 2D shows the three-year running average of the mean SO_2 concentrations. Three-year running averages tend to smooth out the year-to-year effects of meteorology on pollutant levels. Like Figures 2A, 2B and 2C, Figure 2D illustrates again that SO_2 levels appear to be decreasing. This long term trend analysis also demonstrates that SO_2 levels are declining even though fuel burning sources have been allowed to use 1% sulfur oil since 1982.

C. AIR MONITORING NETWORK

A computerized Air Monitoring Network consisting of an IBM System 7 computer and numerous telemetered monitoring sites has operated in Connecticut for several years. In 1985, this data acquisition system was modernized by installing new data loggers at the monitoring sites and replacing the dedicated IBM System 7 computer with a non-dedicated Data General Eclipse MV/10000 computer. This essentially improved both data accuracy and data capture. As many as 12 measurement parameters are transmitted from a site via telephone lines to the Data General unit located in the DEP Hartford office. The data are then compiled twice daily into 24-hour summaries. The telemetered sites are located in the towns of Bridgeport, Danbury, East Hartford, East Haven, Enfield, Greenwich, Groton, Hartford, Madison, Middletown, Milford, New Britain, New Haven, Norwalk, Preston, Stafford, Stamford, Stratford and Waterbury.

Continuously measured parameters include the pollutants sulfur dioxide, particulates (measured as the coefficient of haze), carbon monoxide, nitrogen dioxide and ozone. Meteorological data consists of wind speed and direction, wind horizontal sigma, temperature, dew point, precipitation, barometric pressure and solar radiation (insolation).

FIGURE 2A

ANNUAL GEOMETRIC MEAN CONCENTRATIONS OF SO2 (PPB) FOR 1980-1985

FIGURE 2B

THE AVERAGE OF THE ANNUAL GEOMETRIC MEAN SO2 CONCENTRATIONS AT FIVE CONCURRENTLY OPERATING SITES

SO₂ CONCENTRATION (PPB)

-13-

FIGURE 2C

TREND OF THE ANNUAL GEOMETRIC MEAN SO2 CONCENTRATIONS AT FIVE CONCURRENTLY OPERATING SITES FOR 1980-1985

FIGURE 2D

THREE-YEAR RUNNING AVERAGES OF THE ANNUAL GEOMETRIC MEAN SO2 CONCENTRATIONS AT FIVE CONCURRENTLY OPERATING SITES

SO₂ CONCENTRATION (PPB)

The real-time capabilities of the Data General telemetry network have enabled the Air Monitoring Unit to report the Pollutant Standards Index for a number of towns on a daily basis while continuously keeping a close watch for high pollution levels which may occur during adverse weather conditions.

The complete monitoring network used in 1985 consisted of:

- 40 Total suspended particulate hi-vol sites
- 2 Total suspended particulate lo-vol sites
- 15 Lead hi-vol sites
- 7 Lead lo-vol sites
- 19 Sulfur dioxide sites
- 10 Ozone sites
- 3 Nitrogen dioxide sites
- 5 Carbon monoxide sites

A complete description of all permanent air monitoring sites in Connecticut operated by DEP in 1985 is available from the Department of Environmental Protection, Air Compliance Unit, Monitoring Section, State Office Building, Hartford, Connecticut, 06106.

D. POLLUTANT STANDARDS INDEX

The Pollutant Standards Index (PSI) is a daily air quality index recommended for common use in state and local agencies by the U.S. Environmental Protection Agency. Starting on November 15, 1976, Connecticut began reporting the PSI on a 7-day basis, but is currently reporting the PSI on a 5-day basis. The PSI incorporates three pollutants : sulfur dioxide, total suspended particulates and ozone. The index converts each air pollutant concentration into a normalized number where the National Ambient Air Quality Standard for each pollutant corresponds to PSI = 100 and the Significant Harm Level corresponds to PSI = 500.

Figure 3 shows the breakdown of index values for the commonly reported pollutants (TSP, SO₂, and O₃) in Connecticut. For the winter of 1985, Connecticut reported the total suspended particulate PSI for the towns of Ansonia, Bridgeport, Danbury, Greenwich, Groton, Hartford, Milford, New Britain, New Haven, Norwalk, Norwich, Stamford, Stratford, Wallingford, and Waterbury; and reported the sulfur dioxide PSI for the towns of Bridgeport, Danbury, East Haven, Greenwich, Groton, Hartford, Milford, New Britain, New Haven, Norwalk, Preston, Stamford, and Waterbury. For the summer, the ozone PSI was reported for the towns of Bridgeport, Danbury, East Hartford, Greenwich, Groton, Madison, Middletown, New Haven, Stafford, and Stratford. Each day ,the pollutant with the highest PSI value of all the pollutants being monitored is reported for each town along with the dimensionless PSI number and a descriptor word to characterize the daily air guality.

A telephone recording of the PSI is taped each afternoon at approximately 3 PM, five days a week, and can be heard by dialing 566-3449. Predictions for weekends are included on the Friday recordings. For residents outside of the Hartford telephone exchange, the PSI is now available toll-free from the DEP representative at the Governor's State Information Bureau. The number is 1-800-842-2220. This information is also available to the public during weekday afternoons from the American Lung Association of Connecticut in East Hartford. The number there is 289-5401 or 1-800-992-2263.

FIGURE 3

POLLUTANT STANDARDS INDEX

-17-

E. QUALITY ASSURANCE

Quality Assurance requirements for State and Local Air Monitoring Stations (SLAMS) and the National Air Monitoring Stations (NAMS), as part of the (SLAMS) network, are specified by the code of Federal Regulations, Title 40, Part 58, Appendix A.

The regulations were enacted to provide a consistent approach to Quality Assurance activities across the country so that ambient data with a defined precision and accuracy is produced.

A Quality Assurance program was initiated in Connecticut with written procedures covering, but not limited to, the following:

Equipment procurement Equipment installation Equipment calibration Equipment operation Sample analysis Maintenance audits Performance audits Data handling and assessment

Quality assurance procedures for the above activities were fully operational on January 1, 1981 for all NAMS monitoring sites. On January 1, 1983 the above procedures were fully operational for all SLAMS monitoring sites.

Data precision and accuracy values are reported in the form of 95% probability limits as defined by equations found in Appendix A of the Federal regulations cited above.

1. PRECISION

Precision is a measure of data repeatability (grouping) and is determined in the following manner:

a. <u>Manual Samplers</u> (TSP and Lead)

A second (co-located) TSP hi-vol sampler is placed alongside a regular TSP network sampler and operated concurrently. The concentration values from the co-located hi-vol sampler are compared to the network sampler and precision values are generated from the comparison.

b. <u>Manual Samplers</u> (Lead)

Duplicate strips are cut from the hi-vol sampler filters and individually analyzed for lead. The resulting concentration values are compared, and precision values are generated from the comparison.

c. <u>Automated Analyzers</u> (SO₂,O₃,CO and NO₂)

All NAMS and SLAMS analyzers are challenged with a low level pollutant concentration (.08 to .10 PPM) a minimum of once every two weeks. The

comparison of analyzer response to input concentration is used to generate automated analyzer precision values.

2. ACCURACY

Accuracy is an estimate of the closeness of a measured value to a known value and is determined in the following manner:

a. Manual Methods (TSP)

TSP accuracy is assessed by auditing the flow measurement phase of the TSP sampling method. In Connecticut, this is accomplished by attaching a secondary standard calibrated orifice to the hi-vol inlet and comparing the flow rates. A minimum of 25% of the TSP network samplers are audited each quarter.

b. <u>Manual Methods</u> (Lead)

Lead accuracy is assessed by analyzing spiked audit strips and comparing the analyzed results to the known spiked values. A low- and a high-valued spike are analyzed during lead filter processing -- approximately once per month.

c. <u>Automated Analyzers</u> (SO₂, O₃, CO and NO₂)

Automated analyzer data accuracy is determined by challenging each analyzer with three predetermined concentration levels. Accuracy values are calculated for a number of analyzers, in a pollutant sampling network, at each concentration level. Automated analyzer response is audited at three concentration levels and zero. The results for each concentration for a particular pollutant are used to assess automated analyzer accuracy. The audit concentration levels are as follows:

$SO_2, O_3, and NO_2$ (PPM)	CO (PPM)
0.03 to 0.08	3 to 8
0.15 to 0.20	15 to 20
0.35 to 0.45	35 to 45
0.80 to 0.90 (NO2 only)	

II. TOTAL SUSPENDED PARTICULATES

HEALTH EFFECTS

Particulates are solid particles or liquid droplets small enough to remain suspended in air. They include dust, soot, and smoke -- particles that may be irritating but are usually not poisonous -- and bits of solid or liquid substances that may be highly toxic. The smaller the particles, the more likely they are to reach the innermost parts of the lungs and work their damage.

The harm may be physical: clogging the lung sacs, as in anthracosis, or coal miners' "black lung" from inhaling coal dust; asbestosis or silicosis in people exposed to asbestos fibers or dusts from silicate rocks; and byssinosis, or textile workers' "brown lung" from inhaling cotton fibers.

The harm may also be chemical: changes in the human body caused by chemical reactions with pollution particles that pass through the lung membranes to poison the blood or be carried by the blood to other organs. This can happen with inhaled lead, cadmium, beryllium, and other metals, and with certain complex organic compounds that can cause cancer.

Many studies indicate that particulates and sulfur oxides (they often occur together) increase the incidence and severity of respiratory disease.

CONCLUSIONS

Measured TSP levels did not exceed the primary annual standard of 75 μ g/m³ or the secondary annual standard of 60 μ g/m³ during 1985. No site had a measured value exceeding the primary 24-hour standard of 260 μ g/m³, but the secondary 24-hour standard of 150 μ g/m³ was exceeded at both the Norwich-002 and the Stamford-001 monitoring sites in 1985. In order for the secondary standard to be <u>violated</u>, the second highest TSP level at a site must exceed 150 μ g/m³. No site violated the standard in 1985, which was also the case in 1984.

SAMPLE COLLECTION AND ANALYSIS

High Volume Sampler (Hi-vol) - "Hi-vols" resemble vacuum cleaners in their operation, with an 8" x 10" piece of fiberglass filter paper replacing the vacuum bag. Retractable lids have been installed on the hi-vols in order to eliminate the passive sampling error. The samplers operate (from midnight to midnight) every sixth day at most sites and every third day at certain urban stations.

The matter collected on the filters is analyzed for weight and chemical composition. The air flow through the filter is recorded during sampling. The weight in micrograms (μ g) divided by the volume of air in cubic meters (m³) yields the pollutant concentration for the day, in micrograms per cubic meter.

The chemical composition of the suspended particulate matter is determined at each hi-vol site as follows. Three standardized strips of every hi-vol filter are cut out and prepared for three different analyses. In the first analysis, a composite sample composed of a strip from each of several filters collected in a quarter-year is digested in acid, and the resulting solution is analyzed for metals by means of an atomic absorption spectrophotometer. The results are reported for each individual metal in μ g/m³. In the second analysis, a composite sample is dissolved in water, filtered and the resulting solution is analyzed by means of wet chemistry techniques to determine the concentration of the particular water soluble components. The results are reported for each individual constituent of the water soluble

fraction in μ g/m³. In the third analysis, total sulfates are determined by means of the same procedure used in the second analysis, but each of several samples collected in the quarter-year is analyzed individually and the results from all the samples are averaged. Before 1983 composite, rather than individual, samples were used to determine total sulfates.

Low Volume Sampler (Lo-vol) - The low volume sampler is a 30-day continuous sampler. It is enclosed in a shelter similar to a hi-vol, uses the same glass fiber filter paper, but operates at an air sampling flow rate approximately one-tenth that used by a standard hi-vol (i.e., 4 cfm as opposed to 40-60 cfm). The air flow through the lo-vol is measured by a temperature compensating dry gas meter. The lo-vol measurement is essentially an arithmetic average for the 30-day sampling interval. The filters are chemically analyzed in the same manner as those from the hi-vol sampler.

It should be noted that in 1985 the methods used to analyze the water soluble components of both the hi-vol and lo-vol filters were updated to reflect the latest available technology. Consequently, the accuracy of the analysis methods increased, and the resulting quarterly and monthly concentrations of ammonium, nitrate and sulfate were significantly higher than their counterparts in previous years. This is especially true for sulfate.

DISCUSSION OF DATA

Monitoring Network - In 1985, 40 hi-vol and 2 lo-vol particulate samplers were operated in Connecticut (see Figure 4). Because the Federal EPA does not recognize the lo-vol instrument as an equivalent to the reference (hi-vol) method of sampling for TSP, only hi-vol data are analyzed for compliance with the National Ambient Air Quality Standards (NAAQS).

Precision and Accuracy - Precision checks were conducted at three hi-vol sampling sites which had co-located samplers. On the basis of 166 precision checks, the 95% probability limits for precision ranged from -11% to +9%. Accuracy is based on air flow through the monitor. The 95% probability limits for accuracy, based on 78 audits conducted on the hi-vol monitoring system network, ranged from -6% to +5%. (See section I.E. of this Air Quality Summary for a discussion of precision and accuracy.)

Annual Averages - The Federal EPA has established minimum sampling criteria (see Table 1) for use in determining compliance with either the primary or secondary annual NAAQS for TSP. Using the EPA criteria, one finds that neither the primary annual standard nor the secondary annual standard was exceeded. Of the thirty-six (36) sites that had valid annual geometric means (as determined by EPA minimum sampling criteria) in both 1984 and 1985, ten (10) sites had lower annual geometric means when compared to 1984. Of the twenty-five (25) sites whose annual geometric means increased, the highest increase was 11.4 µg/m³ at the Stamford-001 site (see Table 5).

Historical Data - A summary of annual average TSP data for 1983-1985 is presented in Table 5. For data going back to 1957, see the 1980 and 1982 versions of the Air Quality Summary. Table 5 also includes an indication of whether the aforementioned EPA minimum sampling criteria were met at each site for each year. If the sampling was insufficient to meet the EPA criteria, an asterisk appears next to the number of samples.

Statistical Projections - The statistical projections presented in Table 5 are prepared by a DEP computer program which analyzes data from all sites operated by DEP. Input to the program includes site location and year, the number of samples (usually a maximum of 61), the annual geometric mean concentration and the geometric standard deviation. The program lists the input and calculates the 95% confidence limits about the mean and the statistical projections of the number of days in each year the primary and secondary 24-hour NAAQS would have been exceeded if sampling had been conducted every day. This analysis, like the ambient standards, is based on the assumption that the particulate data are log-normally distributed. For comparison, Table 5 also shows the number of days at a site when the

secondary 24-hour standard of 150 μ g/m³ was exceeded, as demonstrated by actual measurements at the site.

The statistical projections in Table 5 indicate that more frequent TSP sampling in 1985 might have resulted in measured violations (i.e., two or more exceedances) of the secondary 24-hour standard at Bridgeport-123, Naugatuck-001, Stamford-001 and Waterbury-007. Statistical projections regarding the primary 24-hour standard of 260 µg/m³ are omitted from the table because there were no predicted and no measured exceedances of this standard at any site.

Because manpower and economic limitations dictate that hi-vol sampling for particulate matter cannot be conducted every day, a degree of uncertainty is introduced as to whether the air quality at a site has either met or exceeded the national standards. This uncertainty for the annual standard can be quantified by determining 95% confidence limits about each of the annual geometric means. For example (see Table 5), in Hartford at site 003 in 1985, 58 samples were analyzed and a geometric mean of 50.8 µg/m³ was then calculated. The columns labeled "95-PCT-LIMITS" show the lower and upper limits of the 95% confidence interval to be 46 and 55 µg/m³, respectively. This means that, if a larger sample set (i.e., greater than 58 samples) were collected in 1985 at this site, there is a 95% chance that the geometric mean would fall between these limits. If the upper limit happened to be less than 60 µg/m³, the national ambient secondary standard for particulates, then one could be confident that the secondary standard was met at the site. If the upper limit happened to be greater, and the lower limit less, than 60 µg/m³, then one could not be confident that the secondary standard was met at the site. If both the upper and lower limits were greater than 60 µg/m³, then one could be confident that the standard was exceeded. These three possibilities are illustrated in Table X.

In Table 6, one can examine the 1985 monitoring sites for compliance with air quality standards, using the State's hi-vol confidence limit criteria. The table shows that the DEP is confident that the primary annual standard was achieved at all the sites. With regard to the secondary annual standard, the table also shows that the DEP is confident about compliance at 38 sites and uncertain about compliance at 2 sites: Bridgeport-123 and Stamford-001.

24-Hour Averages - Table 7 presents the 1st and 2nd high 24-hour concentrations recorded at each site. There were no violations (i.e., less than two exceedances) of the primary 24-hour standard and no violations of the secondary 24-hour standard at any site in Connecticut in 1985, which was also the case in 1984. The 2nd high 24-hour average increased at 16 of the 36 sites which met the minimum EPA sampling criteria in both 1984 and 1985. Five (5) of these increases were greater than or equal to 20 μ g/m³. The 2nd high 24-hour average decreased at 19 of the sites, and 6 of these decreases were greater than or equal to 15 μ g/m³.

Table 8 summarizes the statistical predictions from Table 5 regarding the number of days exceeding the 24-hour standards. This table shows that, if sampling had been conducted every day in 1985, there would have been no site with a violation of the primary 24-hour standard and four (4) sites with violations of the secondary 24-hour standard. This was also the case in 1984.

Hi-vol Averages - Quarterly and annual averages of fourteen components or characteristics of the particulate matter collected at each hi-vol sampling location have been computed for the year 1985 and are presented in Table 9.

Lo-vol Averages - For a number of years, the DEP has been experimenting and gathering data with the lo-vol particulate monitor. Lo-vols, which operate continuously for 30-day periods, have three advantages and one disadvantage in relation to hi-vols. First, the lo-vol's continuous operation can provide annual averages which include every day of the year, rather than the fractional portion of the year sampled by hi-vols every sixth day or every third day. Second, the lo-vol needs less frequent servicing (12 times/year) than the hi-vol (61 times/year for every-sixth-day sampling). Therefore, it is more cost-effective to operate. Third, the lo-vol has a higher collection efficiency than the hi-vol, especially for small, respirable particles. The disadvantage of the lo-vol is that it does not provide daily samples for direct comparison to the 24-hour TSP standards (although 24-hour averages can be obtained by statistical interpolation).

The two lo-vol sites are located at rural locations. One site is in Mansfield and the other is in Putnam. The use of the lo-vols made it possible to continue to obtain data on annual average particulate levels at these rural sites.

Monthly and annual averages of the chemical components from the lo-vol TSP monitors have been computed for 1985 and are presented in Table 10.

10 High Days with Wind Data - Table 11 lists the 10 highest 24-hour average TSP readings with the dates of occurrence for each TSP hi-vol site in Connecticut during 1985. This table also shows the average wind conditions which occurred on each of these dates. The resultant wind direction (DIR, in compass degrees clockwise from north) and velocity (VEL, in mph), the average wind speed (SPD, in mph), and the ratio between the velocity and the speed are presented for each of four National Weather Service stations located in or near Connecticut. The resultant wind direction and velocity are vector quantities and are computed from the individual wind direction and speed readings in each day. The closer the wind speed ratio is to 1.000, the more persistent the wind. Note that the Connecticut stations have local influences which change the speed and shift the direction of the near-surface air flow (e.g., the Bradley Field air flow is channeled north-south by the Connecticut River Valley and the Bridgeport air flow is frequently subject to sea breezes).

On a statewide basis, this table shows that approximately 47% of the high TSP days occur with winds out of the southwest quadrant and most of those days have persistent winds. This relationship between southwest winds and high TSP levels is more prevalent in southwestern Connecticut. However, many of the maximum levels at some urban sites do not occur with southwest winds, indicating that these sites are possibly influenced by local sources or transport from different out-of-state sources. As noted above, a large scale southwesterly air flow is often diverted into a southerly flow up the Connecticut River Valley. At many sites in the Connecticut River Valley most of the highest TSP days occur when the winds at Bradley Airport are from the south.

1983-1985 TSP ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

TABLE 5

DISTRIBUTION--LOGNORMAL

TOWN NAME	SITE	YEAR	SAMPLES	GEOM MEAN	95-PCT- LOWER	LIMITS UPPER	GEOM STD DEV	PREDICTED DAYS OVER 150 UG/M3	MEASURED DAYS OVER 150 UG/M3
ANS ONT A	200	7 80 L	60	42 2	38	47	1.540	-	
ANSONIA	003	1984	60	42.7	0 6 1 M	47	1.503	I	
ANSONIA	004	1985	59	39.4	35	44	1.612	rt.	
BRIDGEPORT	100	1983	60	41.0	37	46	1.594	ы	
BRIDGEPORT	100	1984	58	42.8	39	47	1.422		
BRIDGEPORT	100	1985	59	43.0	39	47	1.479		
BRIDGEPORT	600	1983	57	39.1	35	43	1.539		
BRIDGEPORT	600	1984	58	41.6	37	46	1.556	-1	
BRIDGEPORT	600	1985	57	29.7	35	45 5	1.615	гđ	
BRIDGEPORT	123	1983	59	54.1	49	60	1.530	м	
BRIDGEPORT	123	1984	57	52.6	48	58	1.514	~1	
BRIDGEPORT	123	1985	57	59.6	53	67	1.586	8	
BRISTOL	100	1983	58	32.2	29	36	1.528		
BRISTOL	100	1984	56	34.5	31	39	1.554		
BRISTOL	100	1985	09	36.4	33	40	1.487		
BURLINGTON	100	1983	58	20.3	18	23	1.797		
BURLINGTON	100	1984	58	20.6	18	24	1.778		
BURLINGTON	100	1985	59	20.1	18	22	1.589		
DANBURY	002	1983	56	44.6	40	49	1.509	ľ	
DANBURY	002	1984	57	43.8	39	49	1.537	ы	
DANBURY	002	1985	61	44.3	41	(8	1.445		
DANBURY	123	1983	53	43.1	38	48	1.590	г	
DANBURY	123	1984	57	42.8	38	48	1.624	2	
DANBURY	123	1985	58	43.3	39	(†8	1.552	н	

N.B. THE GEOMETRIC MEAN HAS UNITS OF MICROGRAMS PER CUBIC METER.

* SAMPLING NOT RANDOM OR OF INSUFFICIENT SIZE FOR REPRESENTATIVE ANNUAL STATISTICS.

TABLE 5, CONTINUED

1983-1985 TSP ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

DISTRIBUTION--LOGNORMAL

TOWN NAME	SITE	YEAR	SAMPLES	GEOM MEAN	95-PCT- LOWER	LIMITS UPPER	GEOM STD DEV	PREDICTED DAYS OVER 150 UG/M3	MEASURED DAYS OVER 150 UG/M3
EAST HARTFORD	004	1983	υÿ	28 28	2 6	2.7	201 F		
EAST HARTFORD	004	1984	57	41.2	2 2 2	6 4 7	1 507		
EAST HARTFORD	004	1985	57	41.9	38	46 94	1.522		
GREENWICH	008	1983	494	36.4	22	ψ	779 L		
GREENWICH	008	1984	61	40 o	2 4	u t	1 450		
GREENWICH	008	1985	60	43.8	65	- 4	1.576	P	
GROTON	900	1983	59	35.8	33	39	1 433		
GROTON	900	1984	56	37.3	Ω M	42	1.659	٣	
GROTON	900	1985	59	34.1	31	38	1.533	4	
HADDAM	002	1 983	28*	24.7	22	28	1.440		
HADDAM	002	1984	60	27.9	25	31	1.554		
HARTFORD	003	1983	57	46.3	42	51	1.513	-	
HARTFORD	003	1984	60	48.3	44	53	1.509		
HARTFORD	200	1985	58	50.8	46	55	1.442	1	
HARTFORD	013	1983	60	42.8	38	6 8	1,580	r	
HARTFORD	013	1984	57	44.2	40	49	1.539	4	
HARTFORD	013	1985	4 9 4	42.5	38	4 8	1.531	1	
HARTFORD	014	1983	57	40.3	36	45	1.512		
HARTFORD	014	1984	909	41.7	38	46	1.519		
HARTFORD	014	1985	58	43.7	40	48	1.453		
MANCHESTER	100	1983	59	33.7	31	37	1.481		
MANCHESTER	100	1984	60	31.4	28	35	1.552		
MANCHESTER	001	1985	55	35.1	31	39	1.565		
MERIDEN	002	1983	55	40.6	36	45	1.552		
MERIDEN	002	1984	60	42.4	38	47	1.510		
MERIDEN	002	1985	59	44.9	41	50	1.519	Ч	
MERIDEN	008	1983	59	37.2	34	41	1.532		

* SAMPLING NOT RANDOM OR OF INSUFFICIENT SIZE FOR REPRESENTATIVE ANNUAL STATISTICS.

N.B. THE GEOMETRIC MEAN HAS UNITS OF MICROGRAMS PER CUBIC METER.
1983-1985 TSP ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

DISTRIBUTION--LOGNORMAL

MEASURED DAYS OVER 150 UG/M3									
PREDICTED DAYS OVER 150 UG/M3				1 0				ннн	
GEOM STD DEV	1.484 1.509 1.481	1.405 1.460 1.472	1.483 1.586	1.506 1.562 1.574	1.590 1.506 1.456	1.569 1.561 1.525	1.537 1.555 1.517	1.521 1.523 1.466	1.438 1.421 1.451
-LIMITS UPPER	4 4 4 8 6 8	44 45 49	33 29	44 46 50	40 41	40 41 41	41 40 38	54 54	48 49 48
95-PCT- LOMER	38 38 38 38	38 37 41	22 23	36 37 41	32 35 35	32 33 34	33 32 31	41 44 6	4 4 0 4 4 7
GEOM MEAN	38.2 38.8 41.7	40.9 40.8 44.9	27.0 25.6	40.2 41.4 45.2	35.8 36.7 37.8	35.8 37.1 37.2	36.6 36.0 34.5	48.8 45.5 48.8	43.8 45.3 44.1
SAMPLES	57 55 57	58 61 60	15* 60	59 60	59 59 59	58 61 59	59 56 56	52 54 51	53 59 55
YEAR	1983 1984 1985	1983 1984 1985	1984 1985	1983 1984 1985	1983 1984 1985	1983 1984 1985	1983 1984 1985	1983 1984 1985	1983 1984 1985
SITE	003 003 003	002 002 002	100	100 100	007 007 007	008 008 008	600 600	002 002 002	013 013 013
TOWN NAME	11 DDLE TOWN 11 DDLE TOWN 11 DDLE TOWN	11 L FORD 11 L FORD 11 L FORD	10RRIS 10RRIS	VAUGATUCK NAUGATUCK NAUGATUCK	NEW BRITAIN NEW BRITAIN NEW BRITAIN	NEW BRITAIN NEW BRITAIN NEW BRITAIN	NEW BRITAIN NEW BRITAIN NEW BRITAIN	NEW HAVEN NEM HAVEN NEM HAVEN	NEW HAVEN NEW HAVEN NEW HAVEN

* SAMPLING NOT RANDOM OR OF INSUFFICIENT SIZE FOR REPRESENTATIVE ANNUAL STATISTICS.

N.B. THE GEOMETRIC MEAN HAS UNITS OF MICROGRAMS PER CUBIC METER.

1983-1985 TSP ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

DISTRIBUTION--LOGNORMAL

TOWN NAME	SITE	YEAR	SAMPLES	GEOM MEAN	95-PCT- LOWER	LIMITS UPPER	GEOM STD DEV	PREDICTED DAYS OVER 150 UG/M3	MEASURED DAYS OVER 150 UG/M3
NORMALK NORMALK NORMALK	100 100	1983 1984 1985	58 57	40.0 41.8 41.5	36 37 37	008 777	1.491 1.506 1.527		
NORWALK NORMALK NORMALK	005 005 005	1983 1984 1985	58 57	45.4 45.6 46.4	ここを	50 51	1.506 1.475 1.502	ri =	
NORMALK NORMALK NORMALK	012 012 012	1983 1984 1985	60 59	41.1 40.9 41.1	37 37	1 4 4 4 1 1 1 1	1.542 1.500 1.466	4	
NORWICH NORWICH	100 100	1983 1984	59 20*	39.6 39.6	36 33	43 47	1.462 1.485		
NORWI CH NORWI CH	002 002	1984 1985	41* 54	45.2 43.4	40 39	51 49	1.514 1.567	PH 1-14	Н
STAMFORD STAMFORD STAMFORD	100 100	1983 1984 1985	59 56	45.4 45.4 56.8	41 51	51 53 63	1.573 1.600 1.557	0 0 U	ч
STAMFORD STAMFORD STAMFORD	007 007	1983 1984 1985	5 5 6 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7	44.7 44.8 47.1	41 41 3	49 51	1.462 1.423 1.435		
STAMFORD STAMFORD STAMFORD	021 021 021	1983 1984 1985	59 57 53	45.3 49.4 44.8	41 45 41	50 49 49	1.468 1.457 1.411		
STRATFORD STRATFORD STRATFORD	005 005 005	1983 1984 1985	58 60 58	44.4 44.1 44.2	41 40 40	4 4 8 4 9 8	1.435 1.502 1.566	T	

N.B. THE GEOMETRIC MEAN HAS UNITS OF MICROGRAMS PER CUBIC METER.

* SAMPLING NOT RANDOM OR OF INSUFFICIENT SIZE FOR REPRESENTATIVE ANNUAL STATISTICS.

1983-1985 TSP ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

TABLE 5, CONTINUED

(

DISTRIBUTION--LOGNORMAL

 $\left(\right)$

TOWN NAME	SITE	YEAR	SAMPLES	GEOM MEAN	95-PCT- LOWER	LIMITS UPPER	GEOM STD DEV	PREDICTED DAYS OVER 150 UG/M3	MEASURED DAYS OVER 150 UG/M3
TORRINGTON TORRINGTON TORRINGTON	100 100	1983 1984 1985	56 61 60	36.8 38.0 37.6	33 34 34	41 43	1.526 1.637 1.613	rot rot	
VOLUNTOWN VOLUNTOWN VOLUNTOWN	100 100	1983 1984 1985	5 5 6 7 6 7 6	23.7 23.2 23.3	21 21 21	27 26 26	1.624 1.618 1.495		
WALLINGFORD MALLINGFORD WALLINGFORD	100 100	1983 1984 1985	57 60 59	40.4 43.1 43.1	39 39 39	45 48 48	1.512 1.556 1.597	44	
MATERBURY MATERBURY MATERBURY	005 005 005	1983 1984 1985	58 57 56	38.5 41.4 42.8	35 37 38	8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1.488 1.541 1.567	proj	
MATERBURY WATERBURY MATERBURY	900 900	1983 1984 1985	60 59	34.2 37.1 35.7	31 33 32	38 41 39	1.523 1.558 1.502		
MATERBURY MATERBURY MATERBURY	007 007 007	1983 1984 1985	60 59 60	47.4 47.5 50.6	5 5 5 5 7 5 5 3	52 53	1.472 1.545 1.581	ΝM	
MATERFORD MATERFORD	100 100	1983 1984	55 58	25.6 29.3	23 26	29 33	1.646 1.693		
WILLIMANTIC WILLIMANTIC WILLIMANTIC	002 002 002	1983 1984 1985	60 61	35.2 37.6 37.3	44 М М М	, 441 41	1.505 1.491 1.559		

* SAMPLING NOT RANDOM OR OF INSUFFICIENT SIZE FOR REPRESENTATIVE ANNUAL STATISTICS.

N.B. THE GEOMETRIC MEAN HAS UNITS OF MICROGRAMS PER CUBIC METER.

۲.,

-29-

FIGURE X

COMPLIANCE WITH THE ANNUAL TSP STANDARDS USING 95% CONFIDENCE LIMITS ABOUT THE ANNUAL GEOMETRIC MEAN CONCENTRATION

- L = The lower limit of the 95% confidence interval about the annual geometric mean concentration.
- U = The upper limit of the 95% confidence interval about the annual geometric mean concentration.

TABLE 6

COMPLIANCE WITH ANNUAL TSP STANDARDS DURING 1985

(95% CONFIDENCE INTERVAL)

	EXCEEDED	UNCERTAIN	ACHIEVED
PRIMARY STANDARD (75 μg/m ³)	NO SITES	NO SITES	40 SITES
SECONDARY STANDARD (60 μg/m ³)	NO SITES	2 SITES*	38 SITES*

* The upper 95% confidence limit exceeds the secondary annual standard at the Bridgeport-123 site and the Stamford-001 site.

TABLE 7

1985 MAXIMUM 24-HOUR TSP CONCENTRATIONS

- * Database for the site is deficient in number or distribution of observations.
- N.B. When a listed concentration occurs more than once at a site, the earliest date of occurrence is given.

- * Database for the site is deficient in number or distribution of observations.
- N.B. When a listed concentration occurs more than once at a site, the earliest date of occurrence is given.

* Database for the site is deficient in number or distribution of observations.

N.B. When a listed concentration occurs more than once at a site, the earliest date of occurrence is given.

STANDARD

STANDARD

* Database for the site is deficient in number or distribution of observations.

N.B. When a listed concentration occurs more than once at a site, the earliest date of occurrence is given.

TABLE 8

SUMMARY OF THE STATISTICALLY PREDICTED NUMBER OF HI-VOL SITES EXCEEDING THE 24-HOUR TSP STANDARDS

		SITES WITH EXCEEDING TH STANDARD	$\frac{1}{2} 2 \text{ DAYS}$ HE SECONDARY (150 µg/m3)	SITES WITH EXCEEDING STANDARD	l <u>></u> 2 DAYS THE PRIMARY (260 µg/m3)
YEAR	NO. OF SITES ¹	No. of Sites	Percentage of All Sites	No. of Sites	Percentage of All Sites
1971	44	37	84%	19	43%
1972	46	43	93%	13	28%
1973	44	31	70%	11	25%
1974	62	49	79 %	5	8%
1975	51	38	75%	2	4%
1976	38	33	87%	1	3%
1977	37	25	68%	0	0%
1978	34	20	59%	5	15%
1979	33	20	61%	2	6 %
1980	33	14	42%	0	0%
1981	40	14	35%	0	0%
1982	39	11	28%	0	0%
1983	40	2	5%	0	0%
1984	40	4	10%	0	0%
1985	39	4	10%	0	0%

¹ Only those sites are used which have sufficient data to permit the calculation of a valid annual average concentration.

TABLE 9

QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

32.

	TOWN ANSONIA	A 0 0	REA 060- 008		SITE 004	
	1ST	QUARTI 2ND	ERLY AV 3RD	G 4TH	ANNUAL A	<u>۱۷G</u>
<u>METALS</u> (ng/r	m ³)					
BERYLLIUM	<.1	<.1	<.1	<.1	<.1	
CADMIUM	19.1	7.6	15.3	41.2	20.7	
CHROMIUM	4	1	4	2	3	
COPPER	160	100	140	50	110	
IRON	730	460	560	600	580	
LEAD	290	130	110	100	160	
MANGANESE	12	13	11	12	12	
NICKEL	20	9	8	10	12	
VANADIUM	60	20	20	20	30	
ZINC	790	270	420	310	440	
WATER SOLU	BLES (ng/m ³)					
NITRATE	3730	4460	2930	2540	3440	
SULFATE	7700	10020	8210	7220	8330	
AMMONIUM	340	90	50	330	200	
<u>TSP</u> (μg/m³)	50	47	40	39	44	
SAMPLE COU	<u>NT</u> 14	16	14	15		

	TOWN BRIDGEPORT	۵ 0	REA 060		SITE 001	
	1ST	QUART 2ND	ERLY AV	G 4TH	ANNUAL A	<u>VG</u>
METALS (ng/m	13)					
BERYLLIUM	<.1	<.1	<.1	<.1	<.1	
CADMIUM	3.4	4.0	1.4	2.6	2.9	
CHROMIUM	4	4	3	2	3	
COPPER	70	140	150	40	100	
IRON	620	670	600	570	620	
LEAD	340	220	160	120	210	
MANGANESE	16	19	13	19	17	
NICKEL	20	15	9	8	13	
VANADIUM	60	30	20	20	30	
ZINC	110	80	40	50	70	
WATER SOLU	<u>3LES</u> (ng/m ³)					
NITRATE	6350	5130	2910	2940	4310	
SULFATE	8220	9760	9220	7770	8770	
AMMONIUM	220	80	90	200	150	
<u>TSP</u> (μg/m³)	50	53	42	40	46	
SAMPLE COUN	<u>NT</u> 14	16	15	15		

QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

	TOWN BRIDGEPORT	ب 0	AREA 1060		SITE 009
	1ST	QUART 2ND	ERLY AV 3RD	<u>G</u> 4TH	ANNUAL AVG
METALS (ng/r	n ³)				
BERYLLIUM	<.1	<.1	<.1	<.1	<.1
CADMIUM	4.0	4.8	1.6	1.7	3.0
CHROMIUM	3	3	4	2	3
COPPER	150	140	180	170	160
IRON	550	610	550	350	510
LEAD	320	190	120	80	180
MANGANESE	18	16	10	- 11	14
NICKEL	25	14	9	9	14
VANADIUM	80	30	20	20	40
ZINC	140	80	40	40	70
WATER SOLU	BLES (ng/m ³)				
NITRATE	5870	5810	3940	2560	4510
SULFATE		9870	10050	7490	
AMMONIUM	420	130	250	230	260
<u>TSP</u> (µg/m³)	. 49	53	45	31	44
SAMPLE COUN	<u>NT</u> 14ª	14 b	14	15	

^a For sulfate, the sample count is 0 in the first quarter. ^b For sulfate, the sample count is 9 in the second quarter.

 \sim

	TOWN BRIDGEPORT	A 0	REA 060		SITE 123	
	1ST	QUARTI 2ND	RLY AVO 3RD	<u>3</u> 4TH	ANNUAL A	<u>AVG</u>
METALS (ng/r	m ³)					
BERYLLIUM	<.1	<.1	<.1	<.1	<.1	
CADMIUM	2.4	6.1	1.5	1.5	2.8	
CHROMIUM	4	8	8	2	5	
COPPER	90	120	140	80	110	
IRON	950	1840	1280	660	1170	
LEAD	350	270	170	120	230	
MANGANESE	24	62	21	15	30	
NICKEL	25	19	16	11	18	
VANADIUM	80	30	30	20	40	
ZINC	150	100	60	60	90	
WATER SOLU	BLES (ng/m ³)					
NITRATE	5210	5730	3610	2770	4320	
SULFATE	9630	10340	9870	7480	9300	
AMMONIUM	200	170	420	290	270	
<u>TSP</u> (μg/m³)	68	93	73	45	69	
SAMPLE COU	<u>NT</u> 15	14	14	15		

QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

TOV BRIS	VN TOL	AR 00	REA 70		SITE 001
	1ST	<u>QUARTEI</u> 2ND	RLY AVG 3RD	4TH	ANNUAL AVG
METALS (ng/m ³)					
BERYLLIUM	<.1	<.1	<.1	<.1	<.1
CADMIUM	1.1	1.5	1.3	0.8	1.2
CHROMIUM	3	<1	4	2	2a
COPPER	160	150	140	30	120
IRON	690	390	420	830	580
LEAD	230	130	90	80	130
MANGANESE	14	11	11	11	12
NICKEL	8	3	4	11	6
VANADIUM	30	30	10	50	30
ZINC	70	40	20	40	40
WATER SOLUBLES	5 (ng/m ³)				
NITRATE	5790	3960	1880	2680	3610
SULFATE	7460	9550	9220	7380	8410
AMMONIUM	120	100	120	250	150
<u>TSP</u> (μg/m ³)	48	40	36	32	39
SAMPLE COUNT	15	16	14	15	

^a The average was calculated using one quarter of the reportable limit in the second quarter.

QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

	TOWN BURLINGTON	۲ 0	AREA 1085		SITE 001
	1ST	QUART 2ND	ERLY AV 3RD	G 4TH	ANNUAL AVG
METALS (ng/n	n ³)				
BERYLLIUM	<.1	<.1	<.1	<.1	<.1
CADMIUM	0.9	0.7	2.0	0.8	1.1
CHROMIUM	1	. <i>25</i> ⊂1	1	1	1a
COPPER	80	80	90	60	80
IRON	180	160	200	120	170
LEAD	80	70	30	30	50
MANGANESE	4	7	4	5	5
NICKEL	3	2	2	3	2
VANADIUM	10	10	<10	10	10 ^b
ZINC	70	30	<10	20	30c
WATER SOLU	<u>BLES</u> (ng/m ³)				
NITRATE	3030	2470	1060	1540	2060
SULFATE	6030	7690	6930	5760	6630
AMMONIUM	60	10	40	<10	30 d
<u>TSP</u> (µg/m³)	22	29	23	21	24
SAMPLE COUI	<u>NT</u> 15	16	14	14	

^a The average was calculated using one quarter of the reportable limit in the second quarter. ^{b,c} The average was calculated using one quarter of the reportable limit in the third quarter. ^d The average was calculated using one quarter of the reportable limit in the fourth quarter.

QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

	TOWN DANBURY	م 0	AREA 175		SITE 002
	<u>15T</u>	QUART 2ND	ERLY AV 3RD	<u>'G</u> 4TH	ANNUAL AVG
METALS (ng/	m ³)				
BERYLLIUM	<.1	<.1	<.1	<.1	<.1
CADMIUM	1.1	1.1	1.6	1.0	1.2
CHROMIUM	1	1	2	3	2
COPPER	30	50	90	50	50
IRON	880	570	770	620	710
LEAD	240	140	110	90	140
MANGANES	E 5 16	13	12	16	14
NICKEL	11	4	20	8	11
VANADIUM	30	ి.5 <10	10	10	10ª
ZINC	70	40	20	40	40
WATER SOLU	JBLES (ng/m³)				
NITRATE	4300	4120	2390	2290	3290
SULFATE	7730	9330	9730	7380	8560
AMMONIUM	1 190	70	80	220	140
<u>TSP</u> (µg/m³)	59	46	46	40	48
SAMPLE COL	<u>JNT</u> 15	16	15	15	

^a The average was calculated using one quarter of the reportable limit in the second quarter.

	TOWN DANBURY	AREA 0175			SITE 123
	1ST	QUART 2ND	ERLY AV 3RD	<u>'G</u> 4TH	ANNUAL AVG
METALS (ng/n	1 ³)				
BERYLLIUM	<.1	<.1	<.1	<.1	<.1
CADMIUM	1.3	1.1	1.7	1.1	1.3
CHROMIUM	2	1	3	2	2
COPPER	130	130	80	50	100
IRON	900	640	570	620	690
LEAD	250	130	110	80	140
MANGANESE	17	15	9	12	13
NICKEL	9	4	6	7	7
VANADIUM	30	10	10	10	20
ZINC	80	40	20	30	40
WATER SOLU	BLES (ng/m³)				
NITRATE	4070	3880	2170	2170	3100
SULFATE	7420	9790	8330	6790	8070
AMMONIUM	200	60	50	140	110
<u>TSP</u> (μg/m³)	62	49	40	39	48
SAMPLE COU	<u>NT</u> 15	15	13	15	

Ĭ

	TOWN EAST HARTFO	RD 0	REA 220		SITE 004	
	1ST	QUART 2ND	ERLY AV 3RD	G 4TH	ANNUAL	AVG
METALS (ng/n	n ³)					
BERYLLIUM	<.1	<.1	<.1	<.1	<.1	
CADMIUM	2.3	3.4	1.7	1.1	2.2	
CHROMIUM	3	1	3	4	3	
COPPER	60	70	90	50	70	
IRON	760	590	660	870	720	
LEAD	330	210	190	120	210	
MANGANESE	13	14	12	14	13	
NICKEL	11	5	6	12	8	
VANADIUM	30	10	10	20	20	
ZINC	80	40	10	60	50	
WATER SOLU	BLES (ng/m ³)					
NITRATE	4310	3500	2420	2510	3230	
SULFATE	8010	9480	9130	6800	8370	
AMMONIUM	210	100	70	200	150	
<u>TSP</u> (µg/m ³)	53	48	44	60	51	
SAMPLE COU	<u>NT</u> 15	16	13	14		

	TOWN GREENWICH	AREA 0330			SITE 008	
	1ST	QUART 2ND	ERLY AV 3RD	G 4TH	ANNUAL	<u>AVG</u>
METALS (ng/m	13)					
BERYLLIUM	<.1	<.1	<.1	<.1	<.1	
CADMIUM	1.6	1.8	2.5	1.1	1.8	
CHROMIUM	3	1	2	2	2	
COPPER	120	230	200	90	160	
IRON	840	800	700	580	730	
LEAD	240	160	110	90	150	
MANGANESE	12	16	12	11	13	
NICKEL	11	6	7	9	8	
VANADIUM	20	10	10	10	10	
ZINC	70	50	20	50	50	
WATER SOLU	<u>3LES</u> (ng/m ³)					
NITRATE	3920	4450	2550	2800	3460	
SULFATE	6860	9250	10620	7930	8690	
AMMONIUM	250	40	160	160	150	
<u>TSP</u> (µg/m³)	49	55	47	41	48	
SAMPLE COUN	<u>NT</u> 15	16	15	14		

QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

	TOWN GROTON	۵ 0	REA 350		SITE 006
	1ST	QUARTI 2ND	ERLY AV 3RD	G 4TH	ANNUAL AVG
METALS (ng/	m ³)				
BERYLLIUM	<.1	<.1	<.1	<.1	<.1
CADMIUM	0.9	0.7	0.5	0.9	0.8
CHROMIUM	3	3	5	2	3
COPPER	70	120	120	40	90
IRON	440	570	390	580	500
LEAD	120	80	60	50	80
MANGANES	E 10	12	7	10	10
NICKEL	23	24	10	21	20
VANADIUM	60	60	20	40	50
ZINC	60	60	<10	50	40a
WATER SOLL	JBLES (ng/m³)				
NITRATE	3850	3550	3000	2750	3300
SULFATE	7600	9200	7310	7700	8000
AMMONIUN	l 160	40	20	260	120
<u>TSP</u> (µg/m ³)	39	41	33	35	37
SAMPLE COL	<u>JNT</u> 15	16	13	15	

^a The average was calculated using one quarter of the reportable limit in the third quarter.

QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

	TOWN HARTFORD	N AREA FORD 0420			SITE 003	TE)3	
	<u>15T</u>		ERLY AV	<u>'G</u> 4тн	ANNUAL	<u>AVG</u>	
METALS (ng/m	1 ³)	2190	5110	4111			
BERYLLIUM	<.1	<.1	<.1	<.1	<.1		
CADMIUM	1.7	1.4	1.3	1.5	1.5		
CHROMIUM	3	1	3	3	2		
COPPER	140	140	120	90	120		
IRON	730	690	790	780	750		
LEAD ·	410	200	130	110	220		
MANGANESE	14	16	14	15	15		
NICKEL	16	5	6	10	9		
VANADIUM	50	10	10	30	30		
ZINC	210	30	20	50	80		
WATER SOLU	BLES (ng/m ³)						
NITRATE	4240	3460	320	2850	3450		
SULFATE		8180	10370	7510			
AMMONIUM	180	70	240	280	190		
<u>TSP</u> (μg/m³)	60	54	53	49	54		
SAMPLE COU	<u>NT</u> 15ª	15 ^b	13	15			

^a For sulfate, the sample count is 0 in the first quarter.
^b For sulfate, the sample count is 10 in the second quarter.

QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

	TOWN HARTFORD	۵ ۵	AREA 420		SITE 013	
	1ST	QUART 2ND	ERLY AVO 3RD	<u>3</u> 4TH	ANNUAL A	VG
METALS (ng/	m ³)					
BERYLLIUM	<.1	<.1		<.1		
CADMIUM	1.3	4.9		8.7		
CHROMIUM	6	5		5		
COPPER	60	100		80		
IRON	750	790		680		
LEAD	240	320		120		
MANGANES	E 13	19		13		
NICKEL	13	6		9		
VANADIUM	30	10		20		
ZINC	70	50		60		
WATER SOLL	JBLES (ng/m ³)					
NITRATE	4430	3620		2910		
SULFATE	8230	8990	19440	7040		
AMMONIUM	230	70		190		
<u>TSP</u> (μg/m ³)	46	53		39		
SAMPLE COL	<u>JNT</u> 15	16	()a	14		

^a For sulfate, the sample count is 1 in the third quarter.

QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

	TOWN HARTFORD	AREA 0420			SITE 014	
	1ST	QUART 2ND	ERLY AV 3RD	G 4TH	ANNUAL	<u>AVG</u>
METALS (ng/m	1 ³)					
BERYLLIUM	<.1	<.1	<.1	<.1	<.1	
CADMIUM	1.7	1.2	0.9	1.0	1.2	
CHROMIUM	3	1	3	2	2	
COPPER	100	120	110	60	100	
IRON	640	530	710	570	610	
LEAD	290	170	130	120	180	
MANGANESE	13	13	12	12	13	
NICKEL	14	4	4	7	7	
VANADIUM	50	10	10	20	20	
ZINC	80	50	60	50	60	
WATER SOLU	BLES (ng/m ³)					
NITRATE	4460	3830	2770	2800	3480	
SULFATE	7890	9270	9500	7240	8500	
AMMONIUM	210	80	110	240	160	
<u>TSP</u> (μg/m ³)	53	47	46	40	47	
SAMPLE COUI	<u>NT</u> 14	16	14	14		

-50-

QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

ר ז	FOWN MORRIS	A 0	REA 478		SITE 001
	1ST	QUARTI 2ND	ERLY AV 3RD	G 4TH	ANNUAL AVG
METALS (ng/m ³	3)				
BERYLLIUM	<.1	<.1	<.1	<.1	<.1
CADMIUM	1.3	1.5	2.7	0.5	1.5
CHROMIUM	^{,25} <1	1	1	1	1a
COPPER	70	90	90	50	80
IRON	560	320	320	160	340
LEAD	130	100	50	30	80
MANGANESE	9	10	6	5	8
NICKEL	4	1	3	4	3
VANADIUM	10	<i>₂.</i> 5 <10	<10	10	10 ^b
ZINC	40	20	<10	20	20c
WATER SOLUB	LES (ng/m ³)				
NITRATE	2830	2350	720	1600	1900
SULFATE	6140	7940	8200	6120	7090
AMMONIUM	90	50	30	70	60
<u>TSP</u> (µg/m ³)	29	34	30	20	28
SAMPLE COUN	I <u>T</u> 15	16	14	15	

^a The average was calculated using one quarter of the reportable limit in the 1st quarter.

^b The average was calculated using one quarter of the reportable limit in the 2nd and 3rd quarters. ^c The average was calculated using one quarter of the reportable limit in the 3rd quarter.

QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

	TOWN MANCHESTER	A 0!	AREA 0510		SITE 001
	1ST	QUARTE 2ND	RLY AVO 3RD	<u>G</u> 4TH	ANNUAL AVG
METALS (ng/m	n ³)				
BERYLLIUM	<.1	<.1	<.1	<.1	<.1
CADMIUM	1.2	1.4	1.3	0.6	1.1
CHROMIUM	2	1	4	1	2
COPPER	90	80	90	50	80
IRON	470	410	330	350	390
LEAD	160	130	80	70	110
MANGANESE	12	12	7	9	10
NICKEL	8	3	5	5	5
VANADIUM	20	10	< 10	10	10ª
ZINC	70	30	< 10	30	40 ^b
WATER SOLU	BLES (ng/m ³)				
NITRATE	3920	2830	2190	2350	2870
SULFATE	6800	8680	9630	6890	7870
AMMONIUM	160	110	160	150	140
<u>TSP</u> (μg/m ³)	45	45	36	30	39
SAMPLE COU	NT 15	14	11	15	

^{a,b} The average was calculated using one quarter of the reportable limit in the third quarter.

QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

	TOWN MERIDEN	A 0	REA 540		SITE 002	
	1ST	QUARTI 2ND	RLY AV	G 4TH	ANNUAL A	VG
METALS (ng/m	1 ³)					
BERYLLIUM	<.1	<.1	<.1	<.1	<.1	
CADMIUM	1.5	1.2	2.2	2.9	1.9	
CHROMIUM	2	2	2	2	2	
COPPER	160	220	240	140	190	
IRON	980	580	610	490	670	
LEAD	280	140	120	110	160	
MANGANESE	16	14	11	11	13	
NICKEL	12	7	5	10	9	
VANADIUM	50	10	10	20	20	
ZINC	190	120	150	110	140	
WATER SOLU	BLES (ng/m ³)					
NITRATE	4440	3640	2820	2410	3350	
SULFATE	7890	10170	8850	7330	8580	
AMMONIUM	340	110	110	320	220	
<u>TSP</u> (µg/m³)	62	49	44	39	49	
SAMPLE COU	<u>NT</u> 15	16	13	15		

-53-

QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

	TOWN MIDDLETOWN	A 0!	REA 570		SITE 003
	1ST	QUARTE 2ND	RLY AVO 3RD	G 4TH	ANNUAL AVG
METALS (ng/m	13)				
BERYLLIUM	<.1	<.1	<.1	<.1	<.1
CADMIUM	1.1	1.3	0.9	1.0	1.1
CHROMIUM	2	1	2	2	2
COPPER	90	110	70	60	80
IRON	790	550	500	450	580
LEAD	260	330	120	100	200
MANGANESE	16	15	9	20	15
NICKEL	10	5	4	8	7
VANADIUM	30	10	<10	20	20ª
ZINC	100	70	10	50	60
WATER SOLU	<u>BLES</u> (ng/m ³)				
NITRATE	4070	4170	2670	2620	3390
SULFATE	8240	10020	8660	7130	8510
AMMONIUM	190	100	110	260	170
<u>TSP</u> (μg/m ³)	53	51	40	39	46
SAMPLE COU	<u>NT</u> 15	14	14	14	

^a The average was calculated using one quarter of the reportable limit in the third quarter.

QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

T N	'OWN /IILFORD	۲ 0	AREA 0590		SITE 002		
	1ST	QUART 2ND	ERLY AV 3RD	G 4TH	ANNUAL	<u>avg</u>	
METALS (ng/m ³)						
BERYLLIUM	<.1	<.1	<.1	<.1	<.1		
CADMIUM	2.7	2.0	1.0	1.4	1.8		
CHROMIUM	2	2	3	3	3		
COPPER	30	60	70	50	50		
IRON	540	590	800	590	630		
LEAD	250	200	110	110	170		
MANGANESE	13	14	10	10	12		
NICKEL	19	18	12	30	20		
VANADIUM	50	40	30	90	50		
ZINC	100	40	30	60	60		
WATER SOLUBL	<u>_ES</u> (ng/m ³)						
NITRATE	4560	4520	3110	2440	3660		
SULFATE	8860	10290	10340	9150	9660		
AMMONIUM	330	130	210	260	230		
<u>TSP</u> (μg/m³)	51	54	46	42	48		
SAMPLE COUNT	<u> </u>	15	15	15			

)

-55-

	TOWN NAUGATUCK	AREA K 0660			SITE 001		
	1ST	QUARTI 2ND	ERLY AV 3RD	G 4TH	ANNUAL	AVG	
METALS (ng/m	13)			4			
BERYLLIUM	<.1	<.1	<.1	<.1	<.1		
CADMIUM	3.3	2.1	2.9	2.2	2.6		
CHROMIUM	3	2	4	3	3		
COPPER	100	100	220	40	110		
IRON	780	620	910	690	750		
LEAD	300	190	180	170	210		
MANGANESE	19	19	23	15	19		
NICKEL	9	4	5	7	6		
VANADIUM	30	10	10	10	20		
ZINC	130	90	80	90	100		
WATER SOLU	BLES (ng/m ³)						
NITRATE	4290	4450	2490	2370	3430		
SULFATE	9590	10070	10350	8260	9560		
AMMONIUM	350	110	60	270	200		
<u>TSP</u> (μg/m ³)	54	52	51	42	50		
SAMPLE COUI	<u>NT</u> 15	16	14	15		,	

QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

	TOWN NEW BRITAIN	AREA 0680			SITE 007	
	1ST	QUART 2ND	ERLY AV 3RD	G 4TH	ANNUAL .	<u>AVG</u>
<u>METALS</u> (ng/m	1 ³)					
BERYLLIUM	<.1	<.1	<.1	<.1	<.1	
CADMIUM	1.1	1.1	0.7	1.0	1.0	
CHROMIUM		1	2	2	··· 2	
COPPER	40	60	60	40	50	
IRON	520	520	510	420	500	
LEAD	190	130	100	80	130	
MANGANESE	10	12	10	11	11	
NICKEL	10	7	5	7	7	
VANADIUM	30	10	10	20	20	
ZINC	60	50	10	30	40	
WATER SOLU	BLES (ng/m ³⁾					
NITRATE	4200	3880	2740	2540	3380	
SULFATE	7900	9610	9130	7100	8500	
AMMONIUM	340	60	100	240	180	
<u>TSP</u> (μg/m ³)	45	43	38	35	40	
SAMPLE COU	<u>NT</u> 15	16	15	13		

(

-57-

	TOWN NEW BRITAIN	AREA ITAIN 0680			SITE 008		
	1ST	QUARTI 2ND	ERLY AV 3RD	G 4TH	ANNUAL	<u>4VG</u>	
METALS (ng/m	3)						
BERYLLIUM	<.1	<.1	<.1	<.1	<.1		
CADMIUM	1.1	1.3	0.8	0.7	1.0		
CHROMIUM	2	1	2	2	2		
COPPER	210	160	180	120	170		
IRON	510	500	650	440	530		
LEAD	210	140	110	100	140		
MANGANESE	9	12	10	10	10		
NICKEL	8	6	5	6	6		
VANADIUM	30	10	10	10	10		
ZINC	70	40	20	30	40		
WATER SOLU	<u>BLES</u> (ng/m ³⁾						
NITRATE	3760	4000	2050	2540	3100		
SULFATE	6630	9270	9430	6740	8090		
AMMONIUM	220	130	110	220	170		
<u>TSP</u> (μg/m ³)	42	43	42	34	40		
SAMPLE COUI	<u>NT</u> 14	16	15	14			

	TOWN NEW BRITAIN	AREA 0680			SITE 009	
	1ST	QUARTI 2ND	ERLY AVO 3RD	G 4TH	ANNUAL A	VG
METALS (ng/n	n ³)					
BERYLLIUM	<.1	<.1	<.1	<.1	<.1	
CADMIUM	1.0	1.0	0.8	1.7	1.1	
CHROMIUM	1	1	2	2	1	
COPPER	50	110	160	90	100	
IRON	380	370	600	390	430	
LEAD	150	100	100	70	110	
MANGANESE	9	11	10	9	10	
NICKEL	7	3	4	6	5	
VANADIUM	30	10	10	20	20	
ZINC	50	40	30	40	40	
WATER SOLU	BLES (ng/m ³⁾					
NITRATE	3520	3500	2270	2500	2970	
SULFATE	6930	8600	8600	6500	7670	
AMMONIUM	360	140	180	310	250	
<u>TSP</u> (μg/m ³)	37	41	39	32	37	
SAMPLE COU	<u>NT</u> 15	14	14	13		

	TOWN NEW HAVEN	AREA 0700			SITE 002	
	1ST	QUART 2ND	ERLY AV	G 4TH	ANNUAL A	VG
METALS (ng/m	13)					
BERYLLIUM	<.1	<.1	<.1	<.1	<.1	
CADMIUM	1.4	2.0	0.9	1.6	1.5	
CHROMIUM	2	2	3	3	2	
COPPER	250	370	340	110	270	
IRON	570	800	1030	580	740	
LEAD	320	200	170	130	210	
MANGANESE	12	16	14	12	13	
NICKEL	9	13	10	14	11	
VANADIUM	50	20	20	40	30	
ZINC	80	50	40	50	60	
WATER SOLU	BLES (ng/m ³⁾					
NITRATE	4150	3690	3340	3140	3610	
SULFATE	8170	8950	11430	7200	8940	
AMMONIUM	360	90	280	410	290	
<u>TSP</u> (μg/m ³)	59	53	56	42	53	
SAMPLE COU	<u>NT</u> 15	13	13	12		

QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

	TOWN NEW HAVEN	AREA 0700			SITE 013	
	1ST	QUARTI 2ND	ERLY AV 3RD	<u>G</u> 4TH	ANNUAL	AVG
METALS (ng/m	1 ³)					
BERYLLIUM	<.1	<.1	<.1	<.1	<.1	
CADMIUM	1.6	1.4	1.2	1.0	1.3	
CHROMIUM	3	1	3	2	2	
COPPER	30	40	30	70	40	
IRON	610	700	660	590	640	
LEAD	270	170	120	100	170	
MANGANESE	13	13	10	11	12	
NICKEL	22	10	10	11	13	
VANADIUM	60	20	30	30	40	
ZINC	70	50	20	50	50	
WATER SOLU	BLES (ng/m ³)					
NITRATE	4410	4620	2920	2250	3660	
SULFATE	8410	9910	10060	6470	8850	
AMMONIUM	430	110	320	320	290	
<u>TSP</u> (μg/m ³)	52	51	45	43	48	
SAMPLE COUI	<u>NT</u> 15	16	13	12ª		

^a For sulfate, the sample count is 11 in the fourth quarter.

QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

	TOWN NORWALK	AREA 0820			SITE 001	
	1ST	QUARTE 2ND	RLY AV	G 4TH	ANNUAL	<u>AVG</u>
<u>METALS</u> (ng/m	3)					
BERYLLIUM	<.1	<.1	<.1	<.1	<.1	
CADMIUM	2.2	1.4	1.1	0.8	1.4	
CHROMIUM	2	1	2	1	2	
COPPER	50	50	180	80	80	
IRON	550	800	460	350	550	
LEAD	190	170	90	70	130	
MANGANESE	13	18	8	8	12	
NICKEL	13	8	6	7	9	
VANADIUM	40	20	10	20	20	
ZINC	100	90	50	70	80	
WATER SOLU	<u>BLES</u> (ng/m ³)					
NITRATE	3790	4720	2790	2210	3450	
SULFATE	8550	10070	9680	7720	8980	
AMMONIUM	220	40	30	110	110	
<u>TSP</u> (μg/m ³)	48	56	40	32	45	
SAMPLE COUL	<u>NT</u> 14	14	10	13		

-62-
QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

()

	TOWN NORWALK	Д С	AREA 1820		SITE 005	
	1ST	QUART 2ND	ERLY AV 3RD	<u>'G</u> 4TH	ANNUAL	<u>AVG</u>
METALS (ng/m	1 ³)					
BERYLLIUM	<.1	<.1	<.1	<.1	<.1	
CADMIUM	2.1	1.4	1.2	0.8	1.3	
CHROMIUM	3	1	2	2	2	
COPPER	50	90	130	80	90	
IRON	760	770	600	760	720	
LEAD	260	170	130	100	160	
MANGANESE	15	16	11	13	14	
NICKEL	25	6	8	8	11	
VANADIUM	90	10	10	20	. 30	
ZINC	110	50	40	70	60	
WATER SOLUE	<u>3LES</u> (ng/m ³)					
NITRATE	4080	3930	3120	2390	3370	
SULFATE	8470	8990	9910	7270	8700	
AMMONIUM	320	50	80	160	140	
<u>TSP</u> (µg/m³)	59	55	44	44	50	
SAMPLE COUN	<u>NT</u> 12	16	15	14		

-63-

QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

	TOWN NORWALK	A 0	AREA 0820		SITE 012		
	<u>15T</u>	QUARTI 2ND	ERLY AV	G 4TH	ANNUAL A	<u> </u>	
METALS (ng/m	3)						
BERYLLIUM	<.1	<.1	<.1	<.1	<.1		
CADMIUM	1.9	3.2	1.5	3.3	2.5		
CHROMIUM	2	1	2	2	2		
COPPER	70	100	110	40	80		
IRON	620	780	700	450	640		
LEAD	240	160	140	80	160		
MANGANESE	11	18	11	10	13		
NICKEL	11	6	8	6	8		
VANADIUM	30	10	10	10	20		
ZINC	70	70	40	50	60		
WATER SOLU	BLES (ng/m ³)						
NITRATE	4310	6330	3030	2560	4080		
SULFATE	7860	8460	10260	7270	8480		
AMMONIUM	170	50	120	190	130		
<u>TSP</u> (μg/m³)	48	50	43	35	44		
SAMPLE COU	<u>NT</u> 15	15	15	14			

-64-

QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

	TOWN NORWICH	۵ 0	AREA 840		SITE 002
	1ST	QUART 2ND	ERLY AV 3RD	G 4TH	ANNUAL AVG
METALS (ng/m	1 ³)				
BERYLLIUM	<.1	<.1	<.1	<.1	<.1
CADMIUM	1.3	1.0	4.5	0.7	1.8
CHROMIUM	2	<1	5	2	2a.
COPPER	180	280	310	160	230
IRON	580	540	1050	490	660
LEAD	200	130	200	90	150
MANGANESE	10	12	15	9	11
NICKEL	8	9	9	6	8
VANADIUM	20	20	20	10	20
ZINC	60	50	60	40	50
WATER SOLU	BLES (ng/m ³)				
NITRATE	3890	3440	2420	2590	3100
SULFATE	6970	8710	9790	7560	8190
AMMONIUM	200	50	60	240	140
<u>TSP</u> (μg/m ³)	53	46	69	45	53
SAMPLE COUI	<u>NT</u> 15	13	13	15	

 $\left(\ldots \right)$

^a The average was calculated using one quarter of the reportable limit in the second quarter.

	TOWN STAMFORD	۲ 1	AREA 1080		SITE 001	
	1ST	QUART 2ND	ERLY AV 3RD	G 4TH	ANNUAL A	<u>۱VG</u>
METALS (ng/r	m ³)					
BERYLLIUM	<.1	<.1	<.1	<.1	<.1	
CADMIUM	1.3	1.8	1.6	0.8	1.4	
CHROMIUM	1	1	3	2	2	
COPPER	60	230	150	150	150	
IRON	530	1360	990	590	870	
LEAD	190	180	130	90	150	
MANGANESE	12	29	17	14	18	
NICKEL	13	8	9	10	10	
VANADIUM	40	10	10	20	20	
ZINC	80	80	50	60	70	
WATER SOLU	JBLES (ng/m ³)					
NITRATE	4180	5090	3270	2740	3790	
SULFATE	7540	9440	9450	7510	8480	
AMMONIUM	170	60	40	180	110	
<u>TSP</u> (μg/m ³)	56	75	60	54	61	
SAMPLE COU	INT 13	14	14	15		

	TOWN STAMFORD	<u>م</u> 1	REA 080		SITE 007	
	1ST	QUART 2ND	ERLY AV 3RD	G 4TH	ANNUAL A	VG
METALS (ng/m	1 ³)					
BERYLLIUM	<.1	<.1	<.1	<.1	<.1	
CADMIUM	2.3	2.5	2.2	2.4	2.4	
CHROMIUM	1	1	3	2	2	
COPPER	140	170	90	50	110	
IRON	390	660	650	630	590	
LEAD	240	150	120	120	160	
MANGANESE	12	18	15	16	15	
NICKEL	14	8	8	9	10	
VANADIUM	40	10	10	20	20	
ZINC	120	130	100	180	130	
WATER SOLU	BLES (ng/m ³)					
NITRATE	4000	4910	3510	3290	3940	
SULFATE	7140	9780	11000	8040	9040	
AMMONIUM	160	70	160	240	160	
<u>TSP</u> (μg/m³)	44	55	50	51	50	
SAMPLE COU	<u>NT</u> 14	15	15	14		

	TOWN STAMFORD	A 1	AREA 1080		SITE 021	-	
	1ST	QUARTI 2ND	ERLY AV 3RD	G 4TH	ANNUAL A	VG	
<u>METALS</u> (ng/m	3)						
BERYLLIUM	<.1	<.1	<.1	<.1	<.1		
CADMIUM	2.3	3.1	0.9	1.2	1.9		
CHROMIUM	2	1	3	2	2		
COPPER	160	170	130	40	120		
IRON	570	650	420	790	620		
LEAD	220	180	100	120	150		
MANGANESE	12	15	11	11	12		
NICKEL	17	6	8	10	10		
VANADIUM	50	10	10	10	20		
ZINC	90	70	40	70	70		
WATER SOLUE	<u>BLES</u> (ng/m ³)						
NITRATE	4520	4720	3770	3400	4090		
SULFATE	7250	9270	9460	7540	8370		
AMMONIUM	250	70	50	230	150		
<u>TSP</u> (µg/m ³)	50	53	45	43	48		
SAMPLE COUN	<u>NT</u> 12	14	12	15			

	TOWN STRATFORD	Д 1	REA 110		SITE 005		
	1ST	QUARTI 2ND	ERLY AV 3RD	G 4TH	ANNUAL A	<u>.VG</u>	
METALS (ng/r	m ³)						
BERYLLIUM	<.1	<.1	<.1	<.1	<.1		
CADMIUM	2.1	2.8	1.1	1.1	1.8		
CHROMIUM	5	2	2	3	3		
COPPER	180	160	200	140	170		
IRON	830	660	500	510	630		
LEAD	360	260	140	160	230		
MANGANESE	14	15	9	11	12		
NICKEL	20	10	6	9	11		
VANADIUM	60	20	20	20	30		
ZINC	150	70	30	50	80		
WATER SOLU	I <u>BLES</u> (ng/m³)						
NITRATE	4750	3660	2910	2860	3560		
SULFATE	8650	9340	9690	7710	8830		
AMMONIUM	300	80	260	250	220		
<u>TSP</u> (μg/m³)	61	50	40	40	48		
SAMPLE COU	<u>INT</u> 15	15	14	15			

	TOWN TORRINGTON	A 1	REA 160		SITE 001	
	1ST	QUARTI 2ND	ERLY AV 3RD	G 4TH	ANNUAL A	<u>.VG</u>
METALS (ng/m	1 ³)					
BERYLLIUM	<.1	<.1	<.1	<.1	<.1	
CADMIUM	0.9	1.5	0.7	0.8	1.0	
CHROMIUM	3	2	2	2	2	
COPPER	120	120	50	40	80	
IRON	870	490	480	400	560	
LEAD	290	140	80	80	150	
MANGANESE	13	12	8	8	10	
NICKEL	10	. 3	4	5	5	
VANADIUM	30	10	10	10	20	
ZINC	80	40	10	30	40	
WATER SOLU	<u>BLES</u> (ng/m ³)					
NITRATE	3880	3120	1710	1990	2700	
S ULFATE	7430	8780	8110	7310	7920	
AMMONIUM	190	90	160	150	150	
<u>TSP</u> (µg/m³)	57	42	40	33	43	
SAMPLE COU	<u>NT</u> 15	16	14	15		

QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

	TOWN VOLUNTOWN	Д 1	REA 205		SITE 001
	1ST	QUARTI 2ND	ERLY AV	<u>G</u> 4TH	ANNUAL AVG
METALS (ng/m	1 ³)				
BERYLLIUM	<.1	<.1	<.1	<.1	<.1
CADMIUM	0.8	1.3	1.4	0.7	1.1
CHROMIUM	<1	<1	1	2	1a
COPPER	210	180	80	40	130
IRON	130	180	340	130	190
LEAD	70	40	30	30	40
MANGANESE	3	6	4	3	4
NICKEL	3	4	2	3	3
VANADIUM	10	10	<10	<10	10 ^b
ZINC	70	30	<10	20	30 c
WATER SOLU	<u>BLES</u> (ng/m ³)				
NITRATE	3110	2090	1590	1910	2210
SULFATE	6300	7280	7570	5190	6630
AMMONIUM	30	10	70	50	40
<u>TSP</u> (µg/m ³)	23	32	26	19	25
SAMPLE COUI	<u>NT</u> 15	16	13	12	

^a The average was calculated using one quarter of the reportable limit in the 1st and 2nd quarters. ^b The average was calculated using one quarter of the reportable limit in the 3rd and 4th quarters. ^c The average was calculated using one quarter of the reportable limit in the 3rd quarter.

		A) 1	AREA 1210		SITE 001	
	1ST	QUARTI 2ND	ERLY AV 3RD	<u>G</u> 4TH	ANNUAL A	١VG
METALS (ng/m	n ³)					
BERYLLIUM	<.1	<.1	<.1	<.1	<.1	
CADMIUM	1.3	2.3	1.3	1.0	1.5	
CHROMIUM	4	1	2	3	3	
COPPER	100	90	50	40	70	
IRON	840	750	530	540	670	
LEAD	260	160	100	100	160	
MANGANESE	12	14	9	16	13	
NICKEL	13	10	5	10	10	
VANADIUM	40	20	10	20	20	
ZINC	80	50	20	60	50	
WATER SOLU	BLES (ng/m ³)					
NITRATE	4540	3870	2060	2630	3280	
SULFATE	8250	10080	10050	7740	9030	
AMMONIUM	270	100	100	340	200	
<u>TSP</u> (μg/m ³)	61	48	41	41	48	
SAMPLE COU	NT 15	15	15	15		

QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

	TOWN WATERBURY	A 12	REA 240		SITE 005	
	1ST	QUARTE 2ND	RLY AV 3RD	<u>G</u> 4TH	ANNUAL A	<u>avg</u>
METALS (ng/m	13)					
BERYLLIUM	<.1	<.1	<.1	<.1	<.1	
CADMIUM	4.2	3.1	2.6	1.3	2.8	
CHROMIUM	12	5	6	6	7	
COPPER	120	140	140	70	120	
IRON	650	530	520	480	550	
LEAD	290	170	130	120	180	
MANGANESE	13	14	9	11	12	
NICKEL	13	5	5	8	8	
VANADIUM	40	10	10	20	20	
ZINC	210	120	180	140	160	
WATER SOLU	BLES (ng/m ³)					
NITRATE	4430	3650	2350	2900	3330	
SULFATE		8570	979 0	7450		
AMMONIUM	340	100	190	390	260	
<u>TSP</u> (μg/m³)	59	46	43	41	47	
SAMPLE COU	<u>NT</u> 14ª	14 b	14	14		

^a For sulfate, the sample count is 0 in the first quarter . ^b For sulfate, the sample count is 10 in the second quarter .

	TOWN WATERBURY	<u>م</u> 1	AREA 240		SITE 006	
	1ST	QUART 2ND	ERLY AV 3RD	G 4TH	ANNUAL	<u>AVG</u>
METALS (ng/m	13)					
BERYLLIUM	<.1	<.1	<.1	<.1	<.1	
CADMIUM	1.6	1.0	1.6	0.8	1.3	
CHROMIUM	11	4	3	4	6	
COPPER	210	160	220	140	180	
IRON	420	450	370	300	390	
LEAD	170	130	100	70	120	
MANGANESE	10	12	7	7	9	
NICKEL	9	3	5	6	6	
VANADIUM	30	10	10	20	20	
ZINC	120	140	80	70	100	
WATER SOLUI	<u>3LES</u> (ng/m ³)					
NITRATE	4830	4510	1950	3100	3610	
SULFATE	8790	9680	9000	7640	8790	
AMMONIUM	450	100	110	360	250	
<u>TSP</u> (μg/m ³)	45	45	34	31	39	
SAMPLE COUN	<u>NT</u> 15	15	15	14		

QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

		TOWN WATERBURY	Д 1	REA 240		SITE 007	
		1ST	QUARTI 2ND	ERLY AV	G 4TH	ANNUAL A	VG
	METALS (ng/	m ³)					
	BERYLLIUM	<.1	<.1	<.1	<.1	<.1	
	CADMIUM	3.3	3.7	2.4	1.5	2.7	
	CHROMIUM	9	7	9	7	8	
	COPPER	290	260	180	60	200	
	IRON	990	710	630	760	770	
	LEAD	340	200	170	170	220	
	MANGANESE	19	15	11	14	15	
	NICKEL	15	6	5	11	9	
	VANADIUM	50	10	10	30	30	
	ZINC	180	130	160	130	150	
	WATER SOLU	IBLES (ng/m³)					
	NITRATE	4610	4390	2240	3090	3620	
	SULFATE	9700	9630	9900	7920	9280	
	AMMONIUM	410	170	150	340	270	
(<u>TSP</u> (μg/m³)	72	55	47	50	56	
	SAMPLE COU	<u>NT</u> 15	16	14	15		

()

QUARTERLY CHEMICAL CHARACTERIZATION OF 1985 HI-VOL TSP

	TOWN WILLIMANTIC	۵ 1	AREA 410		SITE 002	
	1ST	QUART 2ND	ERLY AV 3RD	<u>G</u>	ANNUAL AN	<u>/G</u>
METALS (ng/r	n ³)					
BERYLLIUM	<.1	<.1	<.1	<.1	<.1	
CADMIUM	1.0	0.5	0.9	1.0	0.8	
CHROMIUM	2	<1	2	1	1ª	
COPPER	50	70	70	40	60	
IRON	710	320	340	430	450	
LEAD	190	110	80	90	120	
MANGANESE	10	8	5	7	8	
NICKEL	19	6	10	19	13	
VANADIUM	90	20	40	40	50	
ZINC	60	40	10	40	40	
WATER SOLU	BLES (ng/m ³)					
NITRATE	4340	3460	2330	1970	3030	
SULFATE	8180	8790	8640	8140	8440	
AMMONIUM	240	70	12 0	220	160	
<u>TSP</u> (μg/m³)	57	37	35	35	41	
SAMPLE COU	<u>NT</u> 15	16	15	15		

^a The average was calculated using one quarter of the reportable limit in the second quarter.

TABLE 10

 $\left(\right)$

MONTHLY CHEMICAL CHARACTERIZATION OF 1985 LO-VOL TSP

SITE 001 AREA 0520 TOWN MANSFIELD

					2	ΙΟΝΤΗΓΥ	AVERAGE					i i	ANNUAL AVG
	NAL	FEB	MAR	APR	MAY	NNr	IUL	AUG	SEP	이다	NON	DEC	
<u>METALS</u> (ng/m ³)													
BERYLLIUM	v.	۲. ۲.	٨.1	۲. ۲	v.	v.	v	۲. ۷		۲. ۲	×.	ŗ. V	<.1 .1
CADMIUM	0.4	0.6	1.4	0.2	0.9	0.6	0.7	1.0		0.5	0.3	0.4	0.6
CHROMIUM	2	5	-	-	v	v	Ÿ	-		-	-	~	19
COPPER	<10	10	<10	10	10	10	<10	10		10	<10	10	10b
IRON	510	069	580	540	440	380	320	360		250	170	270	410
LEAD	100	100	20	60	40	40	40	30		40	30	40	50
MANGANESE	ω	თ	ø	10	11	δ	S	Q		9	ß	9	œ
NICKEL	9	12	7	7	7	ъ	თ	ø		9	9	10	¢
VANADIUM	20	40	20	20	10	10	20	20		10	10	20	20
ZINC	30	50	20	80	20	20	<10	<10		30	20	30	30c
WATER SOLUBLES (ng/m	3)												
NITRATE	2670	3500	2670	3100	2470	2340	1340	1140		2150	2160	2760	2390
SULFATE	6260	6970	6670	8710	7500	7050	7500	8340		5120	6050	6700	0669
AMMONIUM	450	210	150	40	20	20	20	20		490	400	1080	260
<u>ТSP</u> (µg/m ³)	45	50	42	45	49	37	26	27		23	20	35	36

^a The average was calculated using one quarter of the reportable limit in May, June and July.

b The average was calculated using one quarter of the reportable limit in January, March, July and November.
c The average was calculated using one quarter of the reportable limit in July, August and September.

MONTHLY CHEMICAL CHARACTERIZATION OF 1985 LO-VOL TSP

SITE	002	
AREA	0060	
TOWN	PUTNAM	

.

					-	MONTHLY	AVERAG	ΪĒ					ANNUAL AVG
	NAL	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP	0 0	NON	DEC	
METALS (ng/m ³)													
BERYLLIUM	۲. ۲	v .1	1 .	v	v.	۲. ۲	v.	۲. ۲	۲. ۲	v.	v.	۲. ۲	۲. ۲
CADMIUM	0.5	0.5	0.5	0.6	0.7	0.7	0.5	0.4	0.9	0.6	0.1	0.6	9.0
CHROMIUM	Μ	4	ধ		-	Ÿ		-	-	2	7	m	2a
COPPER	<10	10	<10	10	10	10	10	10	10	10	10	10	10b
IRON	1230	750	600	370	380	360	220	240	230	220	210	610	450
LEAD	120	120	70	1.00	60	50	50	60	50	60	40	70	70
MANGANESE	13	6	ø	ø	10	ø	S	4	4	S	ŝ	σ	7
NICKEL	7	10	ŝ	4	9	ß	S	4	4	ŝ	4	6	y
VANADIUM	20	30	10	10	10	10	10	10	10	10	20	10	10
ZINC	40	40	10	50	20	20	<10	<10	<10	20	20	30	20⊂
WATER SOLUBLES (n	g/m ³)												
NITRATE	2470	3350	1990	2780	2910	2770	1850	2300	1970	1870	1850	2610	2390
SULFATE	5660	6580	5510	6880	7200	7310	7660	8750	8860	6160	8090	7480	7180
AMMONIUM	70	70	20	10	20	20	10	<10	60	80	40	470	70d
<u>TSP</u> (µg/m ³)	47	50	41	37	23	38	28	29	30	25	27	51	38
^a The average was ca ^b The average was ca ^c The average was ca	lculated usir Iculated usir Iculated usir	ng one qu g one qu	arter of th arter of th arter of th	e reportal e reportal e reportak	ole limit in ole limit in ole limit in	June. January a July, Augu	nd March Ist and Se	r. ptember.					
		· · · · · · · · ·				· ?	~~~~~~						

^d The average was calculated using one quarter of the reportable limit in August.

-78-

					Rages .	<u>0</u>								5	_							2	and a state of the	
IC METER	10	67	0/18/85 230 9.1	10.2 0.894	190	8.2 0.989 0.000	0.7	0.946 210	7.4 7.8 0 950	2	65	3/ 8/85 220	12.1	240 240	8.1 0.606	240 10.7	0.996	19.6 20.4	0.958	7,	65 3/ 8/85	11.1	0.921	4.9 8.1 0.606
S PER CUB	.σ -	68 10,00	10/10/85 240 13_0	13.7	230	9.1 0.553	0.00	0.978 250	9.6 10.1 955		99	6/18/85 230 230	10.2	0.094 190 8.1	8.2 0.989	220	0.946	0-1-C	0.950	7:	68 6/18/85	9.1 10.2	0.894	8.1 8.2 0.989
MI CROGRAM		689 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	1/31/85 30 7_1	7.5 0.950	10	5.3 0.966	10.5 10.8	0.974 60	0.0 72.0 72.4		69	1/19/85 240	10.1	0.041 240 5.0	0.911	260	0.864	5.5 5.5 5.5	0.726	73	69 12/27/85	12.6 13.2	0.952	8.2 9.2 0.893
UNITS : I	~	69	2/13/85 230 10.7	11.8	180	$9.1 \\ 0.807 \\ 202 \\ 202 \\ 202 \\ 202 \\ 0.00$	7.4	0.916 220	0.55 885		70	9/ 4/85 250	12.5	0.744 240 5.3	8.3 0.635	260	9.8 0.992 250	11.6	0.957	SE	1/ 7/85	2.8 6.6	0.417	6.8 7.5 0.910
WIND DATA	9	(NW)	300 300 3.2	9.6 0.335	10	0.717	8.00 8.00 8.00	0.341 290	9.5 11.9		2)2	1/ 7/85 40	100	0.41/ 10 6.8	7.5	40 9.6	0.870	0.7	0.985	5	16 2/24/85	10.4	0.924	8.2 8.6 0.949
AYS WITH V	'n	73	2/24/85 210 10 4	11.2	190	8.6 0.949	8.6 8.6	0.997 260	13.6 16.0 851		76	5/13/85 230	11.8	0, 909 180 7_3	9.1 0.807	200	0.916 220	0.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.886	21	11 9/ 4/85	11.8 12.5	0.944	5.3 8.3 0.635
AGE TSP D	4	75	4/19/85 260 8 4	11.4	340	4.5	180 3.1 7.2	0.438 300	5.6 10.5 12.5		77	12/27/85 220	13.20	210 210 2	9.2 0.893	240	14.8 0.988 220	11.8	0.957	> ;	85 5/13/85	230 10.7 11.8	0.909	7.3 9.1 0.807
HOUR AVER	ε	76	1/19/85 240 8 5	10.1 0.841	240	0.911 0.911	260 9.6 11.1	0.864 260	5.3 7.3 0 726	2.1.0	83	4/25/85 320 5	0.00 4.0.5	200 200	6.5 0.359	230	5.3 0.620	11.0	0.955	i d	85 4/19/85	260 8.4 11.4	0.735	3.2 4.5 0.717
GHEST 24-	2	28- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	270 270 121 270	5.8 0.848	2.8	3.7 0.759	0.00	0.945 280	5.7 6.3 0 00h		87	4/19/85 260 2	11.4	0. / 350 340 3 20	4.5 0.717	3.1	1.2 0.438 200	5.6 10.5	0.534	71	87 4/25/85	5.40 8.41 9.45	0.604	2.3 6.5 0.359
85 TEN HI	- \	76	220 220 12 6	13.2 0.952	210 8.2	9.2 0.893	240 14.6 14.8	0.988 220	11.8 12.4 0 057	Can.		5/ 1/85 300	200 200 200	0.335 7 10 4	7.5	280	$ \begin{array}{c} 8.6\\ 0.341\\ 200\\ 200\\ 0.200\\ 0.200\\ 0.00$	9.5 7.0	0.793	Se	91 5/_1/85	3.20 3.20 9.20	0.335	5.4
19	RANK	TSP	UATE DIR (DEG) VFI (MPH)	SPD (MPH) RATIO	DIR (DEG) VEL (MPH)	SPD (MPH) RATIO	VEL (MPH) SPD (MPH)	RATIÒ DIR (DEG)	VEL (MPH) SPD (MPH) RATIO		TSP	DATE DIR (DEG)	VEL (MPH) SPD (MPH)	DIR (DEG) VFI (MPH)	SPD (MPH) RATIO	DIR (DEG) VEL (MPH)	SPD (MPH) RATIO	VEL (MPH)	RATIO		TSP DATE	VEL (MPH) SPD (MPH)	RATIO	VEL (MPH) SPD (MPH) RATIO
	TOWN-SITE (SAMPLES)	ANSONIA-004 (59)	METEOROLOGICAL SITE NEWARK		METEOROLOGICAL SITE BRADLEY		MEIEOROLOGICAL SIIE BRIDGEPORT	METEOROLOGICAL SITE	WORCESTER		BRIDGEPORT-001 (59)	METEOROLOGICAL SITE	NEWAKK	METEOROLOGICAL SITE RADIFY		METEOROLOGICAL SITE BRIDGEPORT		MELEURULUGIUAL STIE WORCESTER			BRIDGEPORT-009 (57)	METEOROLOGICAL SIIE NEWARK	METEODOLOCICAL SITE	BRADLEY

I ADLL 11

TABLE 11

 $\left(\begin{array}{c} \\ - \end{array}\right)$

-79-

						190						d'		
IC METER	10	240 10.7 10.8	270 270 20.4 0.958	94 6/12/85	290 290 12.2	0.517 20 5.3	0.940 40 6.1	0.761 40 7.3 9.1	0.806	5/ 1/85	300 3.2 9.6	0.335 10 7.5	0.717 280 2.9	0.341 290 9.5 11.9 0.793
s per cue	6	220 6.7 7.0	0.950 210 7.4 7.8 0.950	96 11 / 10 / 85	260 8.4 11.4	0.735 340 3.2 4.5	0.717 180 3.1	0.438 300 5.6	0.534	60 1/31/85	30	0.950 5.1 5.3	0.966 40 10.5	0.974 60 5.2 0.763
MICROGRAM	ω	240 14.6 14.8	0.957 11.8 12.4 0.957	08 98 18/85	260 10.0	0.847 270 8.8 10.1	0.871 270 10.4	0.981 290 16.9	0.981	61 4/19/85	260 8.4 11.4	0.735 340 3.2 4.5	0.717 180 3.1	0.438 5.6 10.5 0.534
UNITS : I	7	40 9.6 11.1	0.085 70 7.9 8.1 0.985	101 101 12/27/85	12.6 13.2	0.952 8.20 9.2	0.893 240 14.6	0.988 220 11.8	0.957	62 9/ 4/85	250 11.8 12.5	0.944 240 5.3	0.635 260 9.7	0.992 250 11.6 0.957
VIND DATA	9	240 8.6 8.6	0.851 13.6 0.851	102 11/25/85	5.4 8.9	0.604 2.3 6.5	$\begin{array}{c} 0.359 \\ 230 \\ 3.3 \\ 5.3 \end{array}$	0.620 250 11.0	0.955	62 3/ 8/85	220	0.921 240 4.9 8.1	0.606 240 10.7	0.956 19.6 20.4 0.958
VS WITH V	Ъ	9.7 9.8 9.8	0.957 250 11.6 12.1 0.957	105 5/13/85	230 230 11.8	0.909 180 7.3 9.1	0.807 200 7.4	0.916 220 8.4	0.886	63 5/13/85	230 10.7 11.8	0.909 180 7.3 9.1	0.807 200 7.4 8.1	0.916 220 8.4 0.886
GE TSP DA	4	200 7.4 8.1	0.886 0.886	118 272/1/85	10.4 11.2	0.924 190 8.2 8.6	0.949 240 8.6	0.997 260 13.6	0.851 (Jb)	3/20/85	250 9.5 13.9	0.678 290 6.8 10.1	0.674 270 7.6 10.2	0.740 280 14.0 15.2 0.916
Iour aver⊿	ε	180 3.1 7.2	0.534 0.534	(NW) 129 57 1785	3.2	0.335 5.4 7.5	0.717 280 2.9 8.6	0.341 290 9.5	0.793	65 2/27/85	220 12.6 13.2	0.952 210 8.2	0.893 240 14.6 14.8	0.988 220 11.8 12.4 0.957
HEST 24-H	2	230 3.3 5.3 600	250 250 11.0 0.955	(NE) 137 9/22/85	4.8	0.640 30 5.0 6.0	0.831 80 8.5 0.2	0.921 40 8.7 8.8	0.989 WW	2/18/85 1	260 10.0	0.847 270 8.8 10.1	0.871 270 10.4 10.6	0.981 290 16.9 17.3 0.981
5 TEN HIG	F	280 2.9 311	290 290 11.9 0.793	139 139 7/ 6/85	200 7.6 8.3	0.913 180 6.9 7.0	0.981 190 6.7 7.0	0.957 210 8.3 8.6	0.966 (NF)	79 1/ 7/85	40 2.8 6.6	0.417 10 6.8 7.5	0.910 40 9.6	0.870 70 7.9 8.1 0.985
198	RANK	DIR (DEG) VEL (MPH) SPD (MPH) BATLO	DIR (DEG) VEL (MPH) SPD (MPH) RATIO	TSP Natf	DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (SCG) VEL (MPH) SPD (MPH)	SPD (MPH)	RATIO	TSP DATE	DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO
	TOWN-SITE (SAMPLES)	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER	BRIDGEPORT-123 (57)	METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER		BRISTOL-001 (60)	METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER

. (_____) 1985 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA UNITS : MICROGRAMS PER CUBIC METER

				_	\sim		N	<u>]</u> .
10	12/27/85 31 220 12.6 13.2	0.89.2 0.89.2 14.6 14.6 14.8	0.988 11.8 11.8 0.957	62 3/ 8/85 220 11.1 12.1 0.921	0.60.1 10.7 0.5 0.5 0.5 0.5 0.5 0.1 0.7	0.270 20.44 20.44	2.8 2.8 2.8 5.6 6.6 6.6	6.8 7.5 0.910
2 . 0	6/24/85 240 8.7 9.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.802 8.0 8.0 8.0 8.0 8.0 8.0	66 3/20/85 250 9.5 13.9 0.678	290 629 674 270 7.6	0.740 280 14.0 15.2 0.916	73 4/19/85 260 8.4 11.4	0.717 340 3.2 4.5
8	4/19/85 260 260 11.4	0.1100	0.438 300 15.6 0.534	67 9/ 4/85 250 11.8 12.5 0.944	0.635 240 260 260 0.635 260	0.992	75 2/24/85 210 11.2 11.2	0.949 0.949
	7/ 6/85 200 7.6 3.3	0.981 0.981 0.981 0.7.0 7.0	0.955 8.3 0.966 W	2/18/85 260 10.0 11.8 0.847	270 8.8 871 270 270	0.981 2290 176.9 81 17.3	1/31/85 30 7.1 7.1 7.5	0.906 5.3 0.966
` و	6/18/85 230 230 10.2	0.989 0.989 0.989 0.70 0.7	0.946 210 7.4 0.950	76 270 4.9 5.8 0.848	0.759 5.66	0.945 5.7 0.904 0.904 0.945	5/ 1/85 300 3.2 9.6	5.4 0.717 0.717
5	5/25/85 37 120 3.3 3.3 3.3	0.420 170 170 170 110 110 4.7	0.828 210 7.7 8.9 0.861	79 260 8.4 11.4 0.735	0.717 3.10 3.10 3.10 3.10 3.10 3.10	0.438 550 15.6 0.534	270 83 41.9 5.8 5.8	0.759 330 2.8 3.7 0.759
ħ	5/31/85 190 10.2	0.190 10.190 190 190 7.5 7.5	0.967 200 13.8 13.9 0.988 0.988	65 5/ 1/85 300 3.2 9.6 9.6	0.7.5	0.341 2.90 11.9 0.793	83 83 250 6.9 9.6	0.676
ŝ	9/ 4/85 250 11.8 12.5	0.2444 0.83.3 9.80 9.80 9.8	0.992 250 11.6 0.957		0.55.3 0.966 10.55	0.974 60 75.2 0.763	90 3/ 8/85 220 11.1 12.1	0.606
~	5/ 1/85 3.2 3.2 3.2 3.2 9.6	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0.341 9.5 0.703 0.703	1/ 7/85 40 2.8 6.6 6.6	0.910 9.6	0.870 70 7.9 0.985 0.985	2/18/85 260 10.0	0.84/ 270 8.8 10.1 0.871
•	5/13/85 230 11.8	0.909 9.1 2.0 8.1 8.1	0.916 8.4 8.5 8.6 8.6 0.886	(420) 3/ 2/85 300 13.3 15.4	0.823 9.60 9.60	0.894 3.00 16.2 0.880 0.880 0.880	3/ 2/85 3/ 2/85 13.3 15.4	0.864 310 9.0 10.9 0.823
RANK	TSP DATE DIR (DEG) VEL (MPH) SPD (MPH)	VEL (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO RATIO	TSP DATE DIR (DEG) VEL (MPH) SPD (MPH)	DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH)	SPU (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	TSP DATE DIR (DEG) VEL (MPH) SPD (MPH)	KALLU DIR (DEG) VEL (MPH) SPD (MPH) RATIO
TOWN-SITE (SAMPLES)	BURLINGTON-001 (59) METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER	DANBURY-002 (61) METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER	DANBURY-123 (58) METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY

1985 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA

			- An		0-
SIC METER	10	40 11:10 0.870 70 70 70 70 70 70 70 70	0.575 0.719 0.7577 0.7577 0.7577 0.7577 0.7577 0.7577 0.7577 0.7577 0.7577	0.288779	6/26 244/8 244/8 244/8 244/8 244/8 2306 2306 2306 2306 2306 2306 2306 2306
IS PER CUE	- 6	0.538 0.538 0.556 0.556 0.534 0.556	5/13/85 2300 10.7 11.8 0.909 7.3 9.7 807	0.89.54 0.99.54 0.99.5	3,202 3,202 250,45 250,45 0,674 1,280 0,574 1,280 0,574 1,280 0,574 1,280 0,574 1,280 0,574 1,280 0,574 1,280 0,574 1,280 0,574 1,280 0,576 1,280 1,20
MICROGRAM	ω	240 8.6 0.997 15.60 0.851 0.851 0.851	0.950 0.950 0.950 0.950 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.10 0.055 0.0	0.10.5	5/13/85 5/13/85 230/11.8 11.8 0.9216 2200 2200 2200 2200 2200 2200 2200 2
UNITS :	7	40 10.55 60 474 60 4.20 60 763	2/169 2/18/85 260 11.8 0.847 270 8.8 8.8 10.871	0.981 270 0.981 2290 2290 16.9 0.981 0.981	12/27/85 12/27/85 13:22 0.952 8.22 9.22 0.952 0.988 0.988 0.957 0.957 0.957
	9	280 286 286 286 290 290 290 290 290 290 290 290 290	12/27/85 220 13.25 0.952 8.2 8.2 9.2 9.3	0.988 0.988 114.6 0.988 1128 0.957	12/ 12/ 16 270 97 270 97 3320 3320 3320 3320 3320 3320 3320 332
	ŋ	0.904 0.945 0.904 0.904 0.904	3/ 22 3/ 8/85 11.1 12.1 12.1 12.1 12.1 0.240 4.9 4.9 8.1 0.606	240 240 10.7 240 296 296 20.4 0.958	10/10/85 240 240 13.7 13.7 5.0 5.0 5.0 0.553 0.978 0.978 0.978 0.955 0.955
	t,	250 8.1 8.9 280 5.9 0.802 0.802	4/19/85 260 2.00 2.11.4 0.735 3.2 3.2 3.2 3.2 0.717	0.534 0.556 0.538	6/18/85 230 230 230 230 230 230 8.1 8.1 190 8.1 190 8.1 0.989 0.989 0.950 0.950 0.950
	ę	240 10.7 10.8 270 270 270 20.4 0.95 8	3/20/85 250 9.5 13.9 0.678 5.90 6.8 0.674	0.71 0.740 17.60 17.00 15.00 0.916	9/ 4/85 250 9/ 4/85 250 250 2444 5.3 5.3 5.3 9.4 9.7 9.8 9.7 9.8 9.7 9.8 9.7 0.992 0.957
	N	2270 2290 2290 290 290 290 290 291 290 291 200 200 200 200 200 200 200 200 200 20	12/21/85 300 7.9 8.6 0.914 4.7 4.7 0.731	310 8.0 865 310 5.1 5.1 0.724	4/19/85 260 260 8.4 11.4 0.717 3.2 3.2 3.2 3.2 3.2 10.7 5.6 0.534 0.534
	F	0.880 16.2 0.880 16.2 0.880 0.880 0.880 0.880 0.880	5/1/85 3.2 3.2 9.6 0.335 0.335 0.717	280 2.90 2.90 2.90 2.90 2.90 2.90 2.90 2.9	5/1/85 300 3.2 3.2 3.2 3.2 3.2 5.4 0.717 2.9 0.717 2.9 0.717 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.7777 0.7777 0.7777 0.7777 0.7777 0.7777 0.7777 0.7777 0.77777 0.77777 0.77777 0.777777 0.77777777
	RANK	DIR (DEG) VEL (MPH) SPD (MPH) RATIO VEL (MPH) VEL (MPH) SPD (MPH) RATIO	TSP DATE DATE DIR (DEG) VEL (MPH) SPD (MPH) RATIO VEL (MPH) VEL (MPH) SPD (MPH) SPD (MPH)	DIR (DEG) VEL (MPH) SPD (MPH) SAT (0 DIR (DEG) VEL (MPH) SPD (MPH) RATIO	TSP DATE DATE DIR (DEG) VEL (MPH) SATIO DIR (DEG) VEL (MPH) SPD (M
	TOWN-SITE (SAMPLES)	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	EAST HARTFORD-004 (57) METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	GREENWICH-008 (60) METEOROLOGICAL SITE METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT BRIDGEPORT METEOROLOGICAL SITE METEOROLOGICAL SITE

(MPH) 2 (MPH) 8 (DEG) 22 (MPH) 9 9 11 9 11
0.1733 0.1733 09 92 09 92 01000 5/1/85 4/19/85 (MPH) 3.2 8.4 000 0.335 0.735 000 0.335 0.735 000 0.335 0.735 000 0.335 0.735 000 0.717 0.717 000 0.717 0.717 000 0.717 0.717 000 0.717 0.717 000 0.717 0.717 000 0.717 0.717 000 0.717 0.717 000 0.717 0.717 000 0.717 0.717 000 0.717 0.717 000 0.717 0.717 000 0.717 0.717 000 0.717 0.713 000 0.717 0.713 000 0.717 0.713 000 0.717 0.713 000 0.717 0.713 000 0.717 0.713 000 0.711 0.713 000 0.711 0.713
(DEG) 250 300 (DEG) 250 300 (MPH) 11.4 9.6 (MPH) 11.4 9.6 (MPH) 11.4 9.6 (DEG) 340 0.735 0.335 (DEG) 340 10 (MPH) 3.2 5.4 (MPH) 4.5 7.5

 $\left(\ \ \right)$

(

1985 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA UNITS : MICROGRAMS PER CUBIC METER

-		č 4-	S. S.
10	240 9.5 9.56 9.56 0.978 0.955 0.10	0.955 0.955 0.955 0.953 0.953 0.953 0.953 0.9550 0.9550 0.9550 0.9550 0.955000 0.9550000000000	22 27 27 27 27 27 27 27 27 27
6	230 2520 2550 0.955 0.955	2/24/85 2/24/85 210.4 111.2 111.2 210 2240 2240 2240 2240 2240 2260 2240 260 260 260 260 260 260 260 260 260 26	12/52 270 270 270 270 270 270 270 270 270 27
0000	40 19.6 11.1 70 7.70 8.1 0.985	0.22/85 6.8 10.4 0.260 1.8 1.8 0.857 0.857 0.986 0.986 0.986	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
	240 14.6 0.988 114.8 12.2 12.4 0.957 12.4	12/21/85 7.9 7.9 0.914 0.731 0.731 0.724 0.724 0.724 0.724	57 76 77 76 77 77 77 77 77 76 76
9	0.865 9.20 5.10 0.724	5/13/85 230 11.7 11.8 11.8 11.8 11.8 11.8 11.8 11.8	4/19/85 260 8.4 11.4 11.4 1.5 0.717 3.1 180 1.80 1.80 1.80 1.80 1.80 1.80 1.8
5	40 10.5 10.8 10.8 10.8 10.974 4.60 0.763 0.763	$\begin{pmatrix} & & & & \\ & & & & \\ & & & & \\ & & & & $	9/ 455 250 250 2550 244 2550 2540 2550 2550
4	220 220 25.7 2.946 2.946 7.14 0.7.8	9/ 4/85 11.8 12.5 0.9244 9.8 0.922 0.992 0.992 0.992 0.992 11.16 0.992 0.992 11.16 0.992 0.992 0.992 0.9520 0.952 0.9520 0.9520 0.9520 0.9520 0.9520 0.9520 0.9520 0.9520 0.95200 0.9520 0.95200 0.95200000000000000000000000000000000000	5/12 3.2 3.2 3.2 3.2 3.2 3.2 3.2 5.2 0.3 5.4 0.2 280 2.2 0.3 17 2.5 0.3 2.5 0.3 3.5 5.4 0.7 17 2.5 0.3 3.5 5.4 0.3 3.5 5.4 0.3 3.5 5.4 17 8 5.4 17 8 5.4 17 8 5.4 17 8 5 6 7 17 8 5 6 7 17 8 5 6 7 17 8 5 6 7 17 8 5 6 7 17 8 5 6 7 17 8 5 6 7 17 8 5 6 7 17 8 5 7 17 8 5 6 7 17 8 5 7 8 7 17 8 5 7 17 8 5 7 17 8 5 7 8 7 17 8 5 7 17 8 5 7 17 8 5 7 17 8 5 7 17 8 5 7 17 8 5 7 8 7 17 8 5 7 17 8 5 7 8 7 17 8 5 7 8 7 8 5 7 8 7 8 5 8 7 8 7 8 7 8
ŝ	0.836 0.83.1 0.83.1 0.836 0.836 0.836 0.836 0.836 0.836 0.836 0.836 0.836 0.836 0.836 0.836 0.836 0.836 0.836 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5	5/185 5/185 3.20 3.25 0.335 0.717 2.80 0.717 2.80 0.717 2.80 0.717 2.80 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.7750 0.7750 0.7750 0.7750 0.7750000000000	5/13/85 230 230 10.7 11.8 0.909 7.4 0.907 7.4 0.916 8.4 8.4 8.4 8.4
5	280 2.9 2.9 2.41 2.41 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	0.75.2 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.975 0.975 0.975 0.975 0.956 0.975 0	3/20/85 3/20/85 250/85 9.5 0.13.9 270 0.674 17.6 0.740 17.2 0.740 17.2 0.740 17.2 0.740 17.2 0.7280 0.740 17.2 0.740 17.2 0.740 17.2 0.740 17.2 0.740 17.2 0.740 17.2 0.750 17.2 10 17.2 0 17.2 0 17.2 10 17.2 10 17.2 10 17.2 10 17.2 10 17.2 10 17.2 10 17.2 10 17.2 10 17.2 10 17.2 10 17.2 10 17.2 10 17.2 10 17.2 10 17.2 10 10 10 10 10 10 10 10 10 10 10 10 10
~	180 3.1 3.1 0.438 5.6 10.5 0.534	4/19/85 4/19/85 260 3.19/85 3.22 3.22 3.22 3.22 3.22 3.22 3.22 3.2	1/122 1/122 1/31/85 0.950 5.3 0.956 10.5 10.5 10.5 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974
RANK	DIR (DEG) SPD (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO RATIO	TSP DATE DATE VEL (MPH) SPD (MPH)	TSP DATE DATE DIR (DEG) SPD (MPH) SPD (MPH)
TOWN-SITE (SAMPLES)	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	HARTFORD-014 (58) METEOROLOGICAL SITE METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE METEOROLOGICAL SITE	MANCHESTER-001 (55) METEOROLOGICAL SITE METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE METEOROLOGICAL SITE

(_____)

1985 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA

~			M			\sim		5
IC MELE	10	12/ 9/85 270 4.9 5.8	0.848 330 2.8 3.7 0.759 270	5.6 5.9 280 5.7 0.904	6/18/8 9.1 9.1	0.839 0.989 0.989 0.70 0.70 0.70	0.946 210 7.4 0.950 0.950	70 240 8.5 0.841 0.841 5.40 5.40 5.50 0.911
S PER CUB	9	1/31/85 30 7.1 7.5	0.950 5.10 0.966 40	10.5 10.8 60 4.0 0.75.2 0.763	22.8 6.6 6.6 6.6	0.41/ 0.710 0.910 9.60 1.11	0.870 7.9 8.1 0.985	71 3/85 220 11.1 12.1 0.921 440 440 8.1 0.606
II CROGRAM	∞]	78 2/24/85 210 10.4 11.2	0.924 190 8.2 0.949 240	8.6 8.6 260 13.6 0.851	9/ 4/85 250 11:8	0.944 0.85.3 0.635 0.635 0.635 0.635 0.635 0.744 0.844 0.844 0.8240 0.635 0.835 0.835 0.835 0.835 0.835 0.835 0.844 0.8350 0.8350 0.8350 0.835000 0.83500000000000000000000000000000000000	0.992	5/13/85 5/13/85 230 230 10.7 11.8 0.909 7.3 0.907 0.807
UNITS : M	7	2/18/85 260 10.0 11.8	0.847 270 8.8 10.1 0.871 270	10.4 10.6 290 16.9 17.3 0.981	70 70 220 12.6 13.2	0.922 8.22 0.893 14.60 14.86	0.988 220 11.8 12.4 0.957	74 74 5.4 8.9 0.604 2.3 2.3 0.359
	6 VIN) 0	3/20/85 250 9.5 13.9	0.678 290 6.8 10.1 0.674 270	7.6 10.2 140 14.0 15.2 0.916	2/21/85 1 300 7.9 8.6	0.914 330 4.7 0.731 8.10 8.0 0.0 0.0	0.865 310 5.1 0.724	75 2/24/85 210.4 11.2 0.924 8.2 8.2 8.2 8.2 0.949
	Ŀ	81 4/19/85 260 8.4 11.4	0.735 340 3.2 4.5 0.717 180	3.1 7.2 0.438 10.5 0.534	(NU) 3/20/85 1 2250 9.5	0.678 16.8 16.8 16.74 10.674 7.70	0.740 14.0 15.2 0.916	0/10/85 240 13.0 13.7 0.955 5.0 5.1 0.553 0.553
	± /	84 3/8/85 220 11.1 12.1	0.921 240 4.9 8.1 0.606 240	10.7 10.8 19.6 20.4 0.958	2/ 9/85 2/ 9/85 5.8	0.848 2.8 2.8 2.70 5.6 5.6	0.945 5.7 0.90 <u>4</u> 0.90 <u>4</u> 0.90 <u>4</u>	22 85 270 85 4.9 0.848 330 3330 3.18 3.18 0.759
	R M	3/26/85 300 11.0 12.8	0.858 330 7.3 0.978 0.978 320	0.958 0.931 13.2 0.960	2/18/85 1 260 10.0 11.8	0.847 270 8.8 10.1 0.871 270 270 270	0.981 1290 17.3 0.981	9/ 4/85 1 86 11.8 11.8 11.8 0.944 5.3 8.3 0.635
	2 MN	5/ 1/85 300 3.2 9.6	0.335 10 5.4 0.717 0.717 280	0.341 0.341 0.290 11.9 0.793	5/ 1/85 3.2 9.6	0.335 0.710 2280 280 280	0.341 290 11.9 0.793	89 89 260 8.4 11.4 0.735 3.2 3.2 0.737 0.737 0.737 0.737
	- 7	101 2/27/85 220 12.6 13.2	0.952 210 8.2 0.893 0.893 240	14.6 14.8 0.988 11.8 12.4 0.957	100 4/19/85 8.4 11.4	0.735 340 3.2 4.5 180 180 3.1	0.438 300 10.56 0.534	5/10 3.2 3.2 0.335 0.335 0.335 0.717 0.717
	RANK	TSP DATE DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG)	VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	TSP DATE DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) VEL (MPH)	SATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	TSP DATE DATE DIR (DEG) VEL (MPH) SPD (MPH) DIR (DEG) VEL (MPH) SPD (MPH) RATIO RATIO
	TOWN-SITE (SAMPLES)	MERIDEN-002 (59) METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE	METEOROLOGICAL SITE WORCESTER	MIDDLETOWN-003 (57) METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORGESTER	MILFORD-002 (60) METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY

TABLE 11, CONTINUED 1985 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA

G 7/ 6/85 2.00 8.3 0.953 0.957 0.957 0.957 0.957 0.957 0.957 0.956 0.966 7/24/85 150 0.41.2 0.41.2 0.41.2 0.490 0.550 0.717 0.717 0.717 0.717 0.717 0.717 0.717 0.717 0.717 0.717 UNITS : MICROGRAMS PER CUBIC METER 260 9.6 11.1 0.864 5.3 7.3 0.726 > 10 7 1/7/85 2.8 2.8 2.8 6.6 6.8 6.8 0.910 7.5 0.910 0.910 0.870 0.870 0.85 240 10.7 10.8 0.996 270 270 20.4 0.958 N. S. F. 44 δ 5/31/85 1900 1900 10.969 10.1 1900 1900 1900 1900 13.8 13.8 0.988 13.8 0.988 0.988 0.988 0.988 200 7.4 7.4 8.1 0.916 8.4 0.886 ω 10/10/85 240 240 13.7 0.955 5.0 250 0.553 0.978 0.978 0.978 0.978 0.978 0.9555 0.9555 0.9555 0.9555 0.95555 0.95555 54 230 3.3 5.3 5.3 5.3 0.620 11.0 11.5 0.955 \sim 5,4% 3300 33.25 3300 33.25 3300 33.55 3300 33.55 3300 33.55 12/27/85 75 12:20 13:25 13:25 13:25 0.952 0.952 0.952 0.952 0.952 0.952 0.957 0.957 0.957 240 8.6 8.6 8.6 0.997 13.6 13.6 15.0 0.851 9 3/ 76 3/ 85 11.1 12.1 12.1 0.921 0.926 0.926 0.926 10.8 10.8 10.7 10.8 10.8 10.8 10.958 0.958 0.958 6/18/85 230 231 231 231 231 230 190 190 6.7 6.7 6.7 0.946 0.946 0.946 0.950 0.950 240 9.5 9.5 0.978 250 9.6 0.955 ŝ 7 5/31/85 19.9 19.9 19.9 19.9 190 190 190 190 190 13.8 13.9 0.967 13.9 0.967 0.988 0.988 0.988 0.988 270 5.6 5.9 5.9 5.7 5.7 0.904 7 4 2 81 4/19/85 260 8.4 11.4 0.735 340 340 3.2 0.715 0.717 180 3.1 7.2 300 300 5.6 10.5 0.534 ŝ 5.1 5.3 0.966 10.5 10.8 4.0 5.2 0.763 180 3.1 7.2 0.438 300 300 55.6 0.534 60 7 N 5/1/85 5/1/85 300 3.2 0.335 0.335 280 2.9 8.6 8.6 0.341 290 9.5 0.793 5.4 2.280 2.280 2.280 2.280 2.41 2.590 2.290 2.590 0.793 0.793 R 66 7 -DIR (DEG) VEL (MPH) SPD (MPH) DIR (DEG) VEL (MPH) SPD (M DIR (DEG) VEL (MPH) SPD (MPH) RATIO VEL (MPH) VEL (MPH) SPD (MPH) RATIO TSP DATE DATE DIR (DEG) VEL (MPH) VEL (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) SPD (MPH) CIR (DEG) VEL (MPH) SPD (M TSP DATE RANK METEOROLOGICAL SITE WORCESTER MÉTEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT TOWN-SITE (SAMPLES) NAUGATUCK-001 (60) MORRIS-001 (60)

				ha.					l'u				2
IC METER	10	53 53	10/ 10/ 00 240 13.0	0.979 230 9.10 0.1	0.553 240 9.3 9.5	0.978 250 10.1 0.955	Sel Sel	5/25/85 120 3.3 7.5	0.438 170 1.9	0.407 3.9 4.7	0.828 210 7.7 8.9 0.861	52 2/24/85 210	10.4 11.2 190 8.2 8.6 0.949
S PER CUB	6	59 59	250 11.8 12.5	0.944 240 5.3 8.3	0.635 260 9.7 9.8	0.992 250 12.1 0.957	58	10/10/85 240 13.0 13.7	0.955 230 5.0	0.553 240 9.5 9.5	0.978 250 9.6 0.955	NE 53 1/ 7/85	0.910 0.910 0.910 0.910
41 CROGRAM	œ	7.00 10 10 10	210 210 11.2	0.924 190 8.2 8.6	0.949 240 8.6 8.6	0.997 260 13.6 0.851	(MN)9	12/21/85 300 7.9 8.6	0.914 330 4.7 6.5	0.731 310 8.0 9.2	0.865 310 5.1 7.0 0.724	54 54 240	0.553 0.555 0.553 0.553 0.553
UNITS : 1	7	59 12 / 20 / 0E	260 10.5 11.1	0.949 270 8.2 11.1	0.744 270 14.2 14.4	0.991 240 10.4 11.1 0.93Z		3/20/85 250 13.9	0.678 290 6.8 10.1	0.674 270 7.6 10.2	0.740 280 14.0 15.2 0.916	54 54 6/18/85 230	0.8894 190 8.1 0.989 0.989
	9	62 62	230 8.9 10.1	0.887 210 4.9 5.9	0.831 240 10.9 11.4	$0.959 \\ 240 \\ 9.1 \\ 10.9 \\ 0.830 \\ 0.930 \\ 0.930 \\ 0.930 \\ 0.950 \\ 0$	62	12/27/85 220 12.6 13.2	0.952 210 9.2	0.893 240 14.6 14.8	0.988 220 11.8 12.4 0.957	12/27/85	12.6 13.2 210 8.2 8.2 0.893
	2	63 1, 7,%	2.8 6.6	0.417 10 6.8 7.5	0.910 40 9.6 11.1	$\begin{array}{c} 0.870 \\ 70 \\ 7.9 \\ 8.1 \\ 0.985 \end{array}$	65	2/24/85 210 10.4 11.2	0.924 190 8.2	0.949 240 8.6 8.6	0.997 260 13.6 16.0 0.851	NW 55 300 300	0.914 0.914 330 4.7 4.7 0.731
		65 65	230 230 10.7 11.8	0.909 180 7.3 9.1	0.807 200 7.4 8.1	0.916 220 8.4 0.886	229	5/13/85 230 10.7 11.8	0.909 180 7.3 9.1	0.807 200 7.4 8.1	0.916 220 8.4 9.5 0.886	5/13/85	10.7 11.8 0.909 180 7.3 9.1 0.807
	3		300 3.2 9.6	0.335 5.4 7.5	0.717 280 2.9 8.6	0.341 290 9.5 11.9 0.793	68	4/19/85 260 8.4 11.4	0.735 340 3.2 4.5	0.717 180 3.1 7.2	0.438 300 5.6 0.534	66 44/19/85 260	111.4 0.735 340 3.2 0.717
	N	(NW) 700,85	3/20/03 9.5 13.9	0.678 5.90 6.8 10.1	0.674 270 7.6 10.2	0.740 280 14.0 15.2 0.916		5/ 1/85 300 3.2 9.6	0.335 10 7.5	0.717 280 2.9 8.6	0.341 290 9.5 11.9 0.793	68 9/ 4/85 250	11.8 12.5 244 5.3 6.3 0.635
	1	76	4/ 19/00 260 8.4 11.4	0.735 340 3.2 4.5	0.717 180 3.1 7.2	0.438 300 5.6 0.534	62	9/ 4/85 250 11.8 12.5	0.944 240 5.3 8.3	0.635 9.7 9.8	0.992 250 11.6 0.957	5/ 1/85 300	0.335 9.6 10 5.4 0.717
	RANK	TSP	DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	TSP	DATE DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	TSP DATE DIR (DEG)	VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH)
	TOWN-SITE (SAMPLES)	NEW BRITAIN-007 (59)	METEOROLOGICAL SITE	METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER	NEW BRITAIN-008 (59)	METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER	NEW BRITAIN-009 (56) METEOROLOGICAL SITE	NEWARK METEOROLOGICAL SITE BRADLEY

1985 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA

TABLE 11, CONTINUED

-87-

		196	35 TEN HII	GHEST 24-	HOUR AVER.	AGE TSP D/	AYS WITH	WIND DATA	UNITS : I	MICROGRAMS	S PER CUB	C METER	
TOWN	I-SITE (SAMPLES)	RANK	۳	2	ε	4	ŝ	9	7	Ø	. 0	10	
	METEOROLOGICAL SITE BRIDGEPORT	DIR (DEG) VEL (MPH) SPD (MPH)	280 2.9 8.6	260 9.7 9.8	180 3.1 7.2	200 7.4 8.1	310 8.0 9.2	240 14.6 14.8	220 6.7 7.0	240 9.3 9.5	40 9.6 11.1	240 8.6 8.5	
	METEOROLOGICAL SITE WORCESTER	KALLO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	0.341 290 11.9 0.793	250 250 11.6 0.957	0.438 300 10.56 0.534	0.886 0.886	0.724	0.988 220 11.8 12.4	0.946 210 7.4 7.8 0.950	0.978 250 9.6 10.1 0.955	0.870 7.9 8.1 0.985	0.997 260 13.6 16.0 0.851	
NEW	HAVEN-002 (51) METEODOLOCICAL SITE	TSP DATE DIP (DEC)	5/ 1/85	(NW) 121 7/30/85	1/31/85	1/1/85	77 1/13/85	9/ 5/85	75 . 1/19/85	10/10/85	2/18/85	2/24/85	
	METEOROLOGICAL SITE	VEL (MPH) SPD (MPH) RATIO DIR (DEG)	3.2 9.6 0.335	0.609 0.609 0.609 0.609	7.1 7.5 0.950	2.8 6.6 0.417	200 12.7 13.4 0.947 280	0.2 0.884 0.884	240 8.5 0.841 240	240 13.0 0.955 230	10.0 11.8 0.847 270	2.10 10.4 11.2 0.924 190	
	BRADLEY METEOROLOGICAL SITE BRIDGEPORT	VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH)	5.4 0.715 280 2.9	4.4 6.0 260 6.3	5.1 0.966 10.5	6.8 7.5 0.910 40 9.6	4.0 6.2 0.645 9.9	1.3 3.6 0.349 6.0	5.0 0.911 9.6	5.0 9.1 240 9.3	8.8 10.1 0.871 270 10.4	8.2 8.6 249 8.6 8.6	
	METEOROLOGICAL SITE WORCESTER	SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	8.6 0.341 2290 11.9 0.793	0.7792 280 5.0 0.674	10.8 0.974 60 4.0 5.2 0.763	11.1 0.870 70 7.9 8.1 0.985	0.973 310 9.8 0.925	7.0 0.854 270 7.9 8.3 0.945	11.1 0.864 5.3 7.3 0.726	9.5 250 9.6 10.1	10.6 0.981 290 16.9 0.981 0.981	8.6 260 13.6 16.0 0.851	
NEW	HAVEN-013 (55)	TSP	WW 99	99	75	74	ALL ALL	68	19	767	NE SE	292 655	
	METEOROLOGICAL SITE NEWARK	DATE DIR (DEG) VEL (MPH) SPD (MPH)	2/ 1/85 300 3.2 9.6	4/19/85 260 8.4 11.4 11.4	10/10/85 240 13.0 13.7	9/ 4/85 250 11.8 12.5	2.8 2.8 6.6	210 210 10.4 210 210 200 200	230 230 10.7 11.8	3/ 8/89 220 11.1 12.1	7.1/80 30 7.1 7.5	1/19/85 240 8.5 10.1	
	METEOROLOGICAL SITE BRADLEY	VEL (MPH) SPD (MPH) SPD (MPH)	0.33 7.5 7.5 7.5	020 340 4-5 7-7	0.230 9.10 6.1	0.744 5.3 8.3 8.3	0.417 6.8 7.5	0.924 8.20 0.62 0.62	0. 400 180 9. 1 2. 3	0.72-1 240 8.19	0.00 	0.841 220 5.50 6.52 6	-
	METEOROLOGICAL SITE BRIDGEPORT	VEL (MPH) VEL (MPH) SPD (MPH)	280 2.9 8.6 311	3.1	0.10 9.3 0.5 078	0.00 0.7 0.8 0.0 0.8	9.6 11.1 870	240 240 8.6 8.6	200 200 8.1 8.1	0.000 240 10.7 10.8		9.60 11.1	
	METEOROLOGICAL SITE WORCESTER	VEL (MPH) SPD (MPH) SPD (MPH) RATIO	0.793 9.5 11.9 0.793	0.534	250 9.6 10.1	250 250 11.6 12.1 0.957	70 70 7.9 8.1 0.985	260 260 13.6 0.851	0.320 8.4 0.886	0.990 270 20.4 0.958	0.974 60 5.2 0.763	0.0004 5.3 0.726	

(________)

TABLE 11, CONTINUED

1985 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA

R	C	- north	35)	`.^									ц С	0					9								35	/	~).	
31C METE	10/	NE S	3/20/8	000 13.00 13.00	0.678	290 6.8	10.1	270	10.5	0.740	280 14 0	15.2	0.210	2	10/10/9	240	13.0	0.955	230	0.0	0.553	9.3	9.5	250	9.6	0.955	7	61	10/10/8	13.0	13./ 0 955	230	9.1 0.553
IS PER CUE	. 6	7:	6/18/85	1920	0.894	190 8.1	0 080 0 080	220	2.7 2	0.946	210 7.4	7.8	016.0	7:	12/27/85	220	12.6	0.952	210	9.2 0	0.893	14.6	14.8	220	11.8	0.957	(B) II	61	6/30/85	3 C	0.530	30	4.5 0.415
MICROGRAM	8	N.S.	2/18/85	10.01	0.847	2/0 8.8	10.1	270	10.4	0.981	290 16.9	17.3		NA MA	12/ 0/85	270	л. 2 2	0.848	330	3.7	0.759	5.6	5.9 015	280	5.7	0.904	4	61	12/27/85	12.6	13.2 0.952	210 2	9.2 0.893
UNITS :	7	2	10/10/85	13.0 13.7	0.955	230 5.0	9.1 0 553	240	0 0 0	0.978	250 9.6	10.1	(C C C C C C C C C C C C C C C C C C C	2	77 5/13/85	230	10.7 11 8	0.909	180	9.1	0.807	7.4	0 016 0 016	220	8.4 7.4	0.886		65 (65	1/19/85	100 100 100	0.841	240	0.911
	9	7.	2/24/85	10.4	0.924	190 8.2	8.6 0 0/10	240	8. 9.0 9.0	0.997	260 13.6	16.0	1000	21	77 3/ 8/85	220	1.11	0.921	240	8.1. 2.1.	0.606	10.7	10.8 0 006	270	19.6	0.958	S.E.	61	1/ 7/85	0,00	0.0	10	0.910
	5	7 5	4/25/85	оло 1-1-0 1-1-0	0.604	200 2.3	6.5 0 350	230	ຕິ ຕິ	0.620	250 11.0	11.5 0 055	(((.))	4	82 11/10/85	260	8.4 11.4	0.735	340	4.5	0.717	3.1	7.2	300	5.6 7.6	0.534	7	69	9/ 4/85	11.8	0.944	240	0.635
	11	С Г Г	4/19/85	8.4 11.4	0.735	340 3.2	4.5 0 717	180	- ° °	0.438	300 5.6	10.5	+00.0	73	82 0/ 1/85	250	11.8 12.8	0.944	240	 	0.635	9.7	9.8 000	250	11.6	0.957	>	71	5/13/85	10.7	0.909	180	9.1 0.807
	e l	NV.	12/_9/85	74.0 8	0.848	330 2.8	3.7 0 759	270	00 00	0.945	280 5.7	6.3 0 001	+02.0	2	90 5/31/85	190	9.9 10.2	0.969	190	10.1	0.989	7.2	7.5	200	13.8 13.8	0.988		71	4/19/85	8.4	0.735	340	4.5 0.717
	2	3,2	5/ 1/85	3.2 9.6	0.335	5.4	715	280	0.v 0.v	0.341	290 9.5	11.9		SP	95 1/7/85	1007- 11	2.8 7.8	0.417	10	7.5	0.910	9.6	11.1 0 870	70	7.9 . 6	0.985		72	2/18/85	10.0	0.847	270 8 8	0.871
		7 5	5/13/85	10.7	0.909	180 7.3	9.1 0 807	200	7.4	0.916	220 8.4	9.5 0 886			П1 5/ 1/85	300	3.2 9.2	0.335	10	 	0.717	2.9	8.6 0 3/11	290	0.1 2.0	0.793	(MN)	108	5/ 1/85		9.0	ء 10	7.5 0.717
	RANK	TCD	DATE	VEL (MPH) SPD (MPH)	RATIO	VEL (MPH)	SPD (MPH) RATIO	DIR (DEG)	VEL (MPH) SPD (MPH)	RATIO	VEL (MPH)	SPD (MPH)			TSP DATE	DIR (DEG)	VEL (MPH) SPD (MPH)	RATIO	DIR (DEG)	SPD (MPH)	RATIO	VEL (MPH)	SPD (MPH)	DIR (DEG)	VEL (MPH)	RATIO		TSP	DATE	VEL (MPH)	SPD (MPH) RATIO	DIR (DEG)	SPD (MPH) RATIO
	TOWN-SITE (SAMPLES)			METEURULUU UAL STTE NEWARK		METEUROLOGICAL STIE BRADLEY		METEOROLOGICAL SITE	BRIDGEPORT		METEOROLOGICAL STIE WORCESTER				NORWALK-005 (57)	METEOROLOGICAL SITE	NEWARK		METEOROLOGICAL SITE	BNAULET	METEOROLOGICAL SITE	BRIDGEPORT		METEOROLOGICAL SITE	WORCESTER			NORWALK-012 (59)	METEOROLOGICAL SITE	NEWARK		METEOROLOGICAL SITE READIEV	

-89-

1985 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA UNITS : MICROGR

R			1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 2		S	~			/	/~~ // ass	35		(4					
SIC METE	10	240 9.5 9.5	0.950 9.60 10.10	63 63	12/ 9/{ 270 4.9	0.848	2.8 3.78 3.78	0.759 270 5.6	5.9	280	0.904	NW	12/ 9/8	270	5.8 0.848	100 7.00 7.00 7.00	0.759	5.6	5.9 0.945	280	0.3
S PER CUE	6	110 3.5 4.9	0.74 360 5.2 0.374	19	9/10/85 350 2.0	$\frac{7.5}{10.261}$	4.1 6.1	0.897 90 2.1	4.5 0.481	30 4.1	0.985	(m)	3/20/85	250 9.5	13.9 0.678	260 0.8 1 0.8	0.674	2.10	10.2 0.740	280 14.0	15.2
M I CROGRAM	ω	240 14.6 14.8	0.958 11.8 12.4 0.957	68 68	2/18/85 260 10.0	11.8 0.847	8.8 10.1	0.871 270 10.4	10.6	290 16.9	0.981	7	91 10/10/85	240 13.0	13.7 0.955	230 5.0	0.553	240 9.3	9.5 0.978	250 9.6	10.1
UNITS :	7	260 9.6 11.1	0.726 0.726 0.726	72	1/25/85 250 6.9	9.6 0.719	5.9 0.4	0.676 250 8.1	8.9 0.907	280 7.9	0.802	7	100 6/18/85	230	10.2 0.894	190 8.1	0.989	6.7	7.0 0.946	210 7.4	7.8
	9	40 9.6 11.1	0.8/0 70 8.1 0.985	MN	12/21/85 300 7.9	8.6 0.914	6.5 6.5	0.731 310 8.0	9.2 0.865	310 3.10	0.724	2	108 12/27/85	220 12.6	13.2 0.952	210 8.20	0.893	14.6	14.8 0.988	220 11.8	12.4
	5	260 9.7 9.8	0.992 250 11.6 12.1 0.957	74	5/13/85 230 10.7	0.909		0.807 200 7.4	8.1 0.916	220 8.4	0.886	7	110 5/13/85	230	11.8 0.909	7.3	0.807	7.4	8.1 0.916	220 8.4	9.5
	4	200	0.916 8.4 9.5 0.886	, 86	4/19/85 260 8.4	11.4	4.040	0.717 180 3.1	7.2 0.438	300 5.6	0.534	(NN)	7/30/85	290 6.0	9.9 0.609	290 4.4	0.723	200 6.3	7.9	280 5.0	7.5
	ŝ	180 3.1 7.2	0.438 300 5.6 0.534	7 68	12/27/85 220 12.6	0.952	000 000 000	0.893 240 14.6	14.8 0.988	220 11.8	0.957	MM	\119 6/ 6/85	330 11.5	11.6 0.987	340 8.9	0.940	340 10.5	10.8 0.972	330 9.0	. 9 . 5
	2	270 10.4	0.981 290 16.9 17.3 0.981	A CAR	1/31/85 30 7.1	0.950	ۍ 	$0.966 \\ 40 \\ 10.5$	10.8	4.0 F.J	0.763		142 4/19/85	260 8.4	0.735	340 3.2	0.717	3.1	$7.2 \\ 0.438$	300 5.6	10.5
	-	280 2.9 8.6	0.341 290 9.5 11.9 0.793	159	9/ 4/85 250 11.8	12.5 0.944	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.635 260 9.7	9.8 0.992	250 11.6	0.957	(MM)	765 5/ 1/85	300 3.2	9.6 0.335	ری 15 0	0.717 0.217	2.9	$8.6 \\ 0.341$	290 9.5	11.9
-	RANK	DIR (DEG) VEL (MPH) SPD (MPH)	KATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	TSP	DATE DIR (DEG) VEL (MPH)	SPD (MPH) RATIO	VEL (MPH) SPD (MPH)	RATIÓ DIR (DEG) VEL (MPH)	SPD (MPH) RATIO	VEL (MPH)	SPU (MPH) RATIO		TSP DATE	DIR (DEG) VEL (MPH)	SPD (MPH) RATIO	VEL (MPH)	RATIO	VEL (MPH)	SPD (MPH) RATIO	DIR (DEG) VEL (MPH)	SPD (MPH)
	TOWN-SITE (SAMPLES)	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER	NORWICH-002 (54)	METEOROLOGICAL SITE NEWARK		MELEURULUGICAL SLIE BRADLEY	METEOROLOGICAL SITE BRIDGEPORT		METEOROLOGICAL SITE WORCESTER			STAMFORD-001 (56)	METEOROLOGICAL SITE NEWARK		METEOROLOGICAL SITE BRADLEY		MELEUKULUGICAL SILE BRIDGEPORT		METEOROLOGICAL SITE WORCESTER	

(

					AGE 131 U			UNITS :	M I CROGRAM	S PER CUB	IC METER	
TOWN-SITE (SAMPLES)	RANK	-{:	~	ю	th T	5	9	7	0	6	101	
STAMFORD-007 (58)	TSP		NN 102	94 1, 110 / 0E	82 82 82	82 1.79F	NW 73	73 73 10/10/0E		1/ 1/0°	63 7 / 20 / 8E	
METEOROLOGICAL SITE NEWARK	DIR (DEG) VEL (MPH)	300 300 3.2	17.5	4/ 19/ 03 260 8.4	230 230 10.7	250 250 11.8	270 270 4.9	240 240 13.0	0/29/07 340 4.6	2.8 2.8	290 290 6.0	
	SPD (MPH) RATIO	9.6 0.335	17.8 0.980	11.4 0.735	0.909	12.5 0.944	5.8 0.848	13.7 0.955	7.6 0.606	6.6 0.417	9.9 0.609	
METEOROLOGICAL SITE BRADLEY	VEL (MPH)	10 10 10	320	340	180 7.3	5.3 5.3	330 2.8	230	340 3.6	0 10 10	500 150 150	\sim
	SPD (MPH) RATIO	7.7 0.717	13.1 0.944	4.5 0.717	9.1 0.807	8.3 0.635	3.1 0.759	9.1 0.553	5.6 0.649	ر.7 0.910	6.0 0.723	S
METEOROLOGICAL SITE BRIDGEPORT	DIR (DEG) VEL (MPH)	280 2.9	330 13.8	180 3.1	200 7.4	260 9.7	270 5.6	240 9.3	340 2.7	40 9.6	260 6.3	
	SPD (MPH)	8.6 0.311	13.9	7.2	0 916	9.8 8.0	5.9 045	9.5 0 078	0.50	11.1	7.9	
METEOROLOGICAL SITE	DIR (DEG)	290	303	300	220	250	280	250	300	2022	280	
MONOES EN	SPD (MPH)	11.9	14.2	10.5	, 90 100	12.1		10.1	مربع	- 80		
	RATIO	0.793	0.929	0.534	0.886	146.0	0.904	6-95	0.915	0.985	0.6/4	
		(NEV)		NS M	7	SE	Control of the second	NE		e de	NE	
STAMFORD-021 (53)	TSP NATF	(11/85 5/ 1/85	84 4/19/85	78	73 10/10/85	-73 12/ 9/85	64 6/18/85	-63 6/12/85	62 10/22/85	61 12/27/85		
METEOROLOGICAL SITE	DIR (DEG)	300	260		240	270	230	290	60	220	30,77	
NEWAKK	SPD (MPH)		11.4	9.9	13.7	50 70 70	10.2	12.2	10.4	13.2	7.5	
METEOROLOGICAL SITE	RATIO DIR (DEG)	0.335 10	0.735 340	0.417 10	0.955 230	0.848 330	0.894 190	0.517 20	0.660 200	0.952 210	0.950	C
BRADLEY	VEL (MPH)	5.4	3.2	6.8 2	5.0	2.8		5.0	- c	8.0	5.1	\sim
	RATIO	0.717	0.717	0.910	0.553	0.759	0.989	046.0	0.844	9.2 0.893	0.966	
METEOROLOGICAL SITE BRIDGFPORT	DIR (DEG) VFI (MPH)	280 2.9	180 3.1	40 9-6	240 9.3	270 5.6	220 6.7	40 6-1	80 4.9	240 14.6	40 10.5	
	SPD (MPH)	8.6	7.2	11.1	9.5	6.6	0.7		5.8	14.8	10.8	
METFOROLOGICAL SITE	RALIO DIR (DEG)	0.341 290	0.438 300	0.8/0 70	0.9/8 250	0.945 280	0.946 210	0./61 40	0.85/ 260	0.988 220	0.9/4 60	
WORCESTER	VEL (MPH)	9.5	5.6	7.9	9.6	5.7	7.4	7.3	7.2	11.8	4.0	
	SPD (MPH) RATIO	0.793	10.5	8.1 0.985	10.1	6.3 0.904	7.8 0.950	9.1 0.806	7.3 0.986	12.4 0.957	5.2 0.763	
		MM				7	(M	1	7	7	7	
STRATFORD-005 (58)	TSP	114	60	89	83	83	83	81 81	81	78	76	
METEOROLOGICAL SITE	DALE DIR (DEG)	イ8/1/イ 300	3/ 8/85 220	4/19/85 260	9/ 4/85 250	7/25/87 250	3/20/85 250	230 230	2/24/85 210	4/22/85 320	72/21/85 220	
NEWARK	VEL (MPH)	2.5 0 7	1.1.1	8.4 11.4	11.8	6.9 6.9	2.0	10.7	10.4	بر م	12.6	
	RATIO	0.335	0.921	0.735	0.944	0.719	0.678	0.909	0.924	0.604	0.952	4
METEOROLOGICAL SITE BRADLEY	DIR (DEG) VEL (MPH)	10 5.4	240 4.9	340 3.2	240 5.3	240 4.0	290 6.8	180 7.3	190 8.2	200 2.3	8 210 210	
	SPD (MPH) RATIO	7.5 0.717	8.1 0.606	4.5 0.717	8.3 0.635	5.9 0.676	10.1 0.674	9.1 0.807	8.6 0.949	6.5 0.359	9.2 0.893	

.

(______

TABLE 11, CONTINUED 1985 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA

-91-

لمعا
-
=
~
-
z
0
Ō
<u> </u>
~
1
11,
11,
Е 11,
LE 11,
3LE 11,
ABLE 11,
ABLE 11,
TABLE 11,

1985 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA

			en l'a		÷	
IC METER	10	240 14.6 14.8 0.988 12.8 12.4 0.957	4/158 260/81 111144 111144 111144 11117 11117 111777 111777 11177	0.15.6 1.12 1.21	6/12/8 6/12/8 6.3 0.517 0.517 0.517 0.940	40 6.1 8.1 8.1 0.761 140 7.3 9.1 0.806
s per cub	6	230 250 250 250 250 250 250 250 250 250 25	9/ 41/85 250 12:50 12:58 11:58 12:58 0.944 5:33 5:33 5:33 5:33 5:33 5:33 5:33 5:	0.9928	5/19/85 12:0 14:2 0.842 7.90 0.842 0.855 0	300 9.9 0.972 10.2 11.5 0.946
MICROGRAM	ω	240 8.6 8.6 997 13.6 0.851 0.851 0.851	12/27/85 65 12:20 13:26 0.952 8:2 8:2 8:2 8:2 8:2 8:2	0.957 0.988 0.988 0.988 0.957 0.957	7/ 6/85 200 7.6 7.6 7.6 8.3 0.913 6.9 0.913 0.913 0.913	190 6.7 0.957 8.3 0.966
UNITS :	7	0.855 0.916 0.8220 0.8355 0.8355	0.864 15.13 15.13 15.14	0.80 0.80 0.894 0.86	7/30/85 290 6.0 0.609 0.609 1.4 4.4	260 6.3 0.792 5.80 7.5 0.674
	9	270 270 10.26 0.740 14.0 15.2 0.912 0.912	3/ 67 3/ 67 12:1 12:1 12:1 12:1 12:1 12:1 12:1 12:	2200 2200 10.7 10.7 220 20.4 20.4 20.4	3/20/85 3/20/85 250 9.5 0.678 6.8 0.674	270 17.6 0.740 15.2 15.2 0.916
	Ъ	0.807 0.907 0.807 0.807 0.807 0.807 0.807 0.807 0.807 0.807 0.807 0.807 0.807 0.807 0.807 0.9070	5/13/85 2230 110.7 111.8 110.8 110.8 110.8 1180 1180 1180	0.2200 0.811 0.886 0.886	6/18/85 230 230 230 230 230 230 19/8 8.1 8.2 8.2 0.989	220 6.7 0.946 7.1 7.1 7.1 0.950
	4	260 9.7 12:50 12:10 0.952 12:10 0.951	3/20/85 3/20/85 9.55 250 290 290 290 290 290 290 290 290 290 29	0.214 0.7440 1440 15.2 0.916	9/ 4/85 250 250 11.8 11.8 0.944 5.3 5.3 0.635 0.635	260 9.7 9.8 9.8 0.992 11.6 12.1 0.957
	m	0.534 0.538 0.538 0.556 0.534 0.534	2/24/85 210 210 10.44 11.2 0.924 8.2 8.2 8.2	0.851 0.851 0.856 0.851 0.851	5/31/85 190 190 190 190 190 10.1 0.989	190 7.5 0.967 200 13.8 0.988
	0	240 10.7 10.8 0.996 270 270 20.6 20.4 20.4	2/18/85 2/18/85 110.0 11.8 11.8 270 8.8 8.8 8.8 10.1	0.270 10.4 10.6 10.6 2290 2290 2290 2290 277.3 0.981	56 260 260 8.4 11.4 0.735 340 340 3.40 3.40 3.40 3.40 3.40 3.40 3	180 3.1 7.2 0.438 300 300 10.5 0.534
	-	280 2.9 2.9 2.9 2.90 2.90 0.793 0.793	0.950 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.95000 0.9500 0.9500 0.9500 0.95000 0.95000 0.95000 0.950	0.763 0.75.2 0.75.2 0.760 0.75.2 0.760 0.75.2	5/1/85 3.22 3.26 3.26 3.35 0.335 0.717	280 2.9 2.9 2.90 2.5 0.793 0.793
	RANK	DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	TSP DATE DATE DIR (DEC) VEL (MPH) RATIO DIR (DEG) VEL (MPH) SATIO SATIO	NATIO VEL (MPH) SPD (MPH) RATIO DIR (DEG) SPD (MPH) SPD (MPH) RATIO	TSP DATE DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) DIR (DEG) DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH)	DIR (DEG) - VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO
	TOWN-SITE (SAMPLES)	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	TORRINGTON-001 (60) METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	VOLUNTOWN-001 (56) METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE METEOROLOGICAL SITE	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER

ĺ

1985 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA UNITS : MICROGRAMS PER CUBIC METER

			M					÷				1.1	i
1	74	-/ //07 40 2.8 6.6	0.417 10 6.8 7.5	0.910 40 9.6	0.870 70 8.1 0.985		7.95 300 7.9 8.6	0.914 8.30 6.5	0.731 310 8.0 9.2	0.865 310 5.1 7.0 0.724	(UW) 52 3/ 2/85	300	0.864 310 9.0 0.823
6	1, 1, 6F	1/31/00 30 7.1 7.5	0.950 5.1 5.3	0.966 40 10.5	0.974 60 5.2 0.763	72	240 240 13.0	0.955 230 5.0 9.1	0.553 240 9.3 9.5	0.978 250 9.6 10.1	(10) 56 3/20/85	250 13.9	0.6/8 290 6.8 10.1 0.674
8		9/ 1/09 300 3.2 9.6	0.335 10 7.5	0.717 280 280	0.341 290 11.9 0.793		270 270 4.9 8.7	0.848 330 2.8 3.7	0.759 270 5.6	0.945 280 5.7 6.3 0.904	57 57 2/27/85	220 12.6 13.2	0.893 0.82 0.893
7	78	1/ 13/03 260 12.7 13.4	0.947 280 4.0 6.2	0.645	0.973 310 9.8 0.925	76	- 19/65 260 8.4 11.1	0.735 340 3.2 4.5	0.717 180 3.1 7.2	0.438 300 5.6 10.5 0.534	58 58 2/24/85 1	210 10.4	0.924 190 8.2 0.949
6	82 82	260 260 10.0 11.8	0.847 270 8.8 10.1	0.871 270 10.4	0.981 290 17.3 0.981	NE 1/21/05	1/31/85 30 7.1 7.5	0.950 5.1 5.3	0.966 40 10.5 10.8	0.974 60 4.0 5.2 0.763	1/19/85	240 8.5 10.1	0.841 5.40 5.5 0.911
5	84 110 / 95	11.4	0.735 340 3.2 4.5	0.717 180 3.1	0.438 300 5.5 5.5 0.534	48	5/ 2/07 300 15 1		0.823 300 9.6 10.8	0.894 300 14.3 16.2 0.880	61 61 4/85	250 11.8 12.5	0.944 5.3 8.3 0.635
- 1	89 175/95	250 6.9 9.6).719 240 4.0 5.9	0.676 8.1 8.1	280 280 7.3 802 802	79	220 12.6 13.5	0.952 8.2 9.2 9.2).893 240 14.6 14.8	0.988 220 11.8 12.4	(NE) 65 11/ 7/85	40 6.6	0.910 7.5 0.910
3	89	270 4.9 5.8	.848 330 2.8 3.7	. 759 270 5.6).945 280 5.7 6.3 0.904	80 80 7,51,76E	210 210 10.4 11.2).924 190 8.2 8.6).949 240 8.6 8.6).997 260 13.6 16.0 .851	68 +/19/85	260 8.4 11.4). 737 340 3.22 4.55 0.717
~ \	90 977 / 0 E 1	220 12.6 13.2	.952 210 8.2 9.2). 893 240 14.6).988 220 11.8 12.4	85 85	300 300 3.2 0.5), 335 5.40 7.5	2.90 2.9 8.6).341 290 11.9 .793 ().793	(NVN) 3/ 1/85 ¹	300 3.2 9.6	0.335 5.4 7.5 0.717
- }	97 97 8705 10	220 11.1 12.1	240 240 4.9 8.1		270 270 20.4 258	82	240 240 8.5 10 1	5.5 5.5	911 (0) 260 (0).864 (260 5.3 7.3).726 (78	230 10.7 11.8). 909 180 7.3 9.1 .807 (
ZANK	TSP DATE	DIR (DEG) VEL (MPH) SPD (MPH)	RATIO (DIR (DEG) VEL (MPH) SPD (MPH)	VEL (MPH)	ZATIO 01R (DEC) VEL (MPH) SPD (MPH) ZATIO	TSP	DALE DIR (DEG) VEL (MPH)	VEL (MPH) SPD (MPH)	RATIÒ DIR (DEG) VEL (MPH) SPD (MPH)	RATIO (DIR (DEG) VEL (MPH) SPD (MPH) (RATIO (TSP DATE	DIR (DEG) VEL (MPH) SPD (MPH)	KALLO DIR (DEG) VEL (MPH) SPD (MPH) RATIO (
TOWN-SITE (SAMPLES)	WALLINGFORD-001 (59)	METEOROLOGICAL SITE I NEWARK \	METEOROLOGICAL SITE	METEOROLOGICAL SITE I BRIDGEPORT V	METEOROLOGICAL SITE I WORCESTER >	WATERBURY-005 (56)	METEOROLOGICAL SITE	METEOROLOGICAL SITE I BRADLEY	METEOROLOGICAL SITE I BRIDGEPORT >	METEOROLOGICAL SITE	WATERBURY-006 (59)	METEOROLOGICAL SITE	METEOROLOGICAL SITE BRADLEY

-93-

						÷						4			
IC METER	10	300 9.6 10.8 0.894	300 14.3 16.2 0.880	77 4/19/85	8.4 11.4 0.735	3.40 3.40 717 717	3.1	200 300 10.5 10.5	1.00	59 9/ 4/85	250 11.8 12.5	0.944 240 5.3	0.635 9.7	9.8 0.992 250	11.6 12.1 0.957
S PER CUB	<u>,</u> 6	270 7.6 0.740	280 14.0 0.916 0.916	5/ 1/85	335 0.335 0.335	0 7.7 7.7 7 7 7 7 7 7 7 7	2.9 2.6 8.6	11.9 703 703 703	NWN)	62 12/ 9/85	270 5.8	0.848 330 2.8	0.759 270 5.6	0.945 280 280	5.7 6.3 0.904
4 I CROGRAM	ω	240 14.6 0.988 0.988	220 11.8 12.4 0.957	1/31/85	7.1 7.5 0.950		10.5 10.8	1.5 1.5 1.5 1.5	003	63 3/ 8/85	220	0.921 240 4.9	8.1 0.606 240 10.7	0.996 270	19.6 20.4 0.958
UNITS : I	7	240 8.6 8.6 0.997	260 13.6 0.851	3/20/85	9.5 13.9 0.678	2290 6.8 10.1	2270 10.2	280 14.0 15.2	0.2.0	64 2/24/85	210 10.4	0.924 190 8.2	8.6 0.949 8.6	8.6 0.997 260	13.6 16.0 0.851
AIND DATA	9	260 9.6 11.1 0.864	260 5.3 0.726	89 5/13/85	10.7 11.8 0.909	0 807 9.1	2000 2000 8.1	85.54 85.556 85.556 85.556 85.556 85.556 85.556 85.556 85.556 85.556 855	N.N.	67 3/20/85	250 9.5 13.9	0.678 290 6.8	0.674 270 7.6	10.2 0.740 280	14.0 15.2 0.916
AYS WITH V	5	260 9.7 0.992	250 11.6 12.1 0.957	99 3/ 2/85	13.3 15.4 0.864	0.9 10.9 823	0.800 10.8	300 300 14.3 16.2		<u>67</u> 5/ 1/85	300 3.2 9.6	0.335 15.10 14.10	0.717 280 2.9	8.6 290 290	و.9 11.9 0.793
AGE TSP D/	4	40 9.6 11.1 0.870	70 8.1 0.985	103 3/ 8/85	11.1 12.1 0.921	2710 4.1 6.1	240 240 10.7 10.8	270 19.6 20.4	0/6.0	82 12/27/85	220 12.6 13.2	0.952 210 8.2	0.893 240 14.6	14.8 0.988 220	11.8 12.4 0.957
HOUR AVER	£	180 3.1 7.2 0.438	0.534 0.534	106 2/24/85	10.4 11.2 0.924	8.6 949	8.6 8.6	13.6 16.0		1/31/85	30 7.5 7.5	0.950 10 5.1	0.966 10.5	$ \begin{array}{c} 10.8 \\ 0.974 \\ 60 \\ .6$	4.0 5.2 0.763
GHEST 24-1	N	280 2.9 8.6 0.341	290 9.5 11.9 0.793	2/18/85	200 10.0 11.8 0.847	270 8.8 10.1 871	270 10.4	290 290 17.3 081		101 3/ 2/85	300 13.3 15.4	0.864 310 9.0	0.823 0.823 9.6	10.8 0.894 300	14.3 16.2 0.880
55 TEN HIG	-	200 7.4 8.1 0.916	220 8.4 0.886	130 12/27/85	12.6 13.2 0.952	0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	240 14.6 14.8	220 11.8 12.4		106 2/18/85	260 10.0 11.8	0.847 270 8.8	0.871 270 10.4	10.6 0.981 290	16.9 17.3 0.981
198	RANK	DIR (DEG) VEL (MPH) SPD (MPH) RATIO	DIR (DEG) VEL (MPH) SPD (MPH) RATIO RATIO	TSP DATE DATE	VEL (MPH) SPD (MPH) RATIO	DIR (DEG) VEL (MPH) SPD (MPH) RATIO	DIR (DEG) VEL (MPH) SPD (MPH)	VEL (MPH) SPD (MPH)		TSP DATE	DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH)	SPU (MPH) RATIO DIR (DEG) VEL (MPH)	SPD (MPH) RATIO DIR (DEG)	VEL (MPH) SPD (MPH) RATIO
	TOWN-SITE (SAMPLES)	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORGESTER	WATERBURY-007 (60)	MELEONOLOGICAL STIE NEWARK	METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER		WILLIMANTIC-002 (60)	METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE	WORGESTER

(

TABLE 11, CONTINUED

NW = 122 = 30.5

NEW ANN - INS SE - 3 - 123 SE - 3 - 0.3

SW = 185 = 46.2

III. SULFUR DIOXIDE

HEALTH EFFECTS

Sulfur oxides are gases that come from the burning of sulfur-containing fuel, mainly coal and oilderived fuels, and also from the smelting of metals and from certain industrial processes. They have a distinctive odor. Sulfur dioxide (SO₂) comprises about 95 percent of these gases, so scientists use a test for SO₂ alone as a measure of all sulfur oxides.

Exposure to high levels of sulfur oxides can cause an obstruction of breathing that doctors call "pulmonary flow resistance." The amount of breathing obstruction has a direct relation to the amount of sulfur compounds in the air. The effect of sulfur pollution is enhanced by the presence of other pollutants, especially particulates and oxidants. Moreover, the harm that results from two or more pollutants is more than additive. Each augments the other, and the combined effect is greater than the sum of the effects that each alone would have.

Many types of respiratory disease are associated with sulfur oxides:coughs and colds, asthma, bronchitis, and emphysema. Some researchers believe that the harm is not only due to the sulfur oxide gases but also other sulfur compounds that accompany the oxides.

CONCLUSIONS

Sulfur dioxide concentrations in 1985 did not exceed any federal primary or secondary standards. Measured concentrations were substantially below the 365 μ g/m³ primary 24-hour standard and well below both the 80 μ g/m³ primary annual standard and the 1300 μ g/m³ secondary 3-hour standard.

METHOD OF MEASUREMENT

The DEP Air Monitoring Unit used the pulsed fluorescence method (Teco instruments) to continuously measure sulfur dioxide levels at all 18 sites in 1985.

DISCUSSION OF DATA

Monitoring Network - Eighteen continuous SO₂ monitors were used to record data in fifteen towns during 1985 (see Figure 5):

Bridgeport 012	Milford 002
Bridgeport 123	New Britain 011
Danbury 123	New Haven 017
East Hartford 005	New Haven 123
East Haven 003	Norwalk 013
Enfield 005	Preston 002
Greenwich 017	Stamford 025
Groton 007	Stamford 123
Hartford 123	Waterbury 123

All of these sites telemetered the data to the central computer in Hartford on a real-time basis.

Precision and Accuracy - 565 precision checks were made on SO₂ monitors in 1985, yielding 95% probability limits ranging from -11% to +7%. Accuracy is determined by introducing a known amount of SO₂ into each of the monitors. Three different concentration levels are tested: low, medium, and high. The 95% probability limits for accuracy based on 19 audits were: low, -5% to + 3%; medium, -5% to +4%; and high, -6% to + 2%.

Annual Averages - SO₂ levels were below the primary annual standard of 80 μ g/m³ at all sites in 1985 (see Table 12). The annual average SO₂ levels increased at λ of the 15 monitoring sites that had adequate data in both 1984 and 1985 to produce valid annual averages. Five sites showed decreases from 1984 to 1985. New Haven 123 experienced the highest increase of χ μ g/m³. Hartford 123 showed the largest annual average decrease of 8 μ g/m³.

Statistical Projections - A statistical analysis of the sulfur dioxide data is presented in Table 13. This analysis provides information to compensate for any loss of data caused by instrumentation problems. The format of Table 13 is the same as that used to present the total suspended particulate annual averages (see Table 6). However, Table 13 gives the annual arithmetic mean of the valid 24-hour SO₂ averages to allow direct comparison to the annual SO₂ standards. The 95% limits and standard deviations are also arithmetic calculations. Since the distribution of the SO₂ data tends to be lognormal, the geometric means and standard deviations were used to predict the number of days the 24-hour standard of 365 μ g/m³would be exceeded at each site if sampling had been conducted every day.

It is important to note that these statistical tests require that the data be random for the test to be valid. This means that an equal number of samples must be collected in each season of the year and on each day of the week. For the 18 sites that operated in 1985, the distribution and quantity of SO₂ data were adequate — except for the Stamford 025 site. The data for these sites indicate that there were no violations of the primary SO₂ standard in Connecticut. For example, a statistical prediction of one day exceeding the primary 24-hour standard (365 μ g/m³) at Bridgeport 012 indicates that a slight increase in SO₂ emissions there might jeopardize the attainment of this standard. Two days over the standard are required for the standard to be violated.

24-Hour Averages - Table 14 presents the 1st and 2nd high calendar day average concentrations recorded at each monitoring site. In 1985 no sites recorded SO₂ levels in excess of the 24-hour primary standard of 365 μ g/m³. Second high calendar day average concentrations decreased at "14" of the 15. SO₂ monitoring sites that had a sufficient distribution and quantity of data in both 1984 and 1985. The decreases ranged from 12 μ g/m³ at Preston 002 to 110 μ g/m³ at Hartford 123.

Current EPA policy bases compliance with the primary 24-hour SO_2 standard on calendar day averages. Assessment of compliance is based on the second highest calendar day average in the year. Running averages are averages computed for the 24-hour periods ending at every hour. If running averages were used, assessment of compliance would be based on the value of the second highest of the two highest non-overlapping 24-hour periods in the year. There has been some contention over which average is the more appropriate one on which to base compliance. Table 15 contains the maximum 24hour SO_2 readings from both the running averages and the calendar day averages for comparison. The maximum calendar day readings are all lower than the maximum running average readings, and the differences range up to 28 µg/m³ at Norwalk 013.

3-Hour Averages - Table 16 presents the 1st and 2nd high 3-hour concentrations recorded at each monitoring site. Measured SO₂ concentrations were far below, the federal secondary 3-hour standard of 1300 μ g/m³ at all DEP monitoring sites in 1985. Of the 15 sites that had a sufficient distribution and guantity of data in both 1984 and 1985, all but 3 had lower 2nd high concentrations in 1985. Six of these decreases were greater than 100 μ g/m³. Of the 3 sites with higher 2nd high concentrations in 1985, the largest increase was 57 μ g/m³ at New Haven 017.

10-High Days with Wind Data - Table 17 lists the ten highest 24-hour calendar day SO_2 averages and the dates of occurrence for each SO_2 site in Connecticut during 1985. The table also shows the average wind conditions that occurred on each of these dates. (The origin and use of these wind data are described in the discussion of Table 11 in the TSP section of this Air Quality Summary.)

Once again, as with TSP, many (i.e., 43.3%) of the highest SO₂ days occur with winds out of the southwest quadrant and most of these days have persistent winds. This relationship is caused, at least in part, by SO₂ transport, but any transport is limited by the chemical instability of SO₂. In the atmosphere, SO₂ reacts with other gases to produce, among other things, sulfate particulates. Therefore, SO₂ is not likely to be transported very long distances. Previous studies conducted by the DEP have shown that, during periods of southwest winds, levels of SO₂ in Connecticut decrease with distance from the New York City metropolitan area. This relationship tends to support the transport hypothesis. On the other hand, these studies also revealed that certain meteorological parameters, most notably mixing height and wind speed, are more conducive to high SO₂ levels on days when there are southwesterly winds than on other days.

The data in Table 17 were used to make a tally, by date, of the frequency of occurrence of high SO₂ levels. Only those seventeen sites were used which had a sufficient distribution and quantity of data in 1985 to produce a valid annual average. If a given date recurred at five or more sites in this tally, the SO₂ levels and meteorological conditions were investigated further (there were sixteen such days). A close look at these sixteen days revealed three important points. First, fifteen of the sixteen days occurred during the winter months. This can be attributed to more fuel being burned during the cold weather. Second, eight of the sixteen days had persistent southwest winds for that calendar day. Third, two other days had persistent southwest winds for the previous 24 hours.

In summary, high levels of SO₂ in Connecticut seem to be caused by a number of related factors. First, Connecticut experiences its highest SO₂ levels during the winter months, when there is an increased amount of fuel combustion. Second, the New York City metropolitan area, a large emission source, is located to the southwest of Connecticut and, in this region, southwest winds occur relatively often in comparison to other wind directions. Also, adverse meteorological conditions are often associated with southwest winds. The net effect is that during the winter months when a persistent southwesterly wind occurs, an air mass picks up increased amounts of SO₂ over the New York City metropolitan area and transports this SO₂ into Connecticut. Here, the SO₂ levels remain high because the relatively low mixing heights associated with the southwest flow and low winter temperatures will not allow much vertical mixing. The levels of transported SO₂ eventually decline with increasing distance from New York City, as the SO₂ is dispersed and as it slowly reacts to produce sulfate particulates. These sulfate particulates may fall to the ground in either a dry state (dry deposition) or in a wet state after combination with water droplets (wet deposition or "acid rain").

<u>1985 ANNUAL ARITHMETIC AVERAGES OF SULFUR DIOXIDE</u> <u>AT SITES WITH CONTINUOUS MONITORS</u> (PRIMARY STANDARD: 80 µg/m³)

TOWN	SITE NAME	<u>ANNUALAVG</u> * (µg/m³)
Bridgeport-012	Edison School	36
Bridgeport-123	Hallett Street	32
Danbury-123	Western CT State College	20
East Hartford-005	Fire House - Engine Co. #5	22 ****
East Haven-003	Animal Shelter	25
Enfield-005	Department of Corrections	14
Greenwich-017	Greenwich Point Park	15
Groton-007	Fire Headquarters	21
Hartford-123	State Office Building	23
Milford-002	Devon Community Center	30
New Britain-011	Armory	23
New Haven-017	Lombard St. Fire House	29 31
New Haven-123	State Street	44
Norwalk-013	Ludlow School	24
Preston-002	Norwich State Hospital	14
Stamford-025	Recreation Center	28**
Stamford-123	Health Department	29
Waterbury-123	Bank Street	23

* The annual averages are expressed in terms of the arithmetic mean because the primary ambient air quality standard for SO₂ is defined as the annual arithmetic mean concentration. This differs from the trend analysis presented earlier in section I.B. of this Air Quality Summary which made use of the annual geometric mean.

** A valid annual average cannot be calculated because the number of observations is insufficient or is poorly distributed.

1983-1985 SO2 ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

LOGNORMAL DISTRIBUTION

TOMN NAME	SITE	YEAR	SAMPLES	ARI. MEAN	95-PCT-I LOMER	LIMITS UPPER	STD DEVIATION	PREDICTED DAYS OVER 365 UG/M3	MEASURED DAYS OVER 365 UG/M3
BRIDGEPORT BRIDGEPORT	012 012	1984 1985	333 317	32.9 36.0	32 35	34 37	33.836 30.464	-	
BRIDGEPORT BRIDGEPORT BRIDGEPORT	123 123 123	1983 1984 1985	359 358 358	33.3 31.8 31.5 %	33 31 31 30	34 32 32	22.834 26.948 26.101 24	(¢)	
DANBURY Danbury Danbury	123 123 123	1983 1964 1985	356 358 292	16.9 17.5 20.0	17 17	17 18 21	13.031 18.635 17.747		
EAST HARTFORD EAST HARTFORD	005 005	1984 1985	306 ¥ 306 ¥	27.4 19.8	26 19	28 21	24.298 20.695		
EAST HAVEN EAST HAVEN	003 003	1984 1985	341 332	20.1 24.8	20 24	21 26	19.700 23.377		
ENFIELD Enfield Enfield	005 005 005	1983 1984 1985	61* 349 345	23.1 13.9 12.7	18 14 12	28 14 13	20.895 16.871 13.625		
GREENWICH GREENWICH GREENWICH	017 017 017	1983 1984 1985	333 345 357	15.5 16.9 14.4	165 165 165	16 17 15	11.659 17.251 12.452		
GROTON GROTON GROTON	200 200 200	1983 1984 1985	79 * 334 354	24.2 20.6 21.3	21 20 21	27 21 22	13.835 16.210 13.955		
HARTFORD HARTFORD HARTFORD	123 123 123	1983 1984 1985	360 361 361	32.4 31.4 22.8	32 31 53	33 33 23 23	22.793 31.425 22.298		

* SAMPLING NOT RANDOM OR OF INSUFFICIENT SIZE FOR REPRESENTATIVE ANNUAL STATISTICS.

N.B. THE ANNUAL AVERAGES IN TABLE 13 VARY SLIGHTLY FROM THOSE IN TABLE 12 DUE TO THE MANNER IN WHICH THEY WERE DERIVED. THE AVERAGES IN TABLE 12 ARE BASED ON THE AVAILABLE HOURLY READINGS, WHILE THOSE IN TABLE 13 ARE BASED ON VALID 24-HOUR AVERAGES. (AT LEAST 18 HOURLY READINGS ARE REQUIRED TO PRODUCE A VALID 24-HOUR AVERAGE.)

THE ARITHMETIC MEAN AND STANDARD DEVIATION HAVE UNITS OF MICROGRAMS PER CUBIC METER.

TABLE 13, CONTINUED

1983-1985 SO2 ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

LOGNORMAL DISTRIBUTION

FOMN NAME	SITE	YEAR	SAMPLES	ARI. MEAN	95-PCT- LOWER	-LIMITS UPPER	STD DEVIATION	PREDICTED DAYS OVER 365 UG/M3	MEASURED DAYS OVER 365 UG/M3
11 L F ORD	002	1983	342	34.8	34	36	27.169		
11 L F ORD	002	1984	341	33.9	33	35	34.191	ч	
4I L F ORD	002	1985	349	29.3	29	30	27.498		
VEW BRITAIN	110	1984	227*	14.2	13	15	12.809		
VEW BRITAIN	110	1985	360	23.0	23	23	19.693		
JEW HAVEN	210	1 986	122	24.6	24	25	22.161		
VEW HAVEN	017	1985	341	36.2	35	37	31.069		
JEW HAVEN	123	1983	363	30.7	30	31	24.284		
VEW HAVEN	123	1984	346	34.6	34	35	32.585		
VEN HAVEN	123	1985	357	44.3	44	45	36.297		
JORWALK	013	1984	266*	17.1	16	18	14.621	1	
NORWALK	013	1985	364	23.1	23	23	22.858		
PRESTON	002	1983	61*	13.9	12	16	7.016		
PRESTON	002	1984	345	10.9	11	11	9.527		
PRESTON	002	1985	349	13.0	13	13	10.803		
STAMFORD	025	1984	297*	23.0	22	24	16.563		
STAMFORD	025	1985	280*	28.5	27	30	21.965		
STAMFORD	123	1983	362	26.7	26	27	18.916		
STAMFORD	123	1934	343	31.9	31	32	21.563		
STAMFORD	123	1985	353	23.6	28	29	22.817		
MATERBURY	007	1983	¥09	34.0	27	41	29.103		
MATERBURY	007	1984	350	28.8	28	29	28.810		
MATERBURY	123	1983	351	18.9	19	19	14.291		
MATERBURY	123	1984	334	22.7	22	23	20.813		
MATERBURY	123	1985	351	23.0	23	23	19.482		

* SAMPLING NOT RANDOM OR OF INSUFFICIENT SIZE FOR REPRESENTATIVE ANNUAL STATISTICS.

N.B. THE ANNUAL AVERAGES IN TABLE 13 VARY SLIGHTLY FROM THOSE IN TABLE 12 DUE TO THE MANNER IN WHICH THEY WERE DERIVED. THE AVERAGES IN TABLE 12 ARE BASED ON THE AVAILABLE HOURLY READINGS, WHILE THOSE IN TABLE 13 ARE BASED ON VALID 24-HOUR AVERAGES. (AT LEAST 18 HOURLY READINGS ARE REQUIRED TO PRODUCE A VALID 24-HOUR AVERAGE.)

THE ARITHMETIC MEAN AND STANDARD DEVIATION HAVE UNITS OF MICROGRAMS PER CUBIC METER.

1985 MAXIMUM CALENDAR DAY AVERAGE SO2 CONCENTRATIONS

* Date is month/day of occurrence.

** Database for the site is deficient in number or distribution of observations.

N.B. When a listed concentration occurs more than once at a site, the earliest date of occurrence is given.

Primary standard = $365 \,\mu g/m^3$.

TABLE 14, CONTINUED

1985 MAXIMUM CALENDAR DAY AVERAGE SO2 CONCENTRATIONS

* Date is month/day of occurrence.

* Database for the site is deficient in number or distribution of observations.

N.B. When a listed concentration occurs more than once at a site, the earliest date of occurrence is given.

Primary standard = $365 \,\mu g/m^3$.

COMPARISONS OF FIRST AND SECOND HIGH CALENDAR DAY AND 24-HOUR RUNNING SO2 AVERAGES*

	FIRST HIGH	AVERAGE	SECOND HIG	<u>H AVERAGE</u>
SITE	RUNNING 24-HOUR	CALENDAR DAY	RUNNING 24-HOUR	CALENDAR DAY
Bridgeport-012	159	151	154	145
Bridgeport-123	157 /AI	136 124	141/30	125 114
Danbury-123	93	88	89	76
** E. Hartford-005	99	93	98	90
East Haven-003	149	146	135	119
Enfield-005	85	76	76	68
Greenwich-017	92	89	67	66
Groton-007	76	69	74	68
Hartford-123	117	114	116	101
Milford-002	158	133	143	132
New Britain-011	108	107	103	95
New Haven-017	189	174	186	147
New Haven-123	259	248	214	181
Norwalk-013	150	122	128	121
Preston-002	59	52	56	50
Stamford-025**	134	123	126	104
Stamford-123	128	124	119	113
Waterbury-123	117	98	104	92

* Units are μg/m³.

** The number or distribution of observations at the site is inadequate for the calculation of a valid annual average.

1985 MAXIMUM 3-HOUR RUNNING AVERAGE SO2 CONCENTRATIONS

* Date is month/day/ending hour of occurrence.

** Database for the site is deficient in number or distribution of observations.

N.B. When a listed concentration occurs more than once at a site, the earliest date of occurrence is given.

Secondary standard = $1300 \,\mu g/m^3$.

TABLE 16, CONTINUED

1985 MAXIMUM 3-HOUR RUNNING AVERAGE SO2 CONCENTRATIONS

Date is month/day/ending hour of occurrence.
 **

* Database for the site is deficient in number or distribution of observations.

N.B. When a listed concentration occurs more than once at a site, the earliest date of occurrence is given.

Secondary standard = $1300 \,\mu\text{g/m}^3$.

	DATA
	MIND
	WITH
	DAYS
	S02
ABLE 17	AVERAGE
F	24-HOUR
	HICHEST
	TEN
	1985

				\sim	····				· minasing_rr	~				\sim
IC METER	10	211	3/ 1/85 210 10.7	0.912 200 10.8	0.979 220 11.0	0.954 260 17.6 17.8 0.989	26	2/21/85 160 3.6 7.5	0.496 190 3.3 4.6	0.711 130 2.5	0.551 2280 7.9 0.699	64	1/17/85 220 6.4 8 1	0.789 300 3.6 3.6
AMS / CUB	6	119	1/19/85 240 8.5	0.841 5.0 5.0	0.911 260 9.6	0.864 260 5.3 7.3 0.726	100	2/ 5/85 40 7.9	0.884 30 3.6 3.6	0.712 60 11.5	0.979 90 5.9 0.138	67	2/21/85 160 3.6 7.2	0.496 190 3.3 4.6
: MICROGR	8	123	2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2	0.884 30 2.6	0.712 60 11.5	0.979 90 5.9 0.138	104	3/ 1/85 210 10.7	0.912 200 10.8 11.1	0.979 220 11.0	0.954 260 17.6 0.989	20	12/ 9/85 270 4.9 5.8	0.848 330 2.8 3.7 0.759
UNITS	7	124	1/28/85 300 6.8 9.3	0.723 320 3.3	0.983 300 7.3	0.813 300 9.5 10.1 0.945	104	12/ 9/85 270 4.9 5.8	0.848 330 2.8 3.7	0.759 270 5.6	0.945 5.7 6.3 0.904	20	7.9 300 7.9 8.6	0.914 330 4.7 6.5
	9	125	7/21/2 260 9.4 9.9	0.946 5.5 6.2	0.889 260 9.5 10.4	0.920 260 8.2 0.971	105	1/31/85 30 7.1 7.5	0.950 5.1 5.3	0.966 40 10.5	0.974 60 4.0 5.2 0.763	75	12/23/85 190 6.4 7 0	0.909 190 6.9 0.932
	5	127	24/11/2 240 11.6 12.5	0.930	0.796 240 9.0 9.6	0.939 260 12.3 12.7 0.969	111	2/ 4/85 280 7.4 8.2	0.907 320 4.3 6.5	0.665 250 5.1	0.765 290 7.1 7.8 0.921	72	1/28/85 300 6.8 9_3	0.723 320 3.3 0.983
	4	130	21/31/85 210 9.5 10.2	0.930 9.0 9.2	0.983 210 12.0 12.9	0.925 15.5 0.996	114	1/28/85 300 6.8 0.3	0.723 320 3.3 3.3	0.983 300 6.0 7.3	0.813 300 9.5 0.945	72	68/6/2 04 7.9 8.9	0.884 30 2.6 3.6 0.712
	£	136	240 240 8.0 8.8	0.911 240 3.9 4.9	0.803 250 6.3 7.5	0.844 270 6.9 8.1 0.857	124	1/19/85 240 8.5 10.1	0.841 5.0 5.5	0.911 260 9.6 11.1	0.864 5.3 7.3 0.726	13	12/29/85 240 4.2 6.3	0.661 210 5.4 0.829
	5	145	28/4/80 280 7.4 8.2	0.907 320 4.3 6.5	0.665 250 5.1 6.6	0.765 290 7.1 7.8 0.921	125	12140 240 7	0.868 200 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84	0(.828 256 13.4	0.680	76	2/ 4/85 280 7.4 8.2	0.907 320 4.3 0.665
		151	-/ -8/87 230 3.8 5.2	0.735 200 1.9 2.7	0.693 210 6.8 7.3	0.932 300 7.3 8.2 0.891	(136	27/0 27/0 10 10 10	19.70 19.70 19.60	0.407 290 9.55 10.1	0.9245 0.9240 0.927 0.927	88	12/20/05 10 4.6 5.9	0.786 300 1.6 4.2 0.384
	RANK	SO2	DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	\$02	DALE DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH)	RATIÓ DIR (DEG) VEL (MPH) SPD (MPH) RATIO	S02	DALE DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO
	TOWN-SITE (SAMPLES)	BRIDGEPORT-012 (317)	METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER	355 BRIDGEPORT-123 (358)	METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER	DANBURY-123 (292)	METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY

	DATA
	MIND
	WITH
~	DAYS
NUE	S02
7, CONTI	AVERAGE
TABLE 1	24-HOUR
	HIGHEST
	TEN
	1985

		r v	ر ي س
10	40 2.11 0.366 310 310 1.8 0.365 0.365	2/17/2 240 0.230 0.230 0.230 0.230 0.250 0.339 0.930 0.939 0.930 0.939 0.930 0.939 0.930 0.939 0.930 0.939 0.930 0.939 0.930 0.939 0.9300 0.9300 0.9300 0.9300 0.9300 0.9300 0.93000 0.93000 0.93000 0.930000000000	$\begin{array}{c} 12 \\ 83 \\ 412 \\ 633 \\ 635 \\ 6$
6	130 2.55 2.55 2.55 2.50 2.50 0.699 0.699	1/31/85 7.1 7.1 7.1 7.1 7.1 7.1 7.1 5.1 0.974 0.974 0.974 0.974 0.974 0.763	12/284 12/284 6.4 6.4 6.4 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.989
80	270 5.6 5.9 280 280 5.7 0.904	3/11/85 180 180 180 180 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6	1/19/252 230 200 200 200 210 210 210 210 210 210 21
7	310 8.0 9.2 0.865 5.1 5.1 0.724	2/ 1/85 20 20 10.7 10.8 0.996 5.9 0.952 0.952 0.952 0.952 0.952 0.974	1/31/85 30 31/85 7.5 7.5 10.55 0.956 0.974 0.974 0.974 0.974 0.974 0.763
Q	250 9.5 0.972 230 10.4 0.989	$\begin{array}{c} 12/24/85\\ 190\\ 2.5\\ 190\\ 0.296\\ 0.296\\ 0.298\\ 0.328\\ 0.398\\ 0.398\\ 0.298\\ 0.296\\ 0.298$	12/20/85 12/20/85 10 10 10 10 10 10 10 10 10 10
5	300 6.0 7.3 300 300 9.5 0.945	12/20/85 12/20/85 12/20/85 100 100 100 100 100 100 100 10	101 114/85 240 2240 2240 2240 2250 250 250 250 250 250 250 250 250 2
11	60 11.5 0.979 0.8 0.8 0.8 0.138	2/ 87 310/85 310/85 310/222.9 222.9 222.9 15.5 15.3 15.3 15.3 15.3 15.3 15.3 15.3	$\begin{array}{c} 1,28,85\\ 1,28,85\\ 5.00\\ 5.23\\ 3.23\\$
3	240 6.5 7.8 0.831 8.1 8.3 0.966	2/5/85 1/5/85 1/5/85 1/60 1/1.5 1/1.5 1/1.5 0.712	12/109 270 2.109 2.1000 2.1000 2.1000 2.1000 2.1000 2.10000000000
N	250 5.1 6.6 290 7.1 7.1 7.8	2/16/85 250 250 240 240 240 240 240 240 240 240 240 270 270 270 0.977 0.968	$\begin{array}{c} 2/ \begin{array}{c} 119 \\ 400 \\ 400 \\ 719 \\ 710 \\ 710 \\ 710 \\ 711 \\ 711 \\ 711 \\ 711 \\ 711 \\ 711 \\ 711 \\ 710$
-	30 5.2 5.2 5.2 0.900 3.5 0.442 0.442	2/14/85 2/14/85 2/14/85 13:1 13:1 13:1 13:1 12:0 12:40 0.910 0.910 0.910 0.910 0.910 0.910 0.910 0.910 0.991	2/ 146 2/ 4/85 280 8.2 8.2 4.3 4.3 4.3 4.3 6.5 0.907 7.1 0.755 0.921
RANK	DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEC) VEL (MPH) SPD (MPH) RATIO	S02 DATE DATE DIR (DEG) VEL (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH)	SOZ DIATE DIATE DIATE NEC VEL (MPH) SPD (MPH) SPD (MPH) VEL (MPH) SPD (MPH)
WN-SITE (SAMPLES)	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	ARTFORD-005 (306) METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE METEOROLOGICAL SITE	AST HAVEN-003 (332) METEOROLOGICAL SITE METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE METEOROLOGICAL SITE
	WN-SITE (SAMPLES) RANK 1 2 3 4 5 6 7 8 9 10	WN-SITE (SAMPLES) RANK 1 2 3 4 5 6 7 8 9 10 METEOROLOGICAL SITE DIR (DEG) 30 250 240 60 300 250 310 270 130 40 METEOROLOGICAL SITE DIR (DEG) 30 250 240 60 300 250 310 215 25.5 2.1 0.306 METEOROLOGICAL SITE DIR (DPH) 5.2 5.1 6.5 6.0 9.2 8.0 5.6 2.1 0.306 METEOROLOGICAL SITE DIR (PPH) 5.8 6.6 7.3 9.5 9.2 0.915 0.40 5.6 5.6 5.6 5.6 5.6 5.6 5.6 2.1 0.366 3306 3366	WM-SITE (SAMPLES) RANK 1 2 3 4 5 6 7 8 9 10 METEOROLOGICAL SITE BRIDGEPORT VEL (MPH) 5,2 5,1 <

4

NUED
CONTI
17,
TABLE

(____)

1985 TEN HIGHEST 24-HOUR AVERAGE SO2 DAYS WITH WIND DATA

				L.	Top.						M	5							t	
SIC METER	10	51	12/22/85 230 8.9	0.887 210 4.9	0.831 240	11.4 0.959 240	9.1 10.9 0.830		46 1/ 7/85 10	0 0 0 0 0 0 0	0.417 10 6.8	0.910	9.6	070.0 70 7.9	8.1 0.985	1	2/14/85 240	12.4	0.945 210 0.0	0.910 0.910
AMS / CUB	6	54	74/8/ 240 8.0 8.0	0.911 240 3.9	0.803 250	7.5 0.844 270	$\begin{array}{c} 6.9\\ 8.1\\ 0.857 \end{array}$		49 1/24/85 250	12.0	0.94/ 220 4.7	6.0 0.786 250	11.2	290 290 11.9	12.1 0.982	5	11/24/85 290	10.6	0.109 300 5.0	8.3 0.602
: MICROGR	80	54	12/29/85 240 4.2	0.661 210 5.4	0.829	7.8 0.831 230	8.1 8.3 0.966		50 12/23/85 100	0.0 - 0 - 0 - 0 - 0	0.909 190 6.4	6.9 0.932 250	0.00	0.972 230 10.4	0.989	6	2/15/85 260	4.6	0.946 240 540	0.889
UNITS	7	55	2/14/85 240 12.4	0.945 210 9.0	0.910 240	12.2 0.980 250	12.3 12.4 0.991	4	53 12/11/85 30	2.03	0.260 3.2	$ \begin{array}{c} 3.9\\ 0.834\\ 50\end{array} $	00. 1.1 1.1	0.5 0.5	5.0 0.093	0	12/21/85 300	7.9	0.914 330 1 7	6.5 0.731
	9	56	12/23/85 190 6.4	0.909 190 6.4	0.932	9.5 0.972 230	10.4 10.5 0.989	e L	53 12/ 5/85 10	5.5 5.0 5.0	0.805 20 3.1	$3.4 \\ 0.913 \\ 40$	4 SC 5	4.5 4.5	5.9 0.759	ġ	2/16/85	10.7	0.930 240 6 h	7.2 0.892
	5	56	28/12/21 300 7.9 8.6	0.914 330 4.7	0.731 310 8_0	9.2 0.865 310	5.1 7.0 0.724	l	56 12/ 9/85 270		0.848 330 2.8	3.1 0.759 270		0.747 280 5.7	$6.3 \\ 0.904$	ξÛ	2/ 5/85 40	7.9 8.9	0.004 30 2 6	3.6 0.712
	4	62 27 = 795	7.9 04 7.9 0 8	0.884 30 2.6	0.712 60	11.8 0.979 90	0.8 5.9 0.138	ľ	2/ 5/85	6.8	0.884 30 2.6	3.6 0.712 60	11.5	676.0 90 8.0	5.9 0.138	ξU	1/ 4/85 360	7.2	0.090 10	1.9 0.558
	3	64 64	12/24/85 190 2.5 3.5	0.789 190 1.7	0.296 140 200	5.0 0.398 190	5.6 6.8 0.833		65 1/14/85 240	0.00	0.911 240 3.9	0.803 250	6.3 7.5	0.044 270 6.9	0.857	77	1/28/85 300	6.8 9.3	0.723 320 320	3.3 0.983
	N	68 68 68	1/18/85 230 3.8 5.2	0.735 200 1.9	0.693 210 6.8	$\frac{7.3}{0.932}$	7.3 8.2 0.891	Ň	66 1/31/85 30	7.5	0.920 10 10	0.966 40	10.5	0.714 60 4.0	5.2 0.763	3	1/14/85 240	880 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.911 240 3 0	4.9 0.803
	-	76	12/20/85 10 4.6 5.0	0.786 300 1.6	4.2 0.384 30 5.2	0.900 260	3.5 7.9 0.442	0	89 12/20/85 10		0.786 300 1.6	0.384 30 30 30 30 30 30 30 3	5.8	0.300 260 3.5	7.9 0.442	U Y	2/21/85 160	3.6	0.490 190 3 3	4.6
	RANK	S02	DAIE DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH)	SPD (MPH) RATIO DIR (DEG) VEL (MPH)	SPD (MPH) RATIO DIR (DEG)	VEL (MPH) SPD (MPH) RATIO		SOZ DATE DIR (DFG)	VEL (MPH) SPD (MPH)	KALIU DIR (DEG) VEL (MPH)	SPU (MPH) RATIO DIR (DEG)	VEL (MPH) SPD (MPH) BATIO	DIR (DEG) VEL (MPH)	SPD (MPH) RATIO	000	DATE DATE DIR (DEG)	VEL (MPH) SPD (MPH)	DIR (DEG) VEI (MDH)	SPD (MPH) RATIO
	TOWN-SITE (SAMPLES)	ENFIELD-005 (345)	METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE	WORCESTER		GREENWICH-017 (357) MFTFORDIOGICAL SITF	NEWARK	METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE	BRIDGEPORT	METEOROLOGICAL SITE WORCESTER		CDOTON-007 (354)	METEOROLOGICAL SITE	NEWARK	METEOROLOGICAL SITE BRANIEV	

	198	5 TEN HI	GHEST 24-	HOUR AVEF	AGE SO2 D	AYS WITH I	HIND DATA	UNITS	: MICROGR	AMS / CUB	IC METER
(SAMPLES)	RANK	-	0	ς	4	ŋ	9	7	ω	6	10
JROLOGICAL SITE BRIDGEPORT	DIR (DEG) VEL (MPH) SPD (MPH) BATHO	130 2.5 4.6	250 6.3 7.5	300 6.0 7.3 813	20 2.0 4.7	60 11.5 11.8 070	240 11.5 11.8 0 077	310 8.0 8.5 8.5	260 9.5 10.4	280 10.7 11.4	240 12.0 12.2
JROLOGICAL SITE WORCESTER	DIR (DEG) VEL (MPH) SPD (MPH) RATIO	0.699 0.699	270 270 6.9 8.1 0.857	0.945 0.945	250 250 4.0 0.463	0.138 0.138	270 9.3 0.968	310 5.1 7.0 0.724	8.5 0.971	260 10.5 11.2 0.934	250 250 12.3 0.991
123 (361)	SO2 DATE	114 2/ 5/85	101 12/24/85	100 1/31/85	95 12/20/85	93 1/18/85	89 1/14/85	87 87 12/29/85	84 2/ 1/85	83 2/21/85	82 1/28/85
JROLOGICAL SITE NEWARK	DIR (DEG) VEL (MPH) SPD (MPH)	40 7.9 8.9	2.5 2.5 2.5	30 7.5		5.080 1.080 1.080	540 58 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		10.7 10.8	3.6 3.6	300 9.3 1.3 200
JROLOGICAL SITE BRADLEY	KALLU DIR (DEG) VEL (MPH) SPD (MPH)	0.884 30 3.6 3.6	0.789 190 5.6 5.6	0.20 5.1 5.3	0.780 300 4.2	200 200 2.7	0.911	0.001 5.5	0. 390 5. 9	0.450 3.3 4.6	
DROLOGICAL SITE BRIDGEPORT	RATIO DIR (DEG) VEL (MPH) SPD (MPH)	0.712 60 11.5	0.296 140 2.0 5.0	0.966 40 10.5 10.8	0.384 5.2 5.8	0.693 210 7.3	0.803 250 7.5	0.829 240 6.5 7.8	0.981 20 8.8 9.2	0.711 2.5 4.6	0.983 300 6.0 7.3
JROLOGICAL SITE WORCESTER	RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	0.979 90 5.9	0.398 190 5.6 6.8	0.974 60 4.0 5.2 0.763	0.900 260 3.5 7.9	0.932 300 7.3 8.2 891	0.844 270 6.9 8.1 8.7	0.831 230 8.1 8.3 0.966	0.952 60 5.2 0.974	0.551 280 5.5 1.9	0.813 300 9.5 0.945
02 (349)	SO2 DATF	133 2/ 9/85	132 1/26/85	125 1/ 8/85	110 12/14/85	109 1/14/85	108 4/17/85	12/ 3/85	105 1/28/85	102	101 1/17/85
OROLOGICAL SITE NEWARK	DIR (DEG) VEL (MPH) SPD (MPH)	22.9 22.9	19.8 19.8	20.7	310	240 8.8 8.8	330 15.9	310 19.9 20.3	300 9.3 9.3	320 16.6 17.8	2550 8.4 8.7
OROLOGICAL SITE BRADLEY	KALLO DIR (DEG) VEL (MPH) SPD (MPH)	0.982 340 15.3 15.5	0.969 330 9.0 9.8	0.930 330 10.6 11.1	0.964 330 12.8 13.2	0.911 240 3.9 4.9	0.978 330 12.9 13.7	0.982 310 16.5	0.723 3.3 3.3 3.3	0.931 340 10.2 10.9	0.789 300 3.6 3.6
OROLOGICAL SITE BRIDGEPORT	RATIO DIR (DEG) VEL (MPH) SPD (MPH)	0.982 320 15.9	0.920 320 13.4	0.960 310 15.2	0.966 310 15.6	0.803 250 6.3	0.945 330 11.3 11.5	0.966 320 11.1	0.983 300 7.3	0.932 310 11.3	0.090 2.10 2.10
OROLOGICAL SITE WORCESTER	KALLO DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH)	0.990 340 18.8 19.0	0.983 330 17.8 18.8	0.971 320 11.3 12.2	0.900 290 14.1 14.5 0 075	0.844 270 6.9 8.1 8.1	0.984 300 14.3 15.0 056	0.916 280 15.5 16.0	0.813 300 9.5 0.10	0.9/3 15.2 16.7	0.200 3310 24.9 265
	DI IN	0. 220	ナナハ・つ	0.760	0.716	110.0	0.2.0	0.710	C • 7 4 V	0.010	100.0

)

TABLE 17, CONTINUED

-110-

		()	0	$\langle 0 \rangle$
IC METER	10	12/21/85 300 7.9 7.9 7.9 8.0 310 310 310 310 310 310 310 310 310 31	$\begin{array}{c} \begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & $	12/20/85 10 10 5.9 0.786 0.786 1.6 0.384
AMS / CUB	6	2/ 4/85 280 280 7.4 7.4 7.4 7.4 7.4 8.2 0.921 0.921 0.921 0.921 0.921 0.921 0.921 0.921	2/14/85 2/14/85 240 2240 2240 2240 2240 2240 2240 2240	2/21/85 2/21/85 3.6 3.6 0.496 3.3 4.6 0.711
: MICROGR	8	2/15/85 260 9.9 9.9 9.9 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.926 0.926 0.926 0.971 0.971	1/14/85 240 8.0 8.0 8.0 8.0 8.0 7.5 0.81 0.81 0.857 0.857 0.857 0.857	149 1/28/85 6.8 6.8 6.8 6.8 0.723 3.3 3.3 0.983
UNITS	~	12/22/85 230 8.9 8.9 8.9 8.9 8.7 8.9 7.9 10.1 11.4 11.4 11.4 9.1 9.1 9.1 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83	$\begin{smallmatrix} & & & & & & & & & & & & & & & & & & &$	153 2/15/85 9.4 9.9 0.946 5.5 0.889
WIND DAIA	Q	12/11/85 30 1.3 0.250 0.250 0.834 0.834 0.811 0.811 0.655 0.55 0.55 0.55 0.093 0.55 0.093 0.55 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.003 0.002 0.00000000	0.966 0.966 0.966 0.823 0.865 0.885 0.8831 0.966 0.966 0.966 0.966 0.966 0.966 0.966 0.966 0.966 0.966 0.821 0.821 0.821 0.825 0.821 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.855 0	154 1/14/85 240 8.8 8.8 8.8 0.911 3.9 240 3.9 4.9 0.803
AYS WITH	ñ	12/24/85 2.5 2.5 2.5 2.5 2.5 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	12/23/85 141 190 190 190 190 10.5 0.932 10.4 10.4 10.4 10.5 0.989 0.989	158 3/27/85 220 10.5 10.9 0.99 5.7 0.993
AGE SUZ D	4	1/28/85 6.8 6.8 6.8 6.8 3.3 3.3 3.3 0.723 3.3 3.0 0.933 9.5 0.945 0.945	12/22/85 230 230 230 2210 2210 210 10.9 0.837 10.9 0.837 0.830 0.830 0.830 0.830	2/ 5/85 2/ 5/85 7.9 7.9 0.884 0.884 30 2.6 3.6 0.712
HUUK AVEK	ю	$\begin{array}{c} 1/31/85\\ 1/31/85\\ 7.1\\ 7.1\\ 7.1\\ 7.1\\ 7.1\\ 7.1\\ 7.5\\ 0.956\\ 0.956\\ 10.5\\ 10.5\\ 10.5\\ 10.5\\ 10.5\\ 10.5\\ 10.5\\ 0.974\\ 0.974\\ 0.974\\ 0.763$	12/144 1227/85 12220 1226 132.6 132.6 132.6 132.4 0.952 14.8 0.952 14.8 0.957 0.957 0.957 0.957	1/19/85 240 8.5 10.1 0.841 5.5 0.911 0.911
164ES1 24-	5	12/20/85 12/20/85 10 10 1.6 1.6 1.6 0.786 0.786 0.786 0.786 0.786 0.786 0.719 0.442 0.442	11/28/85 11/28/85 11/28/85 128/85 128/85 128/85 128/85 128/85 128/85 128/85 128/85 128/85 128/85 128/85 128/85 128/85 128/85 147 128/85 147 128/85	181 1/18/85 230 3.8 3.8 3.8 3.8 0.735 1.9 1.9 0.693
		2/ 5/85 40 7.9 7.9 7.9 8.9 8.9 8.9 7.12 60 7.12 60 7.12 60 7.12 60 0.712 60 0.712 60 0.712 60 0.712 60 0.73 8.9 0.8 8.9 0.8 8.9 0.8 8.9 0.8 8.9 0.8 8.9 0.8 8.9 0.8 8.9 0.8 8.9 0.8 8.9 0.8 8.9 0.8 8.9 0.8 8.9 0.7 7.9 8.9 0.8 8.9 0.7 7.9 8.9 0.8 8.9 0.8 8.9 0.8 8.9 0.7 7.9 8.9 0.7 7.9 8.9 0.7 7.9 8.9 0.7 7.9 8.9 0.7 7.9 8.9 0.7 7.12 7.85 0.7 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7	1/174 230 230 230 2500 2200 210 2513 0.633 0.932 0.932 0.891 0.891	2/ 4/85 2/ 4/85 280 7.4 8.2 0.907 320 4.3 4.3 0.665
- 7	RANK	S02 DATE DATE VEL (MPH) SPD (MPH) SP	S02 DIATE DIATE VEL (MPH) SPD (MPH) SPD (MPH) SPD (MPH) VEL (MPH) DIR (DEG) DIR (DEG) DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH)	S02 DATE DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH)
	TOWN-SITE (SAMPLES)	NEW BRITAIN-011 (360) METEOROLOGICAL SITE METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE METEOROLOGICAL SITE	NEW HAVEN-017 (341) METEOROLOGICAL SITE METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE METEOROLOGICAL SITE	NEW HAVEN-123 (357) METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY

TABLE 17, CONTINUED

(_____)

1085 TEN HIGHEST 20-HOUR AVERAGE SO2 DAVS WITH

-111-

10	30 5.2 5.8	200 260 7.9 142	88 23/85	190 7.0	190 190 7.4	2005	012 230 230	ر . ر 89	43 21/85	300	914 330 330	5:5 ر 10	3.0 5.2	310	7.0 724
•-		0 0	5 12/2	· ••••••		0	0	0.0	2/01 2]	0	00	с. С	5	0
6	130 2.5 4.6	0.551 280 7.9 0.699	12/ 9/85	270	0.848 330 2.8 3.7	0.759 270 5.6	0.945	6.3 0.904	44 3 / 27 / 85	10.5	0.961	5.8 0.993 220	8.5 8.5 066	240	9.1 0.798
Ø	300 6.0 7.3	0.813 300 9.5 0.945	94 12/24/85	2.5	0.789 190 5.6	0.296 140 2.0	0.398 190 5.6	6.8 0.833	45 1 / 22 / 85	250	0.994 270 8 5	10.8 0.789 270	15.3 15.7 0 078	280	22.9
7	260 9.5 10.4	0.920 260 8.2 8.5 0.971	94 2/ 5/85	40 7.9 8.9	0.884 30 3.6 3.6	0.712 60 11.5	0.979 90 8.0	0.138	46 2/5/85		0.884 30	3.6 0.712 60	11.5 11.8 0 070	06	5.9 0.138
9	250 6.3 7.5	0.844 270 6.9 8.1 0.857	102 1/19/85	240 8.5 10.1	0.841 5.0 5.5	0.911 260 9.6	0.864	0.726	46 2/16/85	250 10.7	0.930	7.2 0.892 240	11.5 11.8 0 077	9.3	9.6 0.968
5	220 8.5	0.966 240 7.2 9.1 0.798	103 1/31/85	30	0.220 5.10 5.3	0.966 40 10.5	0.974 60 4.0	0.763	46 2/14/85	240 12.4	0.945 210 9_0	0.910 240	12.0 12.2 0 080	250	12.4
4	60 11.5	0.9/9 90 5.9 0.138	110 1/14/85	240 8.0 8.8	0.911 240 3.9 4.9	0.803 250 6.3	0.844 270 6.9	0.857	49 1/14/85	240 8.0	0.911 240	4.9 0.803 250	6.3 7.5 0 800	270 6.9	8.1 0.857
3	260 9.6	0.864 5.3 7.3 0.726	116 12/20/85	10 10 10 10	0.780 300 1.6 4.2	0.384 30 5.2	0.900	0.442	49 1/28/85	300 9.8 9.8	0.723	$ \begin{array}{c} 3.3\\ 0.983\\ 300 \end{array} $	6.0 7.3 0 813	300	10.1 0.945
N	210 6.8 7.3	0.932 300 8.2 0.891	121 2/ 4/85	280 7.4	0.90/ 320 4.3 6.5	0.665	0.765 290 7.1	0.921	50 50 2723785	8.7	0.944 180 3.9	0.969 230	3.7 5.2 715	270	10.4 0.959
	250 5.1	0.92 290 7.1 7.8 0.921	122 1/28/85	300 9.3 9.3	0. /23 320 3.3 3.3	0.983 300 6.0 7.3	0.813 300 9.5	0.945	52 1724/85	250	0.947 220 4.7	6.0 0.786 250	11.2 11.4 0 087	290	12.1 0.982
RANK	DIR (DEG) VEL (MPH) SPD (MPH)	KALLO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	SO2 DATE	DIR (DEG) VEL (MPH) SPD (MPH)	KALLU DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH)	STD (MFH) RATIO DIR (DEG) VEL (MPH)	SPU (MPH) RATIO	SO2 DATF	VEL (MPH)	SFU (MFH) RATIO DIR (DEG) VFI (MPH)	SPD (MPH) RATIO DIR (DEG)	VEL (MPH) SPD (MPH) RATIO	DIR (DEG) VEL (MPH)	SPD (MPH) RATIO
TOWN-SITE (SAMPLES)	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER	NORWALK-013 (364)	METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER		PRESTON-002 (349)	METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADIFY	METEOROLOGICAL SITE	BR I DGE PORT	METEOROLOGICAL SITE WORCESTER	

1985 TEN HIGHEST 24-HOUR AVERAGE SO2 DAYS WITH WIND DATA

TABLE 17, CONTINUED

-112-

TABLE 17, CONTINUED

(____;

1985 TEN HIGHEST 24-HOUR AVERAGE SO2 DAYS WITH WIND DATA

¥	1 2	m	1	ц.	v	UNITS 7	: MICROGF 8	RAMS / CUB	10 10
E E E E E E E E E E E E E E E E E E E	23 104 10 0/85 1/28/85 1/14 16 5.8 8. .6 6.8 8. .9 0.723 0.91 .20 3.3 3. .20 3.3 3. .2 3.3 24 .2 0.983 0.84 .2 0.983 0.84 .2 0.945 0.84 .5 10.1 8. .5 10.1 8.	57 7002 57 7700 57 7700 57 7700 57 7700 57 7700 57 7700 57 7700 57 7700 57 7700 57 7700 57 7700 57 7700 57 7700 57 50 50 50 50 50 50 50 50 50 50 50 50 50	/21/85 160 160 170 170 170 190 190 190 190 190 190 190 190 190 19	94 1/31/85 7.1 7.1 7.1 7.1 7.5 0.976 10.5 10.5 10.5 10.5 10.5 0.974 60 4.60 4.60 0.763	12/23/85 190 6.4 7.0 190 6.9 190 9.55 0.972 0.972 0.972 0.989	12/ 9/85 270 270 2.70 2.88 2.88 2.88 0.759 0.759 0.759 0.945 0.945 0.904 0.904	2/ 4/85 280 280 7.4 7.4 0.90.2 6.5 0.66.5 0.66.5 7.1 0.755 0.721 0.921	12/ 5/85 12/ 5/85 0.80.6 3.11 0.90.5 0.75	$\begin{array}{c} 1/19/85\\ 240\\ 240\\ 240\\ 10.1\\ 10.1\\ 10.240\\ 5.50\\ 0.911\\ 10.266\\ 0.915\\ 0.915\\ 0.915\\ 0.915\\ 0.915\\ 0.915\\ 0.126\\ $
E (MPH) 2.131 (MPH) 2.131 (MP	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51-19 51	7 108 7 108 7 108 7 108 7 108 7 108 7 11 7 108 7 1	1/15/85 20.2 21.1 20.2 21.1 20.2 21.1 20.2 21.1 20.2 21.1 20.2 23.2 0.956 0.956 0.956 0.956	$\begin{array}{c} 1/19/85\\ 240\\ 240\\ 28.5\\ 260\\ 260\\ 260\\ 260\\ 260\\ 260\\ 260\\ 260$	2/14/85 2/14/85 240 210 210 210 210 210 210 210 210 210 2250 0.980 0.990 0.980 0.990 0.9000 0.9000 0.900000000	0.94 94 94 94 94 94 93 93 93 93 93 93 93 93 93 93	2/ 93 280 55 280 53 280 55 280 55 280 55 280 55 290 290 290 290 290 290 290 290 290 290	1/24/85 12:0 12:0 12:0 12:0 12:0 0.987 11:4 0.987 0.987 0.987 11:4 0.987 0.9970 0.9970 0.9970 0.9970 0.9970 0.9970 0.9970 0.99700 0.99700 0.99700 0.9970000000000
P = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =	5 12/ 9/85 1/18 270 23 44.9 33 5.8 55 330 20 330 20 2.8 1. 2.8 1. 2.8 1. 2.8 1. 2.8 20	91 88/85 30 335 000 000 000 000 000 000 000 000	91 190 2.5 3.2 190 1190 1.7	2/ 5/85 7.9 88 7.9 8.9 0.884 0.884 0.884 0.30 3.6 3.6	2/ 42/ 280 7.4 7.4 0.907 4.3 1.3 1.3 0.907 4.3	81 2/21/85 3.6 7.2 160 7.6 190 3.3 3.3 190 190	81 240 240 8.8 8.8 8.8 8.8 0.911 240 240 240 240 240 240 240 240 240 240	12/29/85 240 4.2 6.3 5.4 5.4 5.4	2/17/85 2/17/85 12:56 0.930 6:5 6:5 70520 70500 70000 70000 700000000

	WITH WIND DATA
0	DAYS
INUE	S02
I7, CONT	AVERAGE
TABLE	24-HOUR
	HIGHEST
	TEN
	1985

	}		- - - - - - - - - - - - - - - - - - -					UNITS	: MICROG	RAMS / C	UBIC METER
TOWN-SITE (SAMPLES)	RANK	-	N	ю	Ţ	ŋ	9	7	ø	6	10
METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	300 6.0 7.3 0.813 9.5 0.945 0.945	270 5.6 5.9 0.945 5.7 0.904	210 6.8 7.3 0.932 7.3 7.3 0.891	140 2.0 3.398 1.398 5.8 0.833	11.5 11.5 0.979 0.90 0.90 0.138	250 5.1 6.6 0.765 7.9 7.9 0.921	130 2.55 2.55 2.55 2.55 2.55 0.699 0.699	250 250 270 270 270 270 270 270 270 270 270 27	240 6.5 0.831 8.3 0.966	0.956 0.939 12.30 0.960 0.969 0.969

IV. OZONE

HEALTH EFFECTS

Ozone is a poisonous form of oxygen and the principal component of modern smog. Until recently, EPA called this type of pollution "photochemical oxidants." The name has been changed to ozone because ozone is the only oxidant actually measured and is the most plentiful.

Ozone and other oxidants -- including peroxyacetal nitrates (PAN), formaldehyde and peroxides -are not usually emitted into the air directly. They are formed by chemical reactions in the air from two other pollutants: hydrocarbons and nitrogen oxides. Energy from sunlight is needed for these chemical reactions. This accounts for the term photochemical smog and the daily variation in ozone levels, which increase during the day and decrease at night.

Ozone is a pungent gas with a faintly bluish color. It irritates the mucous membranes of the respiratory system, causing coughing, choking and impaired lung function. It aggravates chronic respiratory diseases like asthma and bronchitis and is believed capable of hastening the death, by pneumonia, of persons in already weakened health. PAN and the other oxidants that accompany ozone are powerful eye irritants.

NATIONAL AMBIENT AIR QUALITY STANDARD

On February 8, 1979 the EPA established a national ambient air quality standard (NAAQS) for ozone of 0.12 ppm for a one-hour average. Compliance with this standard is determined by summing the number of days at each monitoring site over a consecutive three-year period when the 1-hour standard is exceeded and then computing the average number of exceedances over this interval. If the resulting average value is less than or equal to 1.0 (that is, if the fourth highest daily value in a consecutive three-year period is less than or equal to 0.12 ppm) the ozone standard is considered attained at the site. This standard replaces the old photochemical oxidant Standard of 0.08 ppm. The definition of the pollutant was changed along with the numerical value of the standard, partly because the instruments used to measure photochemical oxidants in the air really measure only ozone. Ozone is one of a group of chemicals which are formed photochemically in the air and are called photochemical oxidants. In the past, the two terms have often been used interchangeably. This 1985 Air Quality Summary uses the term "ozone" in conjunction with the NAAQS to reflect the change in both the numerical value of the NAAQS and the definition of the pollutant.

The EPA defines the ozone standard to two decimal places. Therefore, the standard is considered exceeded when a level of 0.13 ppm is reached. However, since the DEP still measures ozone levels to three decimal places, any one-hour average ozone reading which equals or is greater than 0.125 ppm is considered an exceedance of the 0.12 ppm standard in Connecticut. This interpretation of the ozone standard differs from the one used by the DEP before 1982, when a one-hour ozone concentration of 0.121 ppm was considered an exceedance of the standard.

CONCLUSIONS

As in past years, Connecticut experienced very high concentrations of ozone in the summer months of 1985. Levels in excess of the one-hour NAAQS of 0.12 ppm were frequently recorded at each of the ten monitored sites. Two sites experienced levels greater than 0.20 ppm in 1985, as opposed to

five sites in 1984 and nine sites in 1983. Both the highest and the second highest one-hour concentrations decreased at all but the Middletown site in 1985, when compared to 1984.

The incidence of ozone levels in excess of the 1-hour 0.12 ppm standard was less in 1985 compared to 1984 (see Table 19). There was a total of 332 exceedances in 1984 and 152 in 1985 at those monitored sites that operated in both years. This represents a drop in the frequency of such exceedances from 9.2 per 1000 sampling hours in 1984 to 4.2 per 1000 sampling hours in 1985: a 54% decrease. If one eliminates the duplication that results when two or more sites experience an exceedance in the same hour, then the number of exceedances decreased from 146 to 72. On this basis, the state experienced a 50% decrease in the frequency of hourly exceedances of the standard.

The number of days on which the ozone monitors experienced ozone levels in excess of the 1-hour standard decreased from 128 in 1984 to 62 in 1985 at those monitoring sites that operated in both years (see Table 18). This represents a decrease in the frequency of such occurrences from 8.5 per 100 sampling days in 1984 to 4.1 per 100 sampling days in 1985: a 52% decrease. If the duplication that results when two or more sites experience an exceedance on the same day is eliminated, then the number of exceedances decreased from 34 to 21. On this basis, the state experienced a 38% drop in the frequency of daily exceedances of the standard.

The yearly changes in ozone concentrations can be attributed to year-to-year variations in regional weather conditions, especially wind direction, temperature and the amount of sunlight. A large portion of the peak ozone concentrations in Connecticut is caused by the transport of ozone and/or precursors (i.e., hydrocarbons and nitrogen oxides) from the New York City area and other points to the west and southwest. The percentage of southwest winds during the "ozone season" remained about the same from 1984 to 1985, as is shown by the wind roses from Newark (Figures 9 and 10). The wind roses from Bradley (Figures 7 and 8) are believed to be not as representative, since the airport is located in the Connecticut River Valley and the wind gets channeled up or down the valley. The magnitude of the high ozone levels can be partly associated with yearly variations in temperature. Ozone production is greatest at high temperatures and in strong sunlight. The summer season's daily high temperatures were lower in 1985 than in 1984. This is demonstrated by the number of days exceeding 90° F which decreased from nine in 1984 to three in 1985 at Sikorsky Airport in Bridgeport. At Bradley International Airport, the number of days exceeding 90°F decreased from twelve in 1984 to five in 1985. The percentage of possible sunshine at Bradley averaged 63% in 1984 and 59% in 1985 for the months June through September. The average for the summer months at Bradley is normally about 62%. This decrease in the percentage of possible sunshine and the resulting decrease in high temperature days are believed to be major factors in the decrease in the number of high ozone days in Connecticut in 1985.

METHOD OF MEASUREMENT

The DEP Air Monitoring Unit uses chemiluminescent instruments to measure and record instantaneous concentrations of ozone continuously by means of a fluorescent technique. Properly calibrated, these instruments are shown to be remarkably reliable and stable.

DISCUSSION OF DATA

Monitoring Network - In order to gather information which will further the understanding of ozone production and transport, and to provide real-time data for the daily Pollutant Standards Index, DEP operated a state-wide ozone monitoring network consisting of four types of sites in 1985 (see Figure 6):

Urban Advection from Southwest Suburban Rural Bridgeport, East Hartford, Middletown, New Haven
Danbury, Greenwich
Groton, Madison, Stratford
Stafford

Precision and Accuracy - The ozone monitors had a total of 147 precision checks during 1985. The resulting 95% probability limits were -6% to + 10%. Accuracy is determined by introducing a known amount of ozone into each of the monitors. Three different concentration levels are tested: low, medium, and high. The 95% probability limits, based on 10 audits conducted on the monitoring system, were: low, -6% to + 6%; medium, -9% to + 7%; and high, -9% to + 10%.

1-Hour Average - The 1-hour ozone standard was exceeded at all ten DEP monitoring sites in 1985. Moreover, the highest 1-hour average ozone concentrations were lower in 1985 than in 1984 at all the sites except Middletown 007. Danbury 123 had the largest decrease of 0.066 ppm.

The number of days on which the 1-hour standard was exceeded at each site during the summertime "ozone season" is presented in Table 18. The number of hours the ozone standard was exceeded is presented in Table 19 for each site. Table 20 shows the year's high and second high concentrations at each site.

10 High Days with Wind Data - Table 21 lists the ten highest 1-hour ozone averages and their dates of occurrence for each ozone site in 1985. The wind data associated with these high readings are also presented. (See the discussion of Table 11 in the TSP section for a description of the origin and use of these wind data.)

A majority (i.e., 72%) of the high ozone levels occurred on days with southwesterly winds. This is due to the special features of a southwest wind blowing over Connecticut. The first aspect of a southwest wind is that, during the summer, it usually accompanies high temperatures and bright sunshine, which are important to the production of ozone. The second is that it will transport precursor emissions from New York City and other urban areas to the southwest of Connecticut. It is the combination of these factors that often produces unhealthful ozone levels in Connecticut.

NUMBER OF DAYS WHEN THE 1-HOUR OZONE STANDARD WAS EXCEEDED IN 1985

SITE	<u>APRIL</u>	MAY	JUNE	JULY	<u>AUG</u> .	<u>SEPT</u> .	TOTAL	TOTAL FOR LAST YEAR
Bridgeport-123	0	0	0	2	2	0	4	12
Danbury-123	0	1	0	2	1	0	4	13
E. Hartford-003	0	2	0	0	1	0	3	7
Greenwich-017	0	2	1	4	5	1	13	17
Madison-002	0	0	1	4	2	0	7	18
Middletown-007	0	3	1	3	2	1	10	14
New Haven-123	0	0	1	3	2	0	6	12
Stafford-007	0	3	0	0	1	0	4	7
Stratford-007	0	1	2	5	3	2	<u>13</u>	<u>28</u>
				тс	DTAL SIT	E DAYS	.62 64	L 128
			TO		DIVIDUA	L DAYS	21	34

NUMBER OF EXCEEDANCES OF THE 1-HOUR OZONE STANDARD IN 1985

SITE	<u>APRIL</u>	MAY	JUNE	JULY	<u>AUG</u> .	<u>SEPT</u> .	TOTAL	TOTAL FOR LAST YEAR
Bridgeport-123	0	0	0	3	7	0	10	33
Danbury-123	0	1	0	4	1	0	6	26
E. Hartford-003	0	3	0	0	1	0	4	9
Greenwich-017	0	3	1	6	14	1	25	49
Madison-002	0	0	1	10	10	0	21	53
Middletown-007	0	4	1	5	11	1	22	29
New Haven-123	0	0	2	5	7	0	14	29
Stafford-00 χ^1	0	7	0	0	4	0	11	15
Stratford-007	0	1	5	18	12	3	<u>39</u>	<u>89</u>
				тот	AL SITE	HOURS	152	332
			тот	ALINDI	VIDUAL	HOURS	72	146

1985 MAXIMUM 1-HOUR OZONE CONCENTRATIONS

SECONDARY STANDARD

* Date is month/day/ending hour of occurrence.

N.B. When a listed concentration occurs more than once at a site, the earliest date is given.

(11.0 230 11.0 230 11.4 2968 5.6 5.0 3.8 3.8 3.8 3.8 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
0 0
0
N 0 M
0.92
0.14 8/15 23 11.
0 96 7 2 7 2 90
0.90 8.8 8.8
0 0
0.12

-122-

(

	198	5 TEN HIG	GHEST 1-HO	UR AVERAC	SE OZONE D	AYS WITH	WIND DATA		UNITS :	PARTS PER	MITLION
TOWN/SITE (SAMPLES)	RANK	F .	N	m	4	ک	9	7	œ	6	10
METEOROLOGICAL SITE BRIDGEPORT	DIR (DEG) VEL (MPH) SPD (MPH)	220 8.1 8.5	230 5.9 7.6	220 7.1 7.3	130 5.6 5.6	200 7.4 8.1	200 6.6 7.3	230 8.6 9.1	220 6.8 7.3	230 11.3	120 1-50 1-20
METEOROLOGICAL SITE WORCESTER	RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	0.950 250 6.8 8.3 0.817	0.772 220 8.4 9.5 0.881	0.965 250 9.6 10.6 0.904	0.824 220 5.3 0.857	0.916 220 8.4 9.5 0.886	0.896 5.7 5.7 0.879	0.948 240 9.1 9.3 0.977	0.922 260 8.6 9.5 0.907	0.968 230 21.0 0.990	0.571 230 3.6 0.644
GREENWICH-017 (3778)	OZONE	0.171	0.168	0.148	0.143	0.135	0.133	0.132	0.129	0.129	0.127
METEOROLOGICAL SITE NEWARK	DIR (DEG) VEL (MPH) SPD (MPH)	8/17/85 230 11.0 4.11	8/14/8 230 6.1 0.5	7/30/85 290 6.0 0.0	220 220 8.3 10.1	8/ 5/85 190 5.8	5/26/85 270 3.3	7/ 9/85 170 2.6	7/19/85 210 9.5	9/20/85 220 8.2	6/ 9/85 200 5.6
METEOROLOGICAL SITE BRADLEY	RATIO DIR (DEG) VEL (MPH)	0.968 210 5.9	0.645 210 1.7	0.609	0.821 220 7.3	0.759 180 4.4	0.405	0.395 190 3.8	0.955 6.20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	0.981 200 3.80	0.841 190 4.0
METEOROLOGICAL SITE BRIDGEPORT	RATIO DIR (DEG) VEL (MPH)	0.907 220 8.1	0.367 220 6.8	0.723 260 6.3	0.909 230 15.90	0.984 200 6.6	0.281 160 3.1	0.759 130 1.6	0.906 230 8.6	0.758 220 6.5	4.7 0.836 160 3.0
METEOROLOGICAL SITE WORCESTER	SED (MFR) RATIO DIR (DEG) VEL (MPH) SED (MPH)	0.950 250 6.8	0.922 260 8.6	0.792 280 5.0	0.772 220 8.4	0.896 230 5.7	0.434 40 1.4	0.824 220 5.3	9.1 0.948 9.1	0.964 8.0 8.0 8.0	0.548 220 7.2
	RATIO	0.817	706.0	0.674	0.881	0.879	0.165	0.857	9.3 0.977	8.2 0.977	9.5 0.762
GROTON-008 (3982)	OZONE	0.184 8/11/05	0.152	0.150 7/20/0E	0.141	0.137	0.136	0.135	0.133	0.128	0.124
METEOROLOGICAL SITE NEWARK	VEL (MPH)	0/ -4/0) 230 6.1	290 290 6.0	9.1 9.1	0/ 320 320 3.1	170 170 2.6	210 210 9.5	240 240 8.4	7/10/85 230 8.7	9/19/85 210 4.5	9/20/85 220 8.2
METEOROLOGICAL SITE	RATIO DIR (DEG)	0.645 210	0.609 290	0.933 290	$ \begin{array}{c} 8.2 \\ 0.373 \\ 340 \end{array} $	0.395 190	0.955 220	8.9 0.939 210	9.8 0.885 200	5.0 0.901 250	8.3 0.981 200
BRADLEY	VEL (MPH) SPD (MPH)	1.7 4.7	4 9	7.2	1.8	5.08	6.9 7.6	3.8 4.9	7.9	0.00	5.08 0.80
METEOROLOGICAL SITE BRIDGEPORT	RATIO DIR (DEG) VEL (MPH)	0.367 220 6.8	0.723 260 6.3	0.761 230 7.8	0.457 210 5.7	0.759 130 4.6	0.906 230 8.6	0.769 240 7.7	0.821 210 5.6	0.419 220 4.5	0.758 220 6.5
	SPD (MPH) RATIO	7.3 0.922	7.9 0.792	7.9 0.982	6.3 0.907	5.6 0.824	$9.1 \\ 0.948$	7.9 0.978	5.9 0.956	4.6 0 981	6.8 0 061
METEOROLOGICAL SITE WORCESTER	DIR (DEG) VEL (MPH)	260 8.6	280	270 11.6	270	5.3	240 9.1	250 8.5	220	270 6.9	240 8.0
	SPD (MPH) RATIO	$9.5 \\ 0.907$	7.5 0.674	11.8 0.983	11.6 0.950	6.2 0.857	$9.3 \\ 0.977$	8.8 0.966	7.8 0.989	7.5	8.2 0.977

TABLE 21, CONTINUED

(

CT 1-HOUE AVEDACE ATOME

F	ŗ	
	5	
	J	
	-	

1985 TEN HIGHEST 1-HOUR AVERAGE OZONE DAYS WITH WIND DATA

			-						UNITS :	PARTS PER	MELLION	
TOWN/SITE (SAMPLES)	RANK	٣	2	ę	4	Ĵ	9	7	ω	6	10	
MADISON-002 (3883) METEOROLOGICAL S METEOROLOGICAL S BRA BRA BRIDGE BRIDGE BRIDGE BRIDGE BRIDGE BRIDGE	ITE DIR (DEC MARK VEL (MP) MARK VEL (MP) RATIO RATIO ITE DIR (DEC PORT VEL (MP) RATIO ITE DIR (DEC PORT VEL (MP) RATIO ITE DIR (DEC RATIO ITE DIR (DEC RATIO RATIO RATIO RATIO RATIO RATIO RATIO RATIO	$\begin{array}{c} 0.204\\ 8/15/85\\ 11.0\\ 11.4\\ 1$	0.149 8/14/85 230 6.1 6.1 7.3 0.945 7.3 0.945 7.3 0.922 0.922 0.922 0.922 0.905 0.905	0.143 219/85 219/85 219/85 219/85 219/85 219/1 219/1 0.913 0.913 0.973	0.135 290 290 6.0 6.0 6.0 4.4 4.4 7.23 0.774 0.774 0.775 0.775 0.777 0.7723 0.777 0.7723 0.777 0.7723 0.7724 0.7723 0.7724 0.7724 0.7724 0.7724 0.7724 0.7724 0.7724 0.7724 0.7724 0.7774 0.7724 0.7724 0.7724 0.77740 0.77740 0.77740 0.77740 0.77740 0.77740 0.77740 0.77740000000000	0.133 7/10/85 230 8.7 8.7 8.7 9.8 5.9 0.821 5.9 0.821 0.956 0.967 0.9666 0.966 0.966 0.966 0.966 0.966 0.966 0.966 0.966 0.9666 0.966 0.96	$\begin{array}{c} 0.125\\ 6/378\\ 3.20\\ 3.20\\ 3.1\\ 3.1\\ 3.1\\ 3.1\\ 3.1\\ 3.1\\ 3.2\\ 0.373\\ 3.1\\ 1.8\\ 1.8\\ 1.8\\ 1.8\\ 0.457\\ 5.7\\ 0.457\\ 0.907\\ 1.1\\ 1.1\\ 1.1\\ 1.1\\ 1.1\\ 0.950$	0.125 7/20/85 250 9.1 9.1 9.1 7.2 0.933 7.2 0.933 7.5 7.5 7.5 7.6 7.6 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	0.124 6/22/85 190 8.5 0.942 150 0.989 150 0.554 0.554 0.555 0.857 0.857 0.857	$\begin{array}{c} 0.115 \\ 6/2/85 \\ 230 \\ 6.9 \\ 6.9 \\ 6.9 \\ 6.9 \\ 7.0 \\ $	0.114 7/9/85 2.6 0.395 0.759 0.759 0.759 0.759 0.759 0.759 0.857 0.857 0.857 0.857	
MIDDLETOWN-007 (4071) METEOROLOGICAL 9 METEOROLOGICAL 9 BR/ BR/ BR/ BR/ BR/ BR/ BR/ BR/ BR/ BR/	OZONE ITE DIR (DEC WARK VEL (MPI SPD (MPI RATIO DLEY VEL (MPI RATIO ITE DIR (DEC PORT VEL (MPI RATIO ITE DIR (DEC STER VEL (MPI RATIO SPD (MPI RATIO STER VEL (MPI RATIO	0.219 8/15/85 8/15/85 1) 11.0 11.4 0.968 1) 0.968 1.1 0.968 1) 0.968 1.1 0.950 10.950 10.950 10.813 0.813 0.813	0.153 8/14/85 230 6.1 0.645 1.7 1.7 1.7 1.7 220 250 0.922 260 8.6 8.6 8.6 0.922 0.922 0.922 0.922 0.922 0.922 0.922	0.152 7/19/85 9.5 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.918 0.913 0.913 0.973	0.137 227/85 227/85 8.3 8.3 7.3 7.3 0.821 7.3 7.3 0.821 7.3 0.821 7.2 0.821 0.772 0.772 0.772 0.772 0.831 0.881	0.134 5/13/85 230 10.7 10.7 11.8 0.909 7.3 7.3 7.3 0.907 0.807 7.4 0.807 7.4 0.916 8.4 0.916 0.886 0.886	0.134 9/20/85 8.2 8.2 8.3 3.0 220 8.3 3.0 5.0 5.0 5.5 6.5 6.5 6.5 6.5 6.5 6.5 0.964 8.0 0.964 0.977 0.977	0.128 6/230 5.9 6.9 6.9 5.9 7.4 7.4 7.4 7.4 7.4 0.832 0.832 0.832 0.832 0.832 0.892 0.892 0.892 0.892 0.892 0.892 0.892 0.892 0.892 0.892 0.892 0.892 0.892 0.892 0.947	$\begin{array}{c} 0.127\\ 5/11/85\\ 230\\ 230\\ 10.9\\ 11.2\\ 5.3\\ 5.3\\ 5.3\\ 220\\ 5.3\\ 7.1\\ 7.1\\ 7.1\\ 7.1\\ 7.1\\ 7.1\\ 7.1\\ 7.1$	0.127 230 8.7 8.7 8.7 8.7 5.6 7.7 0.956 0.956 0.956 0.956 0.956 0.958 0.958 0.958	0.127 7/9/85 2.6 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.359 0.759 0.852 0.852 0.852	
NEW HAVEN-123 (4088) METEOROLOGICAL 3 NI METEOROLOGICAL 3 BR/	OZONE DATE DATE DATE DATE DATE MPI MPI MPI MPI MPI MPI MPI MPI MPI MPI	0.181 8/15/85 11.12 11.4 11.4 11.4 11.4 0.968 5.9 11.4 0.968 0.968 0.968	0.149 7/19/85 210 9.5 0.955 220 220 6.9 0.906	0.139 8/14/85 2.30 6.1 9.5 0.645 2.10 2.10 1.7 0.367 0.367	$\begin{array}{c} 0.138 \\ 6/22/85 \\ 190 \\ 8.5 \\ 9.1 \\ 0.942 \\ 5.1 \\ 5.1 \\ 0.989 \\ 0.989 \end{array}$	0.137 7/9/85 110 2.6 6.6 0.395 190 3.8 3.8 0.759	0.132 7/10/85 8.7 9.8 0.885 5.9 0.821 0.821	0.122 9/20/85 8.2 8.3 0.981 3.8 3.8 3.8 0.758 0.758	0.120 8/10/85 160 3.7 7.2 0.514 180 2.7 6.0 0.448	0,117 6/320 321 3.1 8.2 0.373 340 1.8 4.0 0.457	0.115 6/2/85 6/2/85 6.30 8.6 798 7.9 0.798 7.9 0.832 0.832	
				(•		

	MILLION	10	230 7.4 8.2 8.2 240 10.2 10.2 10.2 0.947	0.104 9/20/85 220 8.2 8.3 3.8 3.8 3.8 3.8 0.758 0.981 0.758 0.981 0.950 0.977 0.977	0.131 6/22/85 190 8.5 9.1 190 190 190 190 190 190 190 190 190 19
	PARTS PER	6	210 5.7 6.3 0.907 270 11.1 11.1 0.950	$\begin{array}{c} 0.106\\ 7/ 9/85\\ 2.6\\ 0.395\\ 170\\ 3.8\\ 3.8\\ 3.8\\ 1.90\\ 1.30\\ 5.6\\ 0.759\\ 0.759\\ 0.759\\ 0.857\\ $	0.138 9/20/85 220 8.2 8.2 200 8.2 200 220 220 6.5 6.5 6.5 6.5 0.964 0.964 0.977
	UNITS :	8	150 2.6 0.571 2.30 2.30 5.6 0.644	0.114 210/85 210/85 210/85 220 2220 2220 2220 2220 2220 2240 2240	0.145 6/3785 320 321 321 321 321 320 340 340 11.8 0.450 0.457 5.7 5.7 5.7 0.457 0.957 0.950
		7	220 6.5 6.8 740 240 8.0 8.0 8.0 8.0 8.0	0.117 5/20/85 220 13.6 13.6 10.2 200 200 200 86.6 0.856 0.856 0.856 0.856 0.958 0.966 0.966	0.147 7/9/85 2.6 2.6 3.95 170 3.8 3.8 3.8 130 159 0.759 0.759 0.759 0.824 0.824 0.824 0.824 0.824
	WIND DATA	Q	210 5.6 5.9 220 220 7.7 7.7 0.989	$\begin{array}{c} 0.124 \\ 6/2/85 \\ 230 \\ 6.9 \\ 6.9 \\ 6.9 \\ 6.9 \\ 6.9 \\ 7.0 \\ $	0.153 250 250 9.1 250 9.1 250 255 255 255 255 255 255 256 255 256 256
	AYS WITH	5	130 5.6 220 5.3 5.3 5.3 0.857	0.124 5/10/85 240 240 240 14.0 14.0 240 210 230 230 230 230 230 230 230 230 230 23	0.154 7/19/85 210 9.5 9.5 6.9 7.6 0.955 6.9 7.6 0.955 0.955 0.955 0.955 0.955 0.955 0.957 0.977
ONT I NUED	E OZONE D	11	150 4.52 2564 2230 5.55 0.857	0.139 5/13/85 230 230 10.7 11.8 11.8 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.4 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.3 0.916 8.1 0.886 0.886	0.164 290 6.0 6.0 6.0 6.0 6.0 6.0 0.723 6.0 0.723 0.723 0.723 0.723 0.723 0.723 0.723 0.723 0.723 0.723 0.723 0.723 0.723 0.723 0.723 0.723 0.723 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.777
BLE 21, C	UR AVERAG	ŝ	220 6.3 0.922 260 8.6 9.5 0.907	$\begin{array}{c} 0.142 \\ 5/11/85 \\ 230 \\ 10.9 \\ 11.2 \\ 11.2 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 7.$	0.168 7/10/85 8.7 8.7 8.7 9.8 7.2 0.885 7.2 0.885 7.2 0.956 0.956 0.956 0.956 0.989
TA	HEST 1-HO	2	230 8.6 9.1 0.948 240 9.1 9.1 0.977	0.158 5/27/85 220 8.3 8.3 10.1 220 220 230 230 230 230 220 8.4 0.772 220 8.4 0.772 0.831	0.168 8/14/85 230 6.1 6.1 6.1 1.7 1.7 1.7 1.7 1.7 1.7 1.7 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.322 0.922 0.922 0.922 0.907 0.907
	5 TEN HIG	-	220 8.1 8.1 0.955 250 6.8 0.813	0.15/85 8/15/85 220 11.4 0.968 5.5 0.955 0.955 0.955 0.955 0.855 0.855 0.855 0.817 0.817	0.189 0.189 0.15785 0.968 0.968 0.968 0.968 0.968 0.950 0.950 0.813 0.813
	198	RANK	DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) SATIO	OZONE DATE DATE DIATE DIATE MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH) CEG DIATO DIATO DIATO SPD (MPH) RATIO DIATO CEG NH) SPD (MPH) SPD (MPH) CEG NH) SPD (MPH) SPD	OZONE DATE DATE DATE DATE DATE NEC MPH SPD (MPH SPD (MPH
		TOWN/SITE (SAMPLES)	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	STAFFORD-001 (4110) METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE METEOROLOGICAL SITE METEOROLOGICAL SITE	STRATFORD-007 (3969) METEOROLOGICAL SITE METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE METEOROLOGICAL SITE METEOROLOGICAL SITE

(____)

-125-

(------

WIND ROSE FOR APRIL - SEPTEMBER 1984 BRADLEY INTERNATIONAL AIRPORT WINDSOR LOCKS, CONNECTICUT

WIND ROSE FOR APRIL - SEPTEMBER 1985 BRADLEY INTERNATIONAL AIRPORT WINDSOR LOCKS, CONNECTICUT

(

WIND ROSE FOR APRIL - SEPTEMBER 1985 NEWARK INTERNATIONAL AIRPORT NEWARK, NEW JERSEY

V. NITROGEN DIOXIDE

HEALTH EFFECTS

Nitrogen dioxide (NO₂) is a toxic gas with a characteristic pungent odor and a reddish-orangebrown color. It is highly oxidizing and extremely corrosive.

Nitrogen dioxide is not emitted into the atmosphere to any great extent by man-made sources. However, its presence in the atmosphere is accounted for by the photochemical oxidation of nitric oxide (NO), large amounts of which are emitted into the air by high temperature combustion processes. Industrial furnaces, power plants and motor vehicles are the primary sources of nitric oxide emissions.

Exposure to NO_2 is believed to increase the risks of acute respiratory disease and susceptibility to chronic respiratory infection. NO_2 also contributes to heart, lung, liver and kidney damage. At high concentrations, this pollutant can be fatal. At lower levels of 25 to 100 parts per million, it can cause acute bronchitis and pneumonia. Occasional exposure to low levels of NO_2 can irritate the eyes and skin.

Other effects of nitrogen dioxide are its toxicity to vegetation and its ability to combine with water vapor to form nitric acid. Furthermore, NO₂ is an essential ingredient, along with hydrocarbons, in the formation of ozone.

CONCLUSIONS

Nitrogen dioxide (NO₂) concentrations at all monitoring sites did not violate the NAAQS for NO₂ in 1985. The annual arithmetic mean NO₂ concentration at each site was well below the federal standard of 100 μ g/m³.

SAMPLE COLLECTION AND ANALYSIS

The DEP Air Monitoring Unit used continuous electronic analyzers employing the chemiluminescent reference method to continuously measure NO₂ levels. This was the fourth year this type of analyzer was used to measure NO₂ levels.

DISCUSSION OF DATA

Monitoring Network - There were three nitrogen dioxide monitoring sites in 1985 (see Figure 11). The sites -- Bridgeport 123, East Hartford 003 and New Haven 123 -- were located in three urban areas in order to obtain data alongside ozone monitors.

Precision and Accuracy - Forty-two precision checks were made on the NO₂ monitors in 1985, yielding 95% probability limits ranging from -10% to + 10%. Accuracy is determined by introducing a known amount of NO₂ into each of the monitors. Five audits for accuracy were conducted on the monitoring network in 1985. Four different concentration levels were tested on each monitor: low, low/medium, medium/high and high. The 95% probability limits for the low level test ranged from -15% to + 12%; those for the low/medium level test ranged from the high level test ranged from -8% to + 2%.

Historical Data - The DEP's historical file of annual average nitrogen dioxide data from gas bubblers for 1973-1980 is available in the 1980 Air Quality Summary. Data from continuous electronic analyzers for the years 1981 and 1982 can be found in the 1983 Air Quality Summary. Data for 1983-1985 can be found in Table 22 below.

Annual Averages - The annual average NO₂ standard of 100 μ g/m³ was not exceeded in 1985 at any site in Connecticut (see Table 22). In 1985, all three sites had sufficient data to compute valid arithmetic means. This permits comparisons with the 1983 and 1984 annual averages. The arithmetic mean NO₂ concentration at each site decreased between 1983 and 1985.

Statistical Projections - The format of Table 22 is the same as that used to present the TSP and sulfur dioxide data. However, Table 22 gives the annual arithmetic mean of the hourly NO_2 concentrations in order to allow direct comparison to the annual NO_2 standard. The 95% confidence limits about the arithmetic mean for each site demonstrate that it is unlikely that any site exceeded the primary annual standard of $100 \,\mu\text{g/m}^3$ in 1985.

10-High Days with Wind Data - Table 23 presents for each site the ten days in 1985 when the highest hourly NO₂ readings occurred, along with the associated wind conditions for each day. (See the discussion of Table 11 in the TSP section for a description of the original use of the wind data.)

According to National Weather Service local climatological data recorded at Bradley Airport, 16 of the 23 days listed in the table had more then 50% of the possible sunshine. Of the seven remaining days, three followed days when the percent of possible sunshine exceeded 72%. This is interpreted to confirm the importance of photochemical oxidation in the formation of NO_2 .

Six of the high NO_2 days occurred at 2 or more of the sites, and four of these days had persistent winds out of the southwest quadrant. Persistent southwest winds were also characteristic of 63% of the days listed in Table 23.

Given the above observations and the fact that two of the three NO_2 sites are located on the coast of Connecticut, it appears that a combination of pollutant transport and a high percent of possible sunshine (both of which occur on days with persistent southwest winds) tend to produce high NO_2 levels in Connecticut.

(

<u>(____</u>.

1983 - 1985 NITROGEN DIOXIDE ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

<u>Town Name</u>	Site	Year	Samples	Arithmetic <u>Mean</u>	95-Perce <u>Lower</u>	nt-Limits <u>Upper</u>	Standard Deviation
Bridgeport	123	1983	8328	56.4	56.2	56.6	34.7
Bridgeport	123	1984	8689	51.5	51.4	51.6	29.7
Bridgeport	123	1985	8602	50.3	50.2	50.4	26.8
East Hartford	003	1983	8576	43.5	43.4	43.6	31.3
East Hartford	003	1984	8172	39.8	39.6	40.0	26.2
East Hartford	003	1985	8461	39.6	39.5	39.7	23.3
New Haven	123	1983	7971	62.8	62.7	62.9	13.5
New Haven	123	1984	8530	58.2	58.1	58.3	29.0
New Haven	123	1985	8566	57.6	57.5	57.7	26.6
							•

N.B. The arithmetic mean and standard deviation have units of $\mu g/m^3$.

MITLION	10	0.083 8/10/85 3.7 3.7 0.514 0.514 0.514 0.514 0.571 0.571 0.571 0.571 0.544 0.516 0.516 0.576 0.576 0.514	0.065 9/20/85 8.3 0.981 3.08 3.00 5.5 0.981 0.964 8.0 8.0 0.977 0.977	0.084 3/28/85 11.9 0.942 250 250 11.2 0.784
UNITS : PARTS PER	6	0.084 +4/21/85 +160 +1.4 +170 +170 5.6 0.797 90 5.8 0.355 1.9 0.365 1.9 0.220 0.220	$ \begin{array}{c} $	0.087 12/24/85 2.5 3.2 0.789 1.6 5.6 0.296
	ω	0.084 3/27/85 220 10.5 10.9 5.8 220 220 220 220 220 220 220 220 220 22	$\begin{array}{c} 0.066\\ 10/9/85\\ 230\\ 230\\ 10.8\\ 0.976\\ 0.962\\ 0.952\\ 0.952\\ 12.8\\ 0.986\\ 0.986\\ 0.952\\ 0.986\\$	0.088 4/19/85 260 8.4 11.4 0.735 340 340 340 4.5 0.717
1985 TEN HIGHEST 1-HOUR AVERAGE NO2 DAYS WITH WIND DATA	2	0.085 8/15/85 230 230 5.50 5.59 0.968 5.50 0.955 0.955 0.955 0.955 0.955 0.811 0.813	0.066 3/19/85 2.20 11.2 0.613 2.20 11.2 2.20 11.2 2.20 2.20 2.250 2.20 2.20 0.745 2.20 0.745 2.20 0.745 2.20 0.745 2.20 0.745 2.20 0.745 2.20 0.766 0.766 0.717 2.20 0.716 0.666 0.717 2.20 0.666 0.717 2.20 0.666 0.666 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.770 0.673 0.770 0.673 0.770 0.673 0.770 0.673 0.770 0.770 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.750000000000	0.088 4/16/85 7.2 0.686 4.7 0.686 4.7 0.780
	9	0.085 240 13.0 13.7 0.955 5.30 2.40 2.53 0.978 0.978 0.978 0.978 0.955 0.978 0.955 0.955 0.955 0.955 0.955	0.23/85 5.9 0.613 0.613 0.480 0.480 0.480 0.480 0.480 0.480 0.480 5.24 0.866 70 1.3 0.247 0.247	0.088 7/13/85 4.2 0.652 0.652 0.652 0.652 0.506 0.506
	ŝ	$ \begin{array}{c} & 0.087 \\ & 4/25/85 \\ & 5.4 \\ & 5.4 \\ & 5.604 \\ & 230 \\ & 230 \\ & 230 \\ & 230 \\ & 230 \\ & 250 \\ & 250 \\ & 11.0 \\ & 11.0 \\ & 0.955 \\$	0.069 12/24/85 124/85 2.55 0.789 1.40 0.7296 1.40 0.7296 1.40 0.7398 0.3398 0.3388 0.8388 0.838 0.83888 0.8388 0.8388 0.8388 0.8388 0.8388 0.83888 0.8388 0.8388 0.8388 0.83888 0.8388 0.8388 0.83888 0.83888 0.8388 0.8388 0.83888 0.83888 0.83888 0.83888 0.83888 0.83888 0.83888 0.83888 0.83888 0.83888 0.83888 0.83888 0.83888 0.83888 0.83888 0.838888 0.83888 0.8388888 0.83888 0.83888 0.8388888 0.83888 0.8388888 0.83888 0.8388888 0.83888 0.838888 0.838888 0.838888 0.8388888 0.838888 0.83888888 0.8388888888 0.8388888888 0.838888888 0.838888888888	0.092 9/20/85 8.2 8.3 0.981 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.0
	ħ	0.088 3.22 3.25 0.335 0.335 0.335 0.335 0.335 0.341 0.280 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.345 0.250 0.345 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.275 0.250 0.2750 0.2750 0.2750 0.2750 0.2750 0.2	0.070 3/11/85 4.2 1.1280 1.1280 1.128 0.655 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.	0.096 9/21/85 8.4 8.9 0.939 0.939 0.769 0.769
	£	0.090 6/18/85 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 0.989 0.989 0.989 0.946 0.946 0.946 0.950 0.950	$\begin{array}{c} 0.070\\ 2/5/85\\ 7.9\\ 7.9\\ 8.9\\ 3.6\\ 3.6\\ 3.6\\ 3.6\\ 11.5\\ 11.5\\ 11.5\\ 0.712\\ 3.6\\ 0.8\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.73\\ 0.73\\ 0.73\\ 0.138\\ 0.13$	0.102 9/19/85 4.5 0.50 0.2901 250 250 0.419
	N	$\begin{array}{c} 0.097\\ 9/2/85\\ 230\\ 230\\ 6.4\\ 6.4\\ 6.4\\ 7.9\\ 7.9\\ 7.1\\ 7.1\\ 7.1\\ 7.1\\ 7.1\\ 7.1\\ 7.1\\ 7.1$	0.074 3/27/85 220 10.9 10.9 10.9 10.9 220 0.966 0.993 0.966 0.966 0.993 0.966 0.993 0.966 0.993 0.966 0.993 0.966 0.966 0.793 0.793 0.793 0.740 0.993 0.966 0.740 0.993 0.966 0.740 0.993 0.996 0.993 0.996 0.993 0.996 0.993 0.996 0.993 0.993 0.996 0.993 0.996 0.993 0.996 0.993 0.9966 0.996 0.996 0.996 0.996 0.996 0.996 0.9966 0.996 0.996 0.996 0.90	0.104 5/1/85 300 3.2 9.6 0.335 5.4 7.5 0.717
	-	0.104 4/16/85 300 7.2 10.5 0.686 4.7 4.7 7.1 11.1 0.639 2200 2270 270 270 270 270 270 270 270 1111 1111	0.080 0.080 1.10 1.50 0.981 0	$\begin{array}{c} 0.112\\ 3/27/85\\ 10.5\\ 10.9\\ 0.961\\ 5.8\\ 5.8\\ 0.993\\ 0.993\end{array}$
	RANK	NO2 DATE DATE VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (M	NOZ DATE DATE VEL (DEG) VEL (MPH) SPD (MPH) SP	NO2 DATE DATE DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH)
	TOWN-SITE (SAMPLES)	BRIDGE PORT-123 (8602) METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE METEOROLOGICAL SITE	EAST HARTFORD-003 (8461) METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE METEOROLOGICAL SITE	NEW HAVEN-123 (8566) METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY

ĺ

TABLE 23

-134-
PER MILLION	10	230 8.8 9.5 0.929 14.6 174.6 0.959
PARTS 1	6	140 2.0 3.398 190 5.6 8.3 0.833
UNITS	60	180 3.1 7.2 7.2 3.1 3.0 300 15.6 0.534
	7	270 7.1 11.1 0.639 280 280 8.0 8.0 0.726
	9	200 3.7 5.3 0.698 6.0 6.3 0.942
	5	220 6.5 6.5 6.8 0.964 8.0 8.0 8.0 8.2 0.977
AGE NUZ U	4	240 7.7 7.9 7.9 7.9 7.9 0.978 8.5 8.5 0.966
HOUK AVEK	,Ω	0.981 0.981 0.917 0.917 0.917
II GHEST 1-	2	280 2.9 8.6 0.341 9.5 11.9 0.793
35 TEN H	-	220 8.5 8.5 8.5 0.966 7.2 9.1 0.798
198	RANK	DIR (DEG) r Vel (MPH) spd (MPH) RATIO DIR (DEG) R Vel (MPH) SPD (MPH) RATIO
	TOWN-SITE (SAMPLES)	METEOROLOGICAL SITE BRIDGEPOR' METEOROLOGICAL SITE WORCESTEI

TABLE 23, CONTINUED

ĺ

1985 TEN HIGHEST 1-HOUR AVERAGE NO2 DAYS WITH WIND DATA

.

VI. CARBON MONOXIDE

HEALTH EFFECTS

Carbon monoxide (CO) is a colorless, odorless, poison gas formed when carbon-containing fuel is not burned completely. It is by far the most plentiful air pollutant. Fortunately, this deadly gas does not persist in the atmosphere. It is apparently converted by natural processes to harmless carbon dioxide in ways not yet understood, and this is done quickly enough to prevent any general buildup. However, CO can reach dangerous levels in local areas, such as city-street canyons with heavy auto traffic and little wind.

Clinical experience with accidental CO poisoning has shown clearly how it affects the body. When the gas is breathed, CO replaces oxygen in the red blood cells, reducing the amount of oxygen that can reach the body cells and maintain life. Lack of oxygen affects the brain, and the first symptoms are impaired perception and thinking. Reflexes are slowed, judgement weakened, and drowsiness ensues. An auto driver breathing high levels of CO is more likely to have an accident; an athlete's performance and skill drop suddenly. Lack of oxygen then affects the heart. Death can come from heart failure or general asphyxiation, if a person is exposed to very high levels of CO.

CONCLUSIONS

The eight-hour National Ambient Air Quality Standard of 9 parts per million (ppm) was exceeded at three of the five carbon monoxide monitoring sites in Connecticut during 1985. The standard was exceeded two times at Stamford 020, six times at Hartford 017 and once at Bridgeport 004. No exceedance of the 35 ppm one-hour standard was measured at any site in 1985.

In order to put the monitoring data into proper perspective, it must be realized that carbon monoxide concentrations vary greatly from place-to-place. More than 95% of the CO emissions in Connecticut come from motor vehicles. Therefore, concentrations are greatest in areas of traffic congestion. The magnitude and frequency of high concentrations observed at any monitoring site are not necessarily indicative of widespread CO levels.

The CO standards are likely to be exceeded in any city in the state where there are areas of traffic congestion. However, as Connecticut's SIP control strategies are implemented, there should continue to be a decrease in the number of congested areas. Also, as federally - mandated controls which reduce emissions from new motor vehicles are implemented, a reduction in ambient CO levels should be achieved.

Unlike SO₂, TSP and O₃, elevated CO levels are not often associated with southwesterly winds, indicating that this pollutant is more of a local-scale (not regional-scale) problem.

METHOD OF MEASUREMENT

The DEP Air Monitoring Unit uses instruments employing a non-dispersive infrared technique to continuously measure carbon monoxide levels. The instantaneous concentrations are recorded on strip charts from which hourly averages are extracted. Due to the relative inertness of CO, a long sampling line can be used without the danger of CO being depleted by chemical reactions within the lines. The most important consideration in the measurement of CO is the placement of the sampling probe inlet; that is, its proximity to traffic lanes.

DISCUSSION OF DATA

Monitoring Network - The network in 1985 consisted of five carbon monoxide monitors: Bridgeport 004, Hartford 017, New Britain 002, New Haven 007, and Stamford 020. They are all located in urban areas. All sites are located west of the Connecticut River, with three of them in coastal towns (see Figure 12). Hartford 017 is a relatively new site and has been in existence for only two years.

Precision and Accuracy - The carbon monoxide monitors had a total of 141 precision checks during 1985. The resulting 95% probability limits were -9% to +9%. Accuracy is determined by introducing a known amount of CO into each of the monitors. Six audits for accuracy were conducted on the monitoring network in 1985. Three different concentration levels were tested on each monitor: low, medium and high. The 95% probability limits for the low level test ranged from -4% to + 12%; for the medium level test ranged from -4% to + 4%; and for the high level test ranged from -1% to + 2%.

- HARTFORD 047 AND STAMFERTS 020

8-Hour and 1-Hour Averages - Hartford 017 and Stamford 020 had second high CO concentrations exceeding the 8-hour standard of 9 ppm, which means that the standard was violated at these sites in 1985 (see Table 24). In 1984, both sites also recorded violations of the standard. Regarding the maximum 8-hour running average at each site, there were decreases from 1984 to 1985 at Hartford, New Britain and Stamford. Increases occurred at Bridgeport and New Haven. The second highest values were higher in 1985 than in 1984 at Hartford and New Haven and lower at Bridgeport, New Britain and Stamford.

As for 1-hour averages, no site in the state recorded a value exceeding the primary 1-hour standard of 35 ppm. Only Stamford 020 recorded a maximum 1-hour value greater than the year before. Second high 1-hour values were lower at all the sites.

The maximum and second high CO concentrations at each site are presented in Table 24. Table 25 presents monthly highs and a monthly tally of the number of times the standards were exceeded at each site. Seasonal variations in CO levels can be observed using this table.

10-High Days with Wind Data - Table 26 lists for each site the ten days in 1985 when the 1-hour CO averages were highest. The wind data associated with these high readings are also presented. (See the discussion of Table 11 in the TSP section for a description of the origin and use of these wind data.)

The high CO levels tended to occur during the colder months at all five CO sites. Low atmospheric mixing heights and stable atmospheric conditions are two reasons CO levels are high during the fall and winter. Also, cold starts and warmups (rich mixtures) contribute to an increase in CO. A noteworthy feature of the high CO days is that the persistence of a wind is more important than the direction to which or from which it is blowing. Since 95% of the CO emissions in Connecticut come from motor vehicles, it is likely that the high CO levels are caused when persistent winds are blowing CO emissions from the direction of nearby roads toward the monitors.

Trends - Due to the local nature of CO emissions, it is not appropriate to give an estimate of widespread CO trends. However, local CO trends can be addressed in a number of ways. Exceedances of the 8-hour standard can be tracked in order to determine if a CO problem is worsening or abating at a site. This is illustrated in Table 26a and in Figure 13. One can see that over the past five years the number of exceedances has dropped significantly at the Stamford site and has remained low and relatively unchanged at the Bridgeport, New Britain and New Haven sites. The Hartford-017 site has been in existence for only two years. Little can be said about the trend at this site. Therefore, it is included in Table 26a but not in Figure 13. The Stamford-020 site is excluded from Figure 13 because the range of the number of exceedances is too large to illustrate satisfactorily.

Another way of illustrating local CO trends is to use running averages. Running averages have the advantage of smoothing out the abrupt, transitory changes in pollutant levels that are often evident in consecutive sampling periods and from one season to the next. Figure 14 shows the 36-month running average of the hourly CO concentrations at four sites. The Hartford-017 site is not included due to the lack of sufficient data. CO levels seem to be remaining steady at all the sites except Stamford-020, where a downward trend is apparent.

1985 CARBON MONOXIDE STANDARDS ASSESSMENT SUMMARY

W High					
TIME OF MAXIMUM 1-HOUR AVERAGE2	11/19/9	12/24/14	12/24/11	12/24/1	1/28/2
2ND HIGH 1-HOUR AVERAGE	11.7	16.9	10.7	9.2	15.5
TIME OF MAXIMUM 1-HOUR AVERAGE2	12/23/23	1/14/18	12/24/10	7/15/9	1/14/19
MAXIMUM 1-HOUR <u>AVERAGE</u>	12.2	20.9	12.0	13.2	20.0
TIME OF 2ND HIGH 8-HOUR RUNNING AVERAGE1	1/14/22	12/24/15	2/1/18	1/14/23	12/24/1
2ND HIGH 8-HOUR RUNNING AVERAGE	7.2	11.9	6.5	6.7	6.9
TIME OF MAXIMUM 8-HOUR RUNNING <u>AVERAGE</u> 1	12/24/1	1/14/24	12/1/24	12/24/1	1/14/22
MAXIMUM 8-HOUR RUNNING AVERAGE	9.2	12.2	7.0	7.7	10.2
TOWN-SITE	Bridgeport-004	Hartford-017	New Britain-002	New Haven-007	Stamford-020

¹ The time of the 8-hour average is reported as follows: month/day/hour (EST), specifying the end of the 8-hour period. ² The time of the 1-hour average is reported as follows: month/day/hour (EST), specifying the end of the 1-hour period.

•

(______

N.B. The CO averages are expressed in terms of parts per million (ppm).

1985 CARBON MONOXIDE SEASONAL FEATURES

TOWN-SITE		IAN	FEB	MAR	APR	MAY	NNr	<u>IUL</u>	AUG	SEP	OCT	NON	DEC
Bridgeport-004	Max. 1-Hour	11.1	7.7	7.0	5.8	4.9	2.6	4.1	5.0	7.7	9.0	11.7	12.2
	Max. Running 8-Hour	7.2	5.0	4.4	3.9	3.9	2.2	3.1	3.1	4.4	4.4	6.3	9.2
	No. of 8-Hour Exceedances	0	0	0	0	0	0	0	0	0	0	0	0 1
Hartford-017	Max. 1-Hour	20.9	16.6	10.9	11.1	11.1	5.9	11.6	9.4	11.0	13.3	13.1	16.9
	Max. Running 8-Hour	12.2	9.4	8.4	7.5	5.3	4.5	6.6	7.2	7.8	8.2	7.6	11.9
	No. of 8-Hour Exceedances	۳	4	0	0	0	0	0	Ö	0	0	0	ব
New Britain-002	Max. 1-Hour	9.5	9.8 8	9.9	5.4	4.8	5.0	7.8	7.4	8.4	7.6	9.6	12.0
	Max. Kunning 8-Hour	6.4	6.5	4.8	4.2	3.6	3.6	5.7	5.1	4.4	5.3	7.0	6.5
	No. of 8-Hour Exceedances	0	0	0	0	0	0	0	0	0	0	0	0
New Haven-007	Max. 1-Hour	8.7	7.3	6.8	6.4	4.1	4.8	13.2	5.1	6.3	Q. Q	9.0	9.2
	Max. Kunning 8-Hour	6.7	3.8	4.0	3.0	2.7	2.8	2.7	3.7	3.3	4.1	5.0	7.7
	No. of 8-Hour Exceedances	0	0	0	0	0	0	0	0	0	0	0	0
Stamford-020	Max. 1-Hour	20.0	15.0	8.0	8.3	5.3	6.2	4.8	7.6	7.4	9.8	11.8	12.3
	Max. Running 8-Hour	10.2	6.6	5.9	4.3	3.7	4.1	3.8	4.2	4.7	5.2	7.3	9.3
	No. of 8-Hour Exceedances	*	0	0	0	0	0	0	0	0	0	0	4

N.B. The CO concentrations are in terms of parts per million (ppm).

WILLION	10	9/30/85 210 8.4 0.972 5.2 0.972 0.972 0.972 0.998 0.974 0.974	14.1 14.1 230 3.30 3.20 1.9 1.9 0.693 0.693 0.693 0.693 0.693 0.693 0.891 0.891	1/7/85 40 2.8 6.6 0.417 10 6.8 6.8 6.8 0.910
PARTS PEF	6	2/2/85 3300 3300 3443 5.40 3443 5.40 3443 5.40 3443 5.40 3443 5.40 3443 5.6 320 320 5.6 0.966 0.960 0.960 0.960	$\begin{array}{c} 14.1\\ 1/11/85\\ 350\\ 350\\ 350\\ 350\\ 350\\ 340\\ 340\\ 340\\ 340\\ 330\\ 330\\ 0.932\\ 330\\ 0.932\\ 0.93$	9/30/85 210 210 8.4 0.972 5.2 5.2 0.905
UNITS :	ø	$\begin{array}{c} 11 \\ 1 \\ 1 \\ 1 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	2, 14.4 2, 5/85 4, 60 3.6 3.6 3.6 3.6 3.6 3.6 0.712 0.733	2/ 1/85 2/ 1/85 20 10.8 0.996 5.9 5.9 0.981
	7	10/1/85 210 5.9 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 0.956 7.1 0.956 7.37 0.973 0.973 0.973	14.4 1/17/85 6.4 6.4 6.4 6.4 7.89 0.789 0.789 0.789 0.789 0.789 0.3666 0.366 0.366 0.3666 0.366 0.3660	$\begin{array}{c} & & \\$
VIND DATA	9	0.9.0 210/18/85 0.8.5 0.8.5 0.808 0.916 0.815 0.815 0.916 0.916 0.916 0.950	14.4 300 6.8 6.8 6.8 6.8 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.	9.5 1/2/85 3.30 8.6 9.6 0.827 350 5.2 0.971
AYS WITH V	5	11/18/85 5.3 5.3 0.643 7.3 0.643 2.50 0.443 7.3 0.643 7.3 0.643 7.3 0.643 7.3 0.622 0.622 0.622 0.956 0.956 0.956 0.956 0.956 0.956 0.622 0.622 0.622 0.622 0.6620	12/23/85 12/23/85 6.4 6.4 6.4 6.9 6.9 6.9 6.9 6.9 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.989 0.999 0.	2/15/85 2/15/85 9.4 9.9 9.4 0.946 5.5 5.5 0.889
RAGE CO DI	4	$\begin{array}{c} 12.24.85\\ 12.24.85\\ 1.90\\ 2.5\\ 0.789\\ 1.7\\ 1.7\\ 1.7\\ 1.40\\ 2.6\\ 0.398\\ 0.398\\ 0.398\\ 0.398\\ 0.833\\ 0$	$\begin{array}{c} 16.4\\ 2/11/85\\ 50\\ 6.9\\ 1.7\\ 1.7\\ 1.7\\ 1.7\\ 1.7\\ 1.7\\ 1.7\\ 1.7$	9.6 250 5.3 8.2 8.2 0.643 4.5 4.5 4.5 0.956
HOUR AVE	£	11.1.1 240 240 8.0 8.0 8.0 8.1 0.81 0.80 250 0.81 0.857 0.857 0.857 0.857 0.857	2/ 4/85 280 280 280 280 280 280 280 250 250 250 250 250 290 290 290 290 290 290 290 290 290 29	2/ 5/85 2/ 5/85 7.9 8.9 0.884 2.6 3.6 0.712
HIGHEST 1-	N	11/19.7 21/19.85 21/19.85 4.00 4.00 4.00 2.200 2.20 2.20 2.20 2.20 2.20 2.20 2.20 0.922 0.9	$\begin{array}{c} 16.9\\ 124/85\\ 190\\ 2.5\\ 0.789\\ 1.7\\ 1.40\\ 2.6\\ 1.40\\ 1.40\\ 1.40\\ 1.40\\ 1.90\\ 0.838\\ 0.$	9.9 3/11/85 4.2 4.2 6.5 7.6 7.6 7.8 0.978
985 TEN F	-	12.2 12.2 12.2 190 0.932 0.93 0.932	20.9 1/14/85 240 8.8 8.8 8.8 8.8 0.911 250 250 250 250 0.814 8.9 0.851 0.857 0.857 0.857	12.0 12/24/85 2.5 3.2 0.789 1.7 5.6 0.296
-	RANK	CO DATE DATE DIR (DEG) SPD (MPH) SPD (MPH)	CO DATE DATE DATE DIR (DEG) SPD (MPH) SPD (MPH	CO DATE DATE DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO RATIO
	TOWN-SITE (SAMPLES)	BRIDGEPORT-004 (8673) METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE METEOROLOGICAL SITE	HARTFORD-017 (8127) METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE METEOROLOGICAL SITE METEOROLOGICAL SITE	NEW BRITAIN-002 (7883) METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY

-142-

PER MILLION	10	40 1.1.1 0.870 70 70 70 70 70 70 70 70 70	285-10/5/85-10/5/85 210/5/85 210/5/85 0.225 0.225 0.225 0.210 210 210 210 210 210 210 210 210 210	88 85 11/ 50 88 11/ 50 88 10.7
: PARTS	6	0.9742	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.05
UNITS	œ	20 8.8 9.2 60 60 5.0 0.972 0.974 0.974	85 1/ 1/2 360/ 1.00 0.55380 0.55380 0.55380 0.55380 0.420 0.4200 0.45300 0.453000 0.45300 0.453000 0.453000 0.453000 0.45300000000000000000000000000000000000	85 1/24/9 2500 2247 2247 0.2847 0.2847 0.2847 12.190 0.987 0.987 11.42 0.987 0.997 0.99
TA	7	40 5.8 6.67 0.677 30 30 4.6 0.864	85 11 7.3 10.10.7 1	85 12/10 1990 0.33.57 0.33.57 0.3988 0.3988 0.3988 0.3988 0.3988 0.398
H WIND DA	9	330 8.1 0.806 330 330 7.2 0.847	85 2/4/3 280/2 7.4 7.4 7.4 7.4 0.9255 0.9555 0.9218 0	85 11/10/6 11/10/6 0.0555 0.9338 0.9551 11.22022 1
DAYS WIT	5	0.9260 0.9260 0.920 0.920 0.920 0.920 0.920	85 12/23.5 190/ 0.95.52 0.95.20 0.05.20 0.05.20 0.05.20 0.05.20 0.05.20 0.05.20 0.05.20 0.05.2	855111.8 855111.8 8550 0.65250 0.65500 0.655500 0.655500 0.655500 0.655500 0.655500 0.655500 0.655500 0.6555000 0.6555000 0.6555000 0.6555000 0.65550000 0.6555000 0.65550000 0.6555000000000000000000000000000000000
VERAGE CO	4	250 3.50 250 250 250 0.9547	85 1/11/1 1/11/1 85 1/11/1	0.972 0.9720 0.9720 0.9720 0.9720 0.9720 0.9720 0.9720 0.9720 0.97200 0.97200 0.97200 0.97200000000000000000000000000000000000
F 1-HOUR A	ε	0.0375 0.11.5 0.0900 0.13.50 0.13.50		
EN HIGHESI	N	0.633 0.6330 0.6330 0.6330 0.6330 0.6330 0.6330 0.6330 0.6330 0.6330000000000	222 222 222 222 222 222 222 222	
1985 T.	-	MPH) 2-14 MPH) 5-14 MPH) 5-1 0.339 DEG) 19 MPH) 5-1 0.833 0.833	7715 DEG 7715 MPH 6. MPH 6. MPH 7.	20. 1/24. 0EG) 224. 21.24. 21.24. 21.24. 21.24. 22.5
	RANK	E DIR (R VEL (RATIO RATIO ER VEL (RATIO RATIO	CO CO CO CO CO CO CO CO CO CO CO CO CO C	E DIR CO CO CO CO CO CO CO CO CO CO CO CO CO C
	TOWN-SITE (SAMPLES)	METEOROLOGICAL SITE BRIDGEPOF METEOROLOGICAL SITE WORCESTE	NEW HAVEN-007 (8698) METEOROLOGICAL SITE NEWAF METEOROLOGICAL SITE METEOROLOGICAL SITE METEOROLOGICAL SITE METEOROLOGICAL SITE METEOROLOGICAL SITE	STAMFORD-020 (8697) METEOROLOGICAL SITE NEWAF METEOROLOGICAL SITE BRADLI BRADLI BRIDGEPOF BRIDGEPOF METEOROLOGICAL SITE

TABLE 26, CONTINUED

(_____)

-143-

Caze
TY -
fler
Å

1985 TEN HIGHEST 1-HOUR AVERAGE CO DAYS WITH WIND DATA

4 5 6 7 8 7 8 $12/24/85$ $11/18/85$ $10/12/26$ $210/8/85$ $10/12/18/85$ $10/12/85$ <td< th=""><th>3 4 5 6 7 8 7 8 111.1 11.18 10.8 9.1 9.0 8.7 8 7 8 7 8 7 8 7 8 7 8 7 7 8 7</th><th>2 3 4 5 6 7 8 4 111.7 111.1 10.8 9.1 9.0 8.7 8.4 7 111.7 111.1 10.8 9.1 9.0 8.7 8.4 7 111.7 111.1 10.8 9.1 9.0 8.7 8.4 7 210 240 190 2.5 5.3 6.8 5.9 10.7 7.4 200 240 1.7 8.4 5.9 10.7 7.4 4.5 7.4 200 240 1.7 8.2 5.3 6.8 7.4 4.5 7.4 200 240 190 290 0.643 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.805 0.916 <</th><th>1 2 3 4 5 6 7 8 12/23/85 111/19/85 11/14/85 12/24/85 11/18/85 11/14/15 11/14/15 11/14/15 11/14/15 11/14/15 11/14/15 11/14/15 11/14/15 11/14/15 11/14/15 11/14/15 11/14/15 11/14/15 11/14</th></td<>	3 4 5 6 7 8 7 8 111.1 11.18 10.8 9.1 9.0 8.7 8 7 8 7 8 7 8 7 8 7 8 7 7 8 7	2 3 4 5 6 7 8 4 111.7 111.1 10.8 9.1 9.0 8.7 8.4 7 111.7 111.1 10.8 9.1 9.0 8.7 8.4 7 111.7 111.1 10.8 9.1 9.0 8.7 8.4 7 210 240 190 2.5 5.3 6.8 5.9 10.7 7.4 200 240 1.7 8.4 5.9 10.7 7.4 4.5 7.4 200 240 1.7 8.2 5.3 6.8 7.4 4.5 7.4 200 240 190 290 0.643 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.805 0.916 <	1 2 3 4 5 6 7 8 12/23/85 111/19/85 11/14/85 12/24/85 11/18/85 11/14/15 11/14/15 11/14/15 11/14/15 11/14/15 11/14/15 11/14/15 11/14/15 11/14/15 11/14/15 11/14/15 11/14/15 11/14/15 11/14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4 12/24/85 12/24/85 190 190 11/0 5.6 0.789 1.7 1.7 1.7 0.789 0.799 0.799 0.799 0.799 0.790 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700000000	3 4 11.1 11.1 1.14/85 240 8.8 240 1.14/85 1.14/85 240 1.17 1.17 1.17 1.250 1.17 1.250 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.10 1.17 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	2/4/85 2/48 2/40 2/40 0.8270 0.8270 0.8240 0.8270 0.8240 0.8270 0.8270 0.8270 0.8240 0.8270 0.8240 0.8270 0.8240 0.8270 0.8240 0.8270 0.8270 0.8240 0.82700 0.82700 0.82700 0.82700 0.82700 0.82700 0.82700 0.82700 0.82700 0.82700000000000000000000000000000000000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
RANK 1 2 CO 12.2 11.7 DATE 12.23/85 11/19/85 DATE 12/23/85 11/19/85 DIR DEG 190 210 VEL MPH) 6.4 4.0 VEL MPH) 6.4 4.6 VEL MPH) 6.4 4.6 VEL MPH) 6.4 4.6 VEL MPH) 6.9 9.2 VEL MPH) 6.9 4.4 VEL MPH) 6.9 4.4 VEL MPH) 6.9 4.4 VEL MPH) 6.9 4.4 VEL MPH) 0.932 0.933 VEL MPH) 9.2 5.1 RATIO 0.972 0.992 230 VEL MPH 10.4 11.7 SPD MPH 10.5 11.4 RATIO 0.922 220 220 VEL MPH 10.4 11.7 RATIO 0.989 0.992 220 VEL MPH 10.5 114/85 RATIO 0.989 0.992 VEL MPH 8.0 2.5<	RANK 1 CO DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE CO RATIO DIR (DEG) DIR (DEG) DIR (DEG) CO RATIO DIR (DEG) DIR (DEG) CO RATIO DIR (DEG) CO CO RATIO DIR (DEG) CO CO RATIO CO CO CO CO CO CO CO CO CO C	RANK CO DATE DIATE DIATE DIATE DIATE DIATE DIATE MPH) SPD (MPH) SPD (MPH) SP	

Ć

-144-

Diplicate Jage

(_____;

TABLE 26, CONTINUED

1985 TEN HIGHEST 1-HOUR AVERAGE CO DAYS WITH WIND DATA

		191	85 ien HI							UNITS : I	PARTS PER	MILLION
TOWN-S	SITE (SAMPLES)	RANK	~	N	ω.	4	ъ	9	7	Ø	6	10
alan	4ETEOROLOGICAL SITE BRIDGEPORT	DIR (DEG) VEL (MPH) SPD (MPH)	140 2.0 308	110 4.6 7.3 633	60 11.5 11.8 0 070	250 3.0 4.9	260 9.5 10.4	330 6.5 8.1 0.806	40 5.8 8.6 0.671	20 8.8 9.2 0.952	220 6.2 0.898	40 9.6 11.1 0.870
<u> </u>	METEOROLOGICAL SITE WORCESTER	VEL (MPH) VEL (MPH) SPD (MPH) RATIO	0.833 0.833	0.240 9.0 10.8 0.834	0.138	260 4.6 0.964	8.2 8.5 0.971	0.847	30 4.0 4.6 0.864	5.0 5.2 0.974	230 9.9 10.2 0.974	70 7.9 8.1 0.985
NEW HJ	4VEN-007 (8698)	CO	13.2 7/15/85 1	9.2 12/24/85	9.0 11/19/85	8.7 1/14/85	8.5 12/23/85	7.3 2/ 4/85	7.3 11/ 1/85	7.2 1/ 4/85	7.0 12/31/85	6.8 10/ 1/85
-	METEOROLOGICAL SITE NEWARK	VEL (MPH)	190 6.3 7.6	2.5	210 4.0	240 8.0 8.8	190 6.4 7.0	280 7.4	50 10.7 11.8	360 7.2 8.1	210 9.5 10.2	7.90
	METEOROLOGICAL SITE	RATIO DIR (DEG)	0.831	0.789 190	0.605	0.911 240 3.9	0.909 190 6.4	0.907 320 4.3	$0.909 \\ 20 \\ 4.5$	0.896 10 1.0	0.930 190 9.0	0.825 200 7.4
	BRAULET	SPD (MPH) RATIO	10.2 0.970	5.6 0.296	4.9 0.938	4.9 0.803	0.932	0.665	4.7 0.939	1.9 0.558	9.2 0.983	7.6 0.966
	METEOROLOGICAL SITE BRIDGEPORT	DIR (DEG) VEL (MPH) SPD (MPH)	200 7.4	140 2.0 5.0	5.2 5.2	250 6.3 7.5	250 9.50	5.50 6.6	8.8 6 8 0	2.0 7.1	12.0	10-10 10-10
	METEOROLOGICAL SITE MORCESTER	RATIO DIR (DEG) VFI (MPH)	0.951 220	0,398 190 5,6	0.992 220 11.7	0.844 270 6.9	0.972 230 10.4	0.765 290 7.1	0.671 30 4.0	0.420 250 1.9	0.925 210 15.5	0.737 210 8.0
		SPD (MPH) RATIO	13.4	6.8 0.833	11.8 0.992	$8.1 \\ 0.857$	10.5 0.989	7.8 0.921	4.6 0.864	4.0 0.463	15.5 0.996	8.2 0.973
STAMF	ORD-020 (8697)	co	20.0	17.1	15.0	12.3	11.8	10.6	10.2 12/20/265	9.9 17211785	9.8 10/18/85	9.5
	METEOROLOGICAL SITE	DATE DIR (DEG)	1/14/85 240	1/28/85 300	2/11/85 50 1, 3	12/23/85 190 6 11	11/10/07 250 5_3	210	15/54/07	250	210 210 6.8	10.7
	NEWAR	SPD (MPH) SPD (MPH) RATIO	8.8 0.911	0.723 0.723	6.9 0.627	7.0	8.2 0.643	6.6 0.605	3.2 0.789	12.7 0.947	8.5 0.808	11.8 0.909
	METEOROLOGICAL SITE BRADLEY	DIR (DEG) VEL (MPH)	3.9	320	350	61 6.4 7	290 4.5	200 4.6	190 7.7	220 4.7 0	190 6.3 6.9	4.50 4.75
		SPD (MPH) RATIO	0.803	3.3 0.983	3.7 0.461	0.932	4.7 0.956 250	0.938	0.296	0.786	0.916 220	0.939
	METEOROLOGICAL SITE BRIDGEPORI	VEL (MPH) SPD (MPH)	7.5 2	500 6.0	5.9 6.9	, 0 0 0 0 0		5.0	2.0	11.0	7.0	5.8 8.6 8.6
		RATIO	0.844	0.813	0.859	0.972	0.622	0.992	0.398 190	0.987 290	0.815 210	0.6/1 30
	METEOROLOGICAL SIIE WORCESTEF	VEL (MPH)	6.9	0.00	0.00	10.4	-0,-	11.7	2.0	11.9	10.1 10.6	4.0 4.6
		SPD (MPH) RATIO	8.1 0.857	0.945	0.181	0.989	0.964	0.992	0.833	0.982	0.950	0.864

TABLE 26a

EXCEEDANCES OF THE 8-HOUR CO STANDARD

SITE	<u>1981</u>	<u>1982</u>	<u>1983</u>	<u>1984</u>	<u>1985</u>
Bridgeport-004	0	0	1	0	20
Hartford-017	-	-	-	227	6 5
New Britain-002	1	22	2	0	0
New Haven-007	70	0	1	()a	0
Stamford-020	113b	2c	1 ^d	32	21

^a Data is missing from January through September.
 ^b Data is missing from October through December.
 ^c A local road was changed from 2-way traffic to 1-way traffic.

d 90% of the data is missing for November and December.

FIGURE 13

EXCEEDANCES OF THE 8-HOUR CO STANDARD

SITE: BRIDGEPORT-004

YEAR

FIGURE 13, CONTINUED

EXCEEDANCES OF THE 8-HOUR CO STANDARD

SITE: NEW BRITAIN-002

YEAR

FIGURE 13, CONTINUED

EXCEEDANCES OF THE 8-HOUR CO STANDARD

SITE: NEW HAVEN-007

YEAR

FIGURE 14

36-MONTH RUNNING AVERAGES OF THE HOURLY CO CONCENTRATIONS

SITE: BRIDGEPORT-004

FIGURE 14, CONTINUED

36-MONTH RUNNING AVERAGES OF THE HOURLY CO CONCENTRATIONS

SITE: NEW BRITAIN-002

FIGURE 14, CONTINUED

36-MONTH RUNNING AVERAGES OF THE HOURLY CO CONCENTRATIONS

SITE: NEW HAVEN-007

FIGURE 14, CONTINUED

36-MONTH RUNNING AVERAGES OF THE HOURLY CO CONCENTRATIONS

SITE: STAMFORD-020

VII. LEAD

HEALTH EFFECTS

Lead (Pb) is a soft, dull gray, odorless and tasteless heavy metal. It is a ubiquitous element that is widely distributed in small amounts, particularly in soil and in all living things. Although the metallic form of lead is reactive and rarely occurs in nature, lead is prevalent in the environment in the form of various inorganic compounds, and occasional concentrated deposits of lead compounds occur in the earth's crust.

The presence of lead in the atmosphere is primarily accounted for by the emissions of lead compounds from man-made processes, such as the extraction and processing of metallic ores, the incineration of solid wastes, and the operation of motor vehicles. The combustion of lead-containing gasoline by motor vehicles is the largest source of airborne lead emissions and is responsible for approximately 73% of the national total in 1985. These emissions are in the form of fine-to-course particulate matter and are comprised of lead sulfate, ammonium lead halides, and lead halides, of which the chief component is lead bromochloride. The halide compounds appear to undergo chemical changes over a period of hours and are converted to lead carbonate, oxide and oxycarbonate.

The most important sources of lead in humans and other animals are ingestion of foods and beverages, inhalation of airborne lead, and the eating of non-food substances. From the standpoint of the general population, the intake of lead into the body is primarily through ingestion. The direct intake of lead from the ambient air is relatively small. Except in special cases, the contribution to the total body burden of lead via inhalation of airborne lead in urban areas is usually less than 30%. In non-urban areas, it is usually less than 5%.

Overexposure to lead in the United States is primarily a problem in children. Age, pica, diet, nutritional status, and multiple sources of exposure serve to increase the risk of lead poisoning in children. This is especially true in the inner cities where the prevalence of lead poisoning is greatest. Overexposure to lead compounds may result in undesirable biologic effects. These effects range from reversible clinical or metabolic symptoms that disappear after cessation of exposure to permanent damage or death from a single extreme dose or prolonged overexposure. Clinical lead poisoning is accompanied by symptoms of intestinal cramps, peripheral nerve paralysis, anemia, and severe fatigue. Very severe exposure results in permanent neurological, renal, or cardiovascular damage or death.

CONCLUSIONS

The Connecticut primary and secondary ambient air quality standard for lead and its compounds was not exceeded at any site in Connecticut during 1985.

The monitoring sites where the lead levels were highest were generally in urban locations with moderate to heavy traffic. This is due to the fact that in Connecticut the primary source of lead to the atmosphere is the combustion of leaded gasoline in motor vehicles.

A downward trend in measured concentrations of lead has been observed since 1978. This is probably due to the increasing use of unleaded gasoline. Figure A shows that the decrease in lead emissions from gasoline combustion from 1975 to 1985 has been commensurate with a decrease in statewide ambient average lead concentrations. In fact, this relationship is so close, it has a correlation coefficient of 0.977 (see Figure B). Regarding Figures A and B, the reader should note that after 1978 and again after 1981 a change occurred in the way in which lead concentrations were determined.

Before 1979, lead concentrations were determined by analysis of quarterly composite samples from existing TSP monitors. From 1979 through 1981, lead concentrations were determined by analysis of individual daily samples from existing TSP monitors. Beginning in 1982, lead concentrations were determined by analysis of monthly composite samples from only approved lead monitors. Both the single sample and monthly composite data points are depicted in Figure A for 1982. The discontinued method gives a lower average lead concentration in 1982 than the new method. The higher average lead concentration is used in Figure B.

SAMPLE COLLECTION AND ANALYSIS

The Air Monitoring Unit uses hi-vol and lo-vol samplers to obtain ambient concentrations of lead. These samplers are used to collect particulate matter onto fiberglass filters. The particulate matter collected on the filters is subsequently analyzed for its chemical composition. Wet chemistry techniques are used to separate the particulate matter into various components. The lead content of the TSP is determined using an atomic absorption spectrophotometer. (The use of these sampling devices and the chemical analysis techniques were fully described in the TSP section.) Unlike hi-vol TSP samples which are analyzed separately, the hi-vol lead sample is a composite of all the individual samples obtained at a site in a single month. That is, a cutting is taken from each filter during the month and these cuttings are collectively chemically analyzed for lead.

DISCUSSION OF DATA

Monitoring Network - In 1985, both hi-vol and lo-vol samplers were operated in Connecticut to monitor lead levels (see Figure 15). There were 15 hi-vol sites and 7 lo-vol sites operated throughout the State (see Table 35) as part of the State and Local Air Monitoring Stations (SLAMS) network. The DEP operated the seven lo-vol monitors in areas with populations of 200,000 or more. They are Hartford 015 and 016, Stamford 022, New Haven 016 and 018, West Haven 003, and Bridgeport 010. These "micro-scale" lead sites are situated near some of the busiest city streets in order to monitor "worst-case" lead concentrations. EPA approval for these lo-vol monitors was granted in February, 1984.

Precision and Accuracy - The hi-vol lead monitors had a total of 27 precision checks in 1985. The resulting 95% probability limits were -8% to +6%. Accuracy for lead is defined as the accuracy of the analysis method. It is determined by chemical analysis of known lead samples. There were 21 audits for accuracy conducted on the monitoring network in 1985. Two different concentration levels were tested: low and high. The 95% probability limits for the low level test ranged from -10% to +5%; those for the high level test ranged from -8% to +5%.

NAAQS - Connecticut's ambient air quality standard for lead and its compounds, measured as elemental lead, is: 1.5 micrograms per cubic meter (μ g/m³), maximum arithmetic mean averaged over three consecutive calendar months. This standard was enacted on November 2, 1981. Previously, Connecticut's lead standard was substantially identical: 1.5 μ g/m³ for a calendar quarter-year average. The change to a 3-month running average means that a more stringent standard now applies, since there are three times as many data blocks within a calendar year which must be below the limiting concentration of 1.5 μ g/m³.

3-Month Running Averages - Three-month running average lead concentrations are given in Table 27 for the year 1985. These values are also presented in graphical form in Figure 16 for the period 1983-85. The New Haven-018 site lacked sufficient data and is not included in Table 27 or Figure 16.

Trends - As was mentioned above, airborne concentrations of lead have been trending steadily downward. This was demonstrated on a statewide level in Figure A. The trend in lead levels can also be shown on a regional or a site-specific basis. Figure C shows the trend in annual average lead

concentrations at each of seven monitoring sites that have been in existence long enough to be able to demonstrate a long term trend. Figure D shows the trends in the 3-year running average lead concentrations at the same seven sites. A downward trend in lead levels is apparent at all the sites, especially since 1978. This decrease in lead levels is commensurate with the decrease in lead emissions from gasoline combustion.

FIGURE A

(______)

STATEWIDE ANNUAL LEAD EMISSIONS FROM GASOLINE

AND

STATEWIDE ANNUAL AVERAGE LEAD CONCENTRATIONS

and the second

FIGUREB

STATEWIDE ANNUAL LEAD EMISSIONS FROM GASOLINE

VS.

STATEWIDE ANNUAL AVERAGE LEAD CONCENTRATIONS

27
Ш
ŝ
\leq
8

1985 3-MONTH RUNNING AVERAGE LEAD CONCENTRATIONS

0.32 0.3 0.42 0.3	0	õ	0.21	0.16	0.14	0.12	0.11	0.10	0.10	0.10	0.11
0.44	0.35 0.32	0.30 0.29	0.21 0.25	0.16 0.20	0.14 0.19	0.12 0.15	0.11 0.13	0.10 0.13	0.10 0.13	0.10	0.11
01.0	0.42	0.34	0.34	0.29	0.25	0.22	0.21	0.19	0.18	0.18	
0.40	0.42	0.37	0.35	0.31	0.26	0.22	0.17	0.17	0.16	0.15	0.14
0.24	0.23	0.20	0.17	0.14	0.11	0.10	0.09	0.09	0.09	0.09	0.09
0.31	0.28	0.24	0.18	0.15	0.12	0.10	0.09	0.10	0.10	0.10	0.09
0.49	0.42	0.32	0.24	0.21	0.18	0.15	0.13	0.13	0.15	0.14	0.14
0.61	0.57	0.42	0.32	0.29	0.25	0.22	0.21	0.22	0.24	0.24	0.21
0.65	0.61	0.42	0.39	0.30	0.31	0.29	0.28	0.27	0.27	0.26	0.25
0.46	0.35	0.30	0.22	0.21	0.17	0.14	0.11	0.12	0.14	0.12	0.11
0.34	0.32	0.26	0.21	0.19	0.20	0.15		0.13	0.13	0.13	0.12
0.31	0.25	0.20	0.16	0.16	0.14	0.12	0.10	0.10	0.10	0.09	0.08
0.44	0.46	0.39	0.37	0.30				0.21		8	
0.48	0.43	0.45	0.43	0.41	0.27	0.22	0.17	0.16			
0.34	0.28	0.25	0.19	0.18	0.15	0.14	0.13	0.14	0.14	0.12	0.10
0.25	0.22	0.21		0.18	0.19	0.17	0.16	0.14	0.13	0.10	0.09
0.35	0.31	0.29	0.30	0.25	0.24	0.21	0.25				0.15
0.43	0.33	0.27	0.20	0.19	0.16	0.13	0.12	0.11	0.12	0.10	0.10
0.56	0.44	0.40	0.31	0.26	0.21	0.19	0.17	0.17	0.16	0.17	0.17
0.72	0.59	0.50	0.39	0.36	0.30	0.26	0.22	0.24	0.24	0.23	0.20
					****		4 	0.25	0.24	0.23	0.21

-161-

-162-

													MONTH	YEAR	
												* * * * * * * * * * * * * * * * * * * *			
												* * * * *	k I ∞ k I ∞	 	
												* * * * *	## - -	5	
											* *	* * * *	e i 9	!	
											* *	* * * * *		i	
											* * *	* * * * *			
											* * *	* * * * *	k i m		
											* * * *	: * * * : : * * * :	≠ i ∩ ¥		
										7 7	* * * * *	* * * * :	* i ~- * i	<u>i</u>	
	AD			İ						* *	* * * * *	: * * * : : * * * :	101	-	
	ΓĒ									2	* * * * *	: * * * * : : * * * * :	* -		
ED	F0R 010	,		ł						7	* * * * *	: * * * : : * * * :	* 0		
INN	ES RT			ļ							* * * *	: * * * : : * * * :	* o		
ONT	RAG EPO									* *	* * * * *	: * * * : : * * * :	* œ	ł	
0	AVE									7 2	* * * * *	: * * * : : * * * :	* ~	34	
16	NG =BR									2	* * * * *	: * * * : : * * * :	* 0	:	
URE	I NN I										* * *	: * * * : : * * * :	* i ^	Ì	
FIG	H RL												i =		
	ILNO	•		į									iπ		
	3 - MC			İ										1	
				Ì										<u> </u>	
													12		
													11		
													10		
													6		
													0	1	
										:	* * * * * * *	* * * *	* ~	33	
				1						:	* * * * * *	* * * *	* 0	, w	
											* * *	* * * *	* ເ ທ	1	
											* * * *	* * * *	* =		
											* * * *	* * * *	* i ~		
										* : * :	* * * * * *	* * * *	* i ∾ *		
								:	* * *	* * * :	* * * * * *	* * * *	* -	<u> </u>	
			+ ¢ ¢	· ?	+	-+ 	+ 0.	+ 80 -			-+	-+	uma		
			4 4	-			-	0		0	5	<u> </u>			

-163-

Flatter 16, Contrinued 3-PONTH RUNNING AVERAGES FOR LEGO 3-PONTH RUNNING AVERAGES FO												HTNOM	YEAR	
+++++++++	FIGURE 16, CONTINUED 3-MONTH RUNNING AVERAGES FOR LEAD	STATION=BRIDGEPORT 123							* * * **	** ** ** ** ** ** ** ** ** ** ** ** **	* ** ** ** ** ** ** ** ** ** ** ** ** *	2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 MONTH		
			AVG	1.6 +	+ 	+	+	+ 8.0	**** *** 0.6	**** + 0.4	+	-	<u>.</u>	

-164-

-165-

										40NTH	rear
			I						* *	8	-
									* *	1-	
									* * *	10	
			1						* *	16	
			5 5 8						* * *	8	
			1						* *		I
									* * *	9	85
									* *	5	
									***	1	
			r 1 1						* * * * *	1 00	
								*	* * * * * *	N	
								*	* * * * * * *	-	
9			1					*	*****	N	-
LEA								*	* * * * * *		
OR									* * * * * *	10	
S F 002									* * * * *	6	
RAGE JRY									* * * * *	∞	1 1 1
avef anbi									* * * *	~	• •
VG /									* * * *	9	- 81
TIOI									****	j n	
RUI					-				* * * * * *	4	
HTN									* * * * * *	3	1
OM-								*	* * * * * *	\sim	1
ŝ								* *	* * * * * * * * * *		<u> </u>
								* * * * * *	* * * * * *	12	-
								* * * * * *	* * * * * *	12	
								* * *	* * * * * *	2	1
								* *	* * * * * * * *	6	
									* * * *	ø	1
									* * * * *	~	33
									* * * *	0	÷
									* * * * *	5	
									* * * *	1	
									* * * * * *	ŝ	ł
		i						* * * *	* * * * * *	i N	Ì
								* * * * * * * *	* * * * * *	-	<u>i</u>
	AVG	+	+ .+ 	+	+ 	+ 0.8	0.6 +	+		I	

FIGURE 16, CONTINUED

(.....

ĺ

												MONTH	YEAR	
					0 2 2						* * *	12	1	
											* * *	1=		
					 						* * *	10		
											* * *	16	 	
											* * * * *	1 00	1	
											* * * * * *		85	
											* * * * *		!	
											****		ł	
											*****	1.47		
											* * * * * * * * * * * * * * * * * * * *		ļ	
										****	* * * * * * * *			
										* * * *	* * * * * * *		<u>.</u>	
	EAD									* * * * *	* * * * * * * * * * * * * * * * * * * *	12	ł	
	۲ ۳									* *	* * * * * * * * * * * * * * *	12	ļ	
UED	FOI	014									* * * * * * * *	10		
TIN	GES	RD									* * * * * * *	10	1	
CON	ERA	TFO		i i							* * * * * *	1 00	1	
6,	AV	HAR									* * * * * * *		84	
н- Ш	I NG	=NO									* * * * * * * *	9	1	
GUR	NNN	ATI									* * * * * *	10	1	
ц.	Н	ST									* * * * * *			
	INU										* * * * * * * * * * * * * * * * * * * *			
	3-1									ب بر بر بر	 		į	
				1						* *	* * * * * * * * *		<u>-</u>	
										* * *	* * * * * * * *	12	-	
										* * *	* * * * * * * *	=		
										* *	* * * * * * * *	10		
											* * * * * * * * *	10	į	
				i							* * * * * * * *	iα	İ	
				i							* * * * * *		33	
				i							* * * * * * * *	10	ł	
											* * * * * * * *	19		
				i							* * * * * * * * * *	4		
				i							* * * * * * * *	31	-	
										* * * *	* * * * * * * * * * * * * * *		ł	
				1						* * * * *	* * * * * * * * * * * * * * *		<u>_</u>	
			AVG	1.6+	+ 	~~+	+	+ 8.0	0.6 + 		+	- 1		

(_{. .}

-167-

									MONTH YEAR
		1						* * * *	~ -
		1 1 1						* * * *	
		1 1 1						* * * * * *	
								* * * * *	6
		1 1 1						* * * *	
		t 1 1						* * * *	
								* * * * *	85
		 					*	* * * * * *	2
							· *	* * * * * * *	4
							* * * *	* * * * * *	т
		1				* *	* * * *	* * * * * *	
						* * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	<u> -</u>
AD						* * * * * * * *	* * * * *	* * * * * *	1 3
× Le		, , ,				* * *	* * * * * * * *	* * * * * *	=
F0F	•					* *	* * * *	* * * * * * * * * * * * * * * * * * * *	2
GES RD (* * * * * *	* * * * * * * * * * * * * * * * * * * *	0
ERAI TFOI		1 1 1					* * * *	* * * * * *	ŝ
AV HAR		1 1 1					* * *	* * * * * *	84
I NG		1 1 1					* * *	* * * * * *	
UNN		 					* * * * * *	* * * * * *	5
ST ST		 					* * * * *	* * * * * * * * * * * * * * * * * * * *	
INUT		1 1 1				* *	* * * * *	* * * * * *	ι ερ Γ
1						* * * * * *	~ ~ ~ ~ ~ * * * * * * * * *	~~~~~ * * * * * * * * * * * *	
						* * * *	* * * * *	* * * * * * *	-
									12
									2
									6
									83
									9
							* * * *	* * * * * * * * * * * * * * * * * * * *	10
						* * *	****	*****	
		6 				* * * * * * * * * * *	* * * * *	* * * * * *	
						*****	* * * * *	~ ~ ~ ~ ~ * * * * * * *	
	+		+		+	**** +	¥ ¥ ¥ ¥ +	* * * * * *	
	AVG 1.6	1.4	1.2	1.0	. 8.0	0.6	0.4	0.2	-

FIGURE 16, CONTINUED

-168-

														MONTH	YEAR
				(* * *	* *		. .
												* * *	* *		
				1								* * *	* *		
				Ì								* * *	* *	Ē	i
												* * *	* *		1
												* * * *	* *		1
												* * * * *	* *		85
												* * * * *	* * * *	9	1
												* * * * *	* *	5	
				l							* *	* * * *	* * * *	1.27	
				i							* *	* * * * *	* *	ŝ	i I
				1						* * *	: * * * : * * *	* * * *	* * * *	N	ŀ
									*	* * * * * *	: * * * : * * *	* * * * * * * *	* * * *	-	<u> </u>
	EAD								*	* * *	* * * *	* * * * *	* *	12	6 6 6
				l						* *	: * * * : * * *	* * * *	* * * *	1 =	1 1 1
JED	FOI	016								*	* * * *	* * * * *	* * * *	12	1
LIN	GES	д С								* *	: * * * : * * *	* * * *	* *	6	
LNO	ERAC	FOF								* *	: * * * : * * *	* * * * * * *	* *	ίœ	Ì
0 	AVE	IART								*	* * * *	* * * *	* *		34
16	NG	N=N									* * *	* * * * *	* *	0	:
URE	NN	TIO									* *	* * * * * * * *	* *	5	
FIG	RU	STA								*	* * * *	* * * * *	* *	1	
	NTH								* *	* * *	* * * *	* * * *	* * * *	3	
	0W-								* *	* * *	* * * *	* * * *	* *	\sim	
	ŝ							*	* *	* * *	: * * *	* * * *	* * * *	-	<u> </u>
									* *	* * *	: * * * : * * *	* * * * *	* * * *	2	
									* * * *	* * *	: * * * : * * *	* * * * *	* *	=	į
										* *	: * * * : * * *	* * * * *	* * * *	2	
				1							* * * * * *	* * * * * * * * * * * * * * * * * * * *	* *	6	
				1							* *	* * * * *	* *	ß	
											* *	* * * * *	* *		ŝ
				1						*	* * * *	* * * *	* *	9	α I
										# k	***	* * * *	* * * *	5	E E E
										* * *	***	* * * *	* *	4	
										* *	* * *	* * * *	* *		
								* *	* *	* * *	* * * *	* * * * *	* *	\sim	
								* * *	* *	* * *	****	****	* * * *	-	i
				+		+	: +	• + * * +	+ *	~ * * +	+-	· • • • * +	* *	i	_
			AVG	1.6	1.4	1.2	1.0	0.8		0.6	0.4	0.2			

-169-

MONTH YEAR -----* * 9 10 11 12 * * * * * * * * * * * * * * ω ~ ** ** ** 85 9 * ** ** ŝ ** ** ** ** 4 * * ** ** ŝ ** ** ** ** ** 2 * * * * 1111 ** ** * ----** * * ** * ** ** ** ** ļ 9 10 11 12 3-MONTH RUNNING AVERAGES FOR LEAD ** ** ** ** ** ** * * ** ** ** ** * * * * FIGURE 16, CONTINUED ** ** ** ** STATION=MERIDEN 002 * * * * * * * * * * ω 1~ * * * * 84 9 * * * * * * * * * 5 L * * * * * 4 * * ŝ * * * ** * * N ** ** * * * 1 * * * * * * * * -9 10 11 12 * * * * * * * * * * * ** ** * ** ** * * * * * * ** ** ** * * * * ω ** ** ** * * * * * * ~ ** 83 9 ** ** ** ** ** ŝ ** ** ** ** \$ ** ** ** ** З ** ** ** ** ** N ** ** ** ** ** ** ** 1 * ~ ** ** ** ** ** * * * 0.4 0.2 0.8 0.6 1.6 1.4 1.0 AVG 1.2

(
FIGURE 16, CONTINUED 3-MONTH RUNNING AVERAGES FOR LEAD	4 003						· ** *** *** · · · · · · · · · · · · ·	** ** ** ** ** ** ** ** **	5 6 7 8 9 10 11 12	85
FIGURE 16, CONTINUED 3-MONTH RUNNING AVERAGES FOR LEAD	¥ 003						· · · · · · · · · · · · · · · · · · ·	** ** ** ** ** ** ** **	5 6 7 8 9 10 11	85
FIGURE 16, CONTINUED 3-MONTH RUNNING AVERAGES FOR LEAD	4 003						· ** *** · · · · · · · · · · · · · · ·	** ** ** ** ** **	5 6 7 8 9 10	85
FIGURE 16, CONTINUED 3-MONTH RUNNING AVERAGES FOR LEAD	V 003						· · · · · · · · · · · · · · · · · · ·	** ** ** ** ** **	5 6 7 8 9	85
FIGURE 16, CONTINUED 3-MONTH RUNNING AVERAGES FOR LEAD	¥ 003						** ***	** ** ** **	5 6 7 8	85
FIGURE 16, CONTINUED 3-MONTH RUNNING AVERAGES FOR LEAD	¥ 003						** **	** ** ** **	5 6 7	85
FIGURE 16, CONTINUED 3-MONTH RUNNING AVERAGES FOR LEAD	¥ 003						*******	* * * * * * * *	5 6	8
FIGURE 16, CONTINUED 3-MONTH RUNNING AVERAGES FOR LEAD	¥ 003						* : * : * :	* * *	2	1
FIGURE 16, CONTINUED 3-MONTH RUNNING AVERAGES FOR LEAD	N 003						*:	* * *	i	1
FIGURE 16, CONTINUED 3-MONTH RUNNING AVERAGES FOR LEAD	V 003							TT	t at	
FIGURE 16, CONTINUED 3-MONTH RUNNING AVERAGES FOR LEAD	N 003						* * *	* * *	m	
FIGURE 16, CONTINUED 3-MONTH RUNNING AVERAGES FOR LEAD	N 003					*	* * * *	* * *	N	
FIGURE 16, CONTINUED 3-MONTH RUNNING AVERAGES FOR LEAD	N 003					۔ + + + *	* * * *	* * *	-	<u>i</u>
FIGURE 16, CONTINUED 3-MONTH RUNNING AVERAGES FOR LEAD	N 003					* *	***	* * *		_
FIGURE 16, CONTINUED 3-MONTH RUNNING AVERAGES FOR 1	N 003					* *	* * * :	* * *		
FIGURE 16, CONTINUEE 3-MONTH RUNNING AVERAGES FC	00 1					ג * ג *	* * * :	* * *	10	
FIGURE 16, CONTIN 3-MONTH RUNNING AVERAGES	-					* *	* * *	* * *	6	1
FIGURE 16, CON 3-MONTH RUNNING AVER	LOWI	į					* * *	* * *	0	
FIGURE 16, 3-MONTH RUNNING AV	OLET	į					* * *	* * *		I
FIGURE 1 3-MONTH RUNNING	1 DC	ļ					*	* * *		84
FIGUF 3-MONTH RUNN	N=N0	ļ					*	* * *	5	
FI 3-MONTH F	TIC.	ļ					* *	* * *		
3-MONT	STA						* *	* * *	100	i i
3 - 1		ļ					**	* * *		
	J						* * *	* * *		i
						*	* * *	* * *		
						* * *	* * *	* * *	12	-
						* * * * * *	* * *	* * *	12	
						* :	* * *	* * *	10	
							* *	* * *	6	İ
		1					* *	* * *	0	i
		1						* * *	1	33
								* * *	0	
								* * *	5	ļ
		ļ					*	* * *	1=	1
		i					* * *	* * *	10	
						*	* * *	* * *	2	1 1 1
						*	* * *			
						* * *	* * * * * * * * *	* * *		i

-171-

										MONTH	YEAR		
FIGURE 16, CONTINUED	3-MONTH RUNNING AVERAGES FOR LEAD STATION=NEW BRITAIN 007							** ** ** ** **	** ** ** ** ** ** ** ** ** ** ** ** **	6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 MONTH	· 83 85 84 84 84		
			 					* * * * * *	· ** *** ** *** ** *** ** ** ** ** ** **	9 10 11			
			1 1 1 1 1 1 1 1 1 1 1 1 1						** ** ** ** ** **	t 5 6 7 8	83		
		+					+	*** ** *** ** *** ** *** **	** ** ** ** ** ** ** ** ** ** ** ** ** ** **	1 2 3 4			
		AVG 1.6 -	1.4	1.2	- 0.1	- 8.0	.0.6	- th - 0		•			

-172-

								TNOM	YEAR
								12	Ī
								12	
								10	
							* * * *	6	
							47 47 47 47	ω	İ
								~	
	1							9	8
	1					*	* * * * *	5	
	1					* * *	* * * * *		1
	1					* * *	* * * * * *	3	
						* * *	* * * * *		ł
						* * * *	* * * * * *		ĺ
						* * * *	* * * * *	i i	<u> </u>
AD					* *	* * * *	* * * * * *	12	1
	1					* * * * *	* * * * * *	i E	į
FOF FOF					* *	* * * * *	* * * * * * * *	i P	i
					* *	* * * * *	* * * * * * * * * * * * * * * * * * * *	i o	i
CONT CRAC					* * * *	* * * * *	* * * * * *	ίœ	i
Y A V					* *	* * * *	* * * * * *	~	77
16 = NG						* * *	* * * * * * * * * * * * * * * * * * * *	0	!
URE NN I I ON	· •					* *	* * * * * * *	5	
FIG RU TAT	1					*	* * * * * *	4	
NTH S						* * *	* * * * * * *	m	
ОМ -						* * * * *	* * * * * *	\sim	
'n						* * * *	* * * * * *		<u> </u>
						* * * *	* * * * *	10	-
					* *	* * * *	* * * * * *		
					* *	* * * *	* * * * * *	10	
					*	****	*****	Ĩ	İ
						****	*****		i
						* * *	*****		i
	1					* * *	* * * * *		83
						* * * *	* * * * * *	9	ł
				•		*	* * * * * *	5	
						* * * *	* * * * * *	17	1
						* * * * * *	* * * * * *	ŝ	
								N	İ
									i
	+	 +	+	+		+	~~ +	· i	

-173-

												MONTH	YEAR	
												1 12		
											* * *	9 10 1	1 7 7	
				 							* * * * * * * * * * * * * * * * * * * *	7 8		
				9 9 7 1 1						* * *	* * * * * * * * * * * * * * * * * * *	5 6	85	
									:	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	3 4		
				 					:	* * * * *	* *	1 2		
	LEAD			? ! ! !					***	****	* * * * * * * * * * * * * * * * * * * *	1 12	-	
INUED	ES FOR N 123			1 1 1 1					* *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	9 10 1		
, CONT	averagi W Haven									* * * * * * * *	* *	7 8	+	
URE 16	I ON=NE									* * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	5 6		
FIG	NTH RU STAT								+ + + +	* * * * * * * * * * * *	* * * * * * * * * * * * * * * *	3 4	1 1 1 1 1	
	3 - M(* * * * * * * * *	* * * * * * * * *	* * * * * * * * * * * * * * * * *	1		
								2	* * * *	* * * *	* * * * * * * * * * * * * * * * * * * *	11 12		
									* * * * * * *	* * * * * * * * *	* * * * * * * * * * * * * * * *	9 10	1 1 1 1 1 1	
			1 1 1 1							* * * * * * * *	* *	7 8	n B	
										* : * : * : * :	* * * * * * * * * * * * * * * * * * * *	5 6	} 	
									* * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	1 3 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
			+			+	+	* *	* * * * * * * * * * * * * * * * * * * *	* * * * : * * * : * * * :	* *			
		AVG	1.6	1.4	1.2	1.0	0.8			0.4	0.2			

-174-

		:											MONTH	YEAR
						!				-		* *	N	
								•				* *		1 1 1
												* * *	0	
						1						* * *	6	i
												* * *	0	
						1 1						* * *		5
												* * *	9	α I
						1 1 1						* * * *	12	
												* * * *	4	
											1	* * * * * *	5	
											* :	* * * * * *	\sim	
						1					* * :	* * * * * *	-	
		AD				1 1 1					* * :	* * * * * *	12	1
											* * *	* * * * * *	=	
	JED	FOF	N								* :	* * * * * *	12	
	LINU	GES	10 >								:	* * * * * *	6	
	LNOC	ERAC	4AL4								:	* * * * * *	8	
	ý.	AVE	VORN								* :	* * * * * *	~	34
,	щ Ц	I NG	I=NO			 					* :	* * * * * *	0	
	GUR	NNN	ATI			t 1					:	* * * * * *	5	
	Ц.	Н В	ST			[] [* :	* * * * * *	- 1	
		ONT				 					* :	* * * * * *	3	
		3-M				1					* * * * *	* * * * * *	\mathbb{N}	
						1					* * * * :	* * * * * * * * * * * *	[-
										3	* * * * * * * * * * * * * * * * * * * *	* * * * * *	12	-
						1				* *	* * * * * * *	* * * * * *	=	
											* * * :	* * * * * *	10	
											* * :	* * * * * *	10	
											:	* * * * * *	iα	i I
						1						* * * * *	1	83
												* * * *	9	ł
						1 1 1						* * * *	5	
												* * * * *	1	
						1 1 1						* * * * * *	3	
										الم الله الله	***:	*****		
										***	****	* * * * * *		÷
				AVG	9.1		2. 2. 1.	, <u> </u>	8.0	0.6	- 17	0.2	•	

-175-

MONTH YEAR * * * * 9 10 11 12 -----* * ** * ** ** * * * * * * ω 1 ** * * * ~ 85 * * * * * v * * * * ŝ \$ * * * * * ŝ * * * * N i * * * * * * -9 10 11 12 3-MONTH RUNNING AVERAGES FOR LEAD * * * * ** FIGURE 16, CONTINUED STATION=STAMFORD 001 ** ** ** * * * * ** ω * * * * ** * * 2 * * * ** 84 * * 9 ** ** S ** * * ** 4 * * ** ** ** ŝ ** ** ** N ** ** ** * * ** * * * * * * * ----1 10 11 12 * * * ** * * * * * * * ** ** ** ** ** * * * * * * ** * * 9 * ** ** * * * * * * ω ** * * * * * \sim ** 83 * * 9 * * ** ŝ ** 4 ** ** ** ** ŝ ** ** ** * * N ** ** ** * * ** ** 1 -** * ** ** * ** * * ** ** 0.2 AVG 0.8 0.6 0.4 1.6 1.4 1.2 1.0

-176-

								MONTH	YEAR
							* * *	1 12	-
								0	
								6	
						-	* * * * *	ø	
							* * * * * * * * * * * * * * * * * * *	~	1
							*****	9	80
							* * * * * *	5	
						* :	* * * * * *	1	
						* *	* * * * * *	3	
		• •				*	* * * * * *	\sim	
	i					* *	* * * * * *		<u> </u>
٩D						* *	* * * * *	12	-
Ē						* * *	* * * * * *	12	
ED FOR 22						* *	* * * * * *	10	1 1
TINU ES						* * *	* * * * * *	0	
:RAG IFOR						* * *	* * * * * *	8	ł
, C AVE STAM						* * *	* * * * * *	~	34
E 16 NG						* *	* * * * * *	9	1
SURE JNNI						*	* * * * * *	5	
FIC STA						*	* * * * * *	i	ļ
ILL						* *	* * * * * *	i m	
3 - M(* *	* * * * * *		
						* *	* * * * * *	-	<u>-</u>
						* *	* * * * * *	12	1
						* * *	* * * * * *	Ξ	i i i
						* * * *	* * * * * *	10	5
						* * * * * *	* * * * * *	10	
						* * * *	* * * * * *	∞	İ
						* * *	* * * * * *	-	83
		1				* * * *	* * * * * *	10	
						*	* * * * * *	12	1 1 1
		1				*	* * * * * *	17	
					-	* *	* * * * * *	3	
			÷			* * * *	· · · · · · · ·	N	
		1 1 1		 k _	* * * * * * * * *	* * * * *	* * * * * *		<u>-</u>
	AVG 1.6 +	+ 	1.2	 8.0	0.6	0.4	0.2	×	

-177-

											MONTH	YEAR
				l						* *	12	:
										* *	1	1
										* * *	10	1
										* *	6	1
				1 K 5						* *	0	1 1 1
										* * *	~	5
				8						* * * * * *	0	eo !
										* * * * *	5	
										* * * * * * * *	1	
										* * * * * *	m	
				i					* *	* * * * * *	\sim	
									* * * * * * * *	* * * * * *	-	1
	AD								* * *	* * * * * *	2	-
	Ц								* *	* * * * * *	=	
E	FOR	001		F 1 1						* * * * * *	2	
NN I	ES	RD								* * * * * *	6	
I NO	RAG	IGFO		1						* * * * * *	8	1
ວ ລ	AVE	LIN								* * * * * *		4
- 10	NG	MAL								* * * *	9	α I
UKE	NN	=NO								* * * * *	5	
-	H R(LAT I								* * * *	ŧ	1 1 2
	NTI	S								* * * * * *	ŝ	
	3-M(*	* * * * * *	N	
									* * * * * *	* * * * * *	-	<u> </u>
									* * * *	* * * * *	2	
									* * *	* * * * * *	Ξ	
									*	* * * * * *	0	
									•	* * * * * *	6	
										* * * *	ø	
										* * * * *	-	ŝ
										* * * * * *	9	α I
				1						* * *	5	
										 	4	
				1					* *	 * * * * * * * * * * *	ŝ)
									* * * * * *	 * * * * * * * * * *	2	-
				1				* *	* * * * *	 		<u> </u>
			+		+	+	+	+	+ +	-+		
			1.(1.(0.5	0.6	0.1	0.5		

-178-

												MONTH	YEAR	
											* * *	12	-	
		-		i							* * *	11	ł	
											* * *	10		
											* * *	6		
											* * *	0		
											* * * * * * * *		5	
				1							* * * * *	19	00 1	
											* * * * * *	5		
				1	1 					*	* * * * * *	- +		
				1						* * *	* * * * *	1 00		
									1	* * * *	* * * * *			
									* * :	* * * *	* * * * * *	-	<u> </u>	
	D				 				* * :	* * * *	* * * * *	1	-	
	LEA				 				* * *	* * * *	* * * * * *	-		
Ω	OR	7							* 3	* * * *	* * * * * *	10		
NUE	SF	00								* * *	* * * * *	16	1	
NTI	AGE	URΥ								* * *	* * * * * *	1 00	1	
00	VER	ERB								* * *	* * * * * *		1	
16,	v ک	WAT			-					* * *	* * * * * *	9	84	
RE	Ň	i=NO								* *	* * * * * *	10	1	
I GU	RUN	ATE		1						*	* * * * * *	++	1	
	ΗI	ST		1						* *	* * * * * *	3	1	
	MOM								;	* * *	* * * * * *			
	3-								* * :	****	* * * * *			
									* * *	* * * *	* * * * *		_	
				1					* * * * * *	* * * *	* * * * * *	12		
									* * * * * *	* * * *	* * * * * *	1		
				1					* *	* * * *	* * * * *	10		
				1					3	* * * *	* * * * * *	10		
				1						* * * *	* * * * * *	0	ł	
				1						* *	* * * * *	7	83	
										* *	* * * * * *	19	-	
											* * * * * *	10		
										* * * *	* * * * * *	1		
				1					* * *	* * * * * * * *	* * * * * *	i m	Ì	
								*	* * * * * * *	* * * *	* * * * * *	i N	1	
				1				* *	* * * * * * * * * * * * * * * * * * * *	* * * *	* * * * * *	1	i 	
			с	+ 9	+ \$	+ N	-+	+ ∞	+ 0	+ t	~+	• 1		
			A٧	÷.	÷.	-	 -	0.	.0	0.	0.			

-179-

			MONTH
FIGURE 16, CONTINUED 3-MONTH RUNNING AVERAGES FOR LEAD STATION=WATERBURY 123			*** *** *** *** *** *** *** *** *** **
		+*************************************	**************************************
	- 1 1 1 1 1 1 1 1 1 1 1	* *	**************************************
AVG 		0.0 0 0 0 0 0 0 0 0 0 0 0 0 0	-+

-180-

-181-

ANNUAL AVERAGE LEAD CONCENTRATIONS

SITE: BRIDGEPORT-123

 \langle

ANNUAL AVERAGE LEAD CONCENTRATIONS

SITE: BRISTOL-001

ANNUAL AVERAGE LEAD CONCENTRATIONS

SITE: MERIDEN-002

YEAR

ANNUAL AVERAGE LEAD CONCENTRATIONS

SITE: MIDDLETOWN-003

-185-

FIGURE C, CONTINUED

ANNUAL AVERAGE LEAD CONCENTRATIONS

SITE: NEW HAVEN-123

FIGURE C, CONTINUED

 $\begin{pmatrix} & & \\ & & \end{pmatrix}$

ANNUAL AVERAGE LEAD CONCENTRATIONS

SITE:WALLINGFORD-001

FIGURE C, CONTINUED

ANNUAL AVERAGE LEAD CONCENTRATIONS

SITE: WATERBURY-123

-188-

FIGURE D

3-YEAR RUNNING AVERAGE LEAD CONCENTRATIONS

SITE: BRIDGEPORT-123

3-YEAR RUNNING AVERAGE LEAD CONCENTRATIONS

SITE: BRISTOL-001

FIGURE D, CONTINUED

 $\langle \langle \rangle$

3-YEAR RUNNING AVERAGE LEAD CONCENTRATIONS

SITE: MERIDEN-002

3-YEAR RUNNING AVERAGE LEAD CONCENTRATIONS

SITE: MIDDLETOWN-003

-192-

FIGURE D, CONTINUED

3-YEAR RUNNING AVERAGE LEAD CONCENTRATIONS

SITE: NEW HAVEN-123

FIGURE D, CONTINUED

3-YEAR RUNNING AVERAGE LEAD CONCENTRATIONS

SITE: WALLINGFORD-001

3-YEAR RUNNING AVERAGE LEAD CONCENTRATIONS

SITE: WATERBURY-123

VIII. ACID PRECIPITATION

MONITORING PROGRAM

Recently, there has been a growing public concern about the occurrence and effects of atmospheric deposition, most notably acid precipitation or "acid rain." It has become apparent that, in order to address this concern, basic data need to be collected on the chemical properties of precipitation. Recognizing this, the State of Connecticut, through the Department of Environmental Protection, has agreed to cooperate with the Water Resources Division of the United States Geological Survey (USGS) to establish the Connecticut Atmospheric Deposition Monitoring Program.

PROGRAM OBJECTIVES

The program is designed to collect and analyze precipitation on an event basis and has the following objectives:

- (1) to determine selected chemical and physical properties of precipitation in Connecticut;
- (2) to determine the spatial and temporal distribution of precipitation chemistry in the State;
- (3) to determine the relationships between precipitation chemistry and meteorological conditions, such as storm track and air mass movement;
- (4) to provide baseline information that can be used to determine trends and estimate loads; and
- (5) to use techniques and methodologies consistent with those of the national monitoring networks in order to provide comparative information.

DATA COLLECTION SITES

Data collection sites have been established according to siting criteria used in the National Atmospheric Deposition Program (NADP). Use of these criteria ensures the validity of comparisons made between data which are collected through Connecticut's program and data from other atmospheric deposition programs. Other objectives considered during the siting process were the collection of samples representative of different geographic areas of the State, and the sampling of precipitation representative of long-range transport and not merely local sources. Using these criteria, precipitation sampling sites were established in the towns of Plainfield, Marlborough and Litchfield (Morris Dam). The locations of these sites are shown in Figure 17.

EQUIPMENT

Each site is equipped with a Geo Filter automatic wet-dry sensing precipitation collector. This collector is the same type as those used by the NADP and the National Trends Network (NTN). The collector operates when precipitation wets an electronic sensor, completing an electrical circuit. This activates a motor that opens a lid over the sample container when the precipitation event begins and closes the lid when the precipitation ceases. The purpose of the lid is to retard the loss of samples through evaporation and to prevent contamination by dry fallout.

Each site is also equipped with an automatic rain gage which provides a record of the quantity of rain at 15-minute intervals.

In addition to the above equipment, a prototype precipitation quality monitor is being tested at the Plainfield site. Developed by the USGS Hydrologic Instrumentation Facility, the monitor consists of a wet-dry sensing precipitation collector fitted with a funnel in place of a collection container. Precipitation flows from the funnel through tubing to a series of sensors. The sensors continuously measure pH, temperature and specific conductance throughout a precipitation event and record the data at pre-selected intervals. Precipitation quantity is measured by a tipping-bucket type rain gage.

DATA COLLECTION

Samples of precipitation are gathered from the automatic collectors as soon as possible following the end of a precipitation event, in most cases within 24 hours. The samples are immediately tested for acidity through pH measurements. The samples are also tested for specific conductance, which is a measure of the ions in solution -- the dissolved solids in solution -- which is a measure of the pollutant load. The results of this testing for the three precipitation sampling sites are tabulated from 1981 in Tables 28, 29 and 30. The results for 1985 are illustrated in Figures 18 through 26.

Samples from selected precipitation events are also sent to a USGS laboratory for further analyses to determine the concentrations of additional chemical constituents, including major anions, cations, nutrients and trace metals.

Through the Connecticut Atmospheric Deposition Monitoring Program, a network capable of providing uninterrupted baseline data on precipitation quality within the State has been developed. Data collected through the program is currently being published monthly by the USGS in its report, Water Resources Conditions in Connecticut. When using the data, one should note that it is specific only to the time and place of its collection.

DISCUSSION OF DATA

Presently, data that has been collected in the initial stages of the study is being analyzed to determine, on a preliminary basis, the distribution and magnitude of atmospheric deposition in Connecticut. Because precipitation chemistry is a function of air quality and climate, both of which fluctuate over time and space, several more years of continuous data collection will be necessary to develop an adequate baseline to determine trends accurately and to more fully define the controlling processes. However, a preliminary evaluation of the data indicates that the precipitation occurring within Connecticut has been chemically affected by man-made contaminants. The data show that 24 32 percent of all the precipitation events studied to date have had a pH of 4.0 or below. Moreover, the yearly percentage of these low pH occurrences has increased significantly over the last three years from 23 20% in 1983 to 32% in 1985. Further evaluation of the data may provide more information on the source of the contaminants and the effects upon the environment.

It is important to stress that it is presently difficult to forecast statewide trends in the chemical properties of precipitation, or to perform comparative analyses, because of a lack of a large long-term data base. Generally, a 20-year or greater period of record is an acceptable statistical data base. When performing comparative analyses, some hydrologic data bases use 60 years or more of record keeping. Therefore, it should be apparent that data collection under the Connecticut Atmospheric Deposition Monitoring Program must continue until a sufficient period of record has been obtained.

Further information is available from the Water Resources Division, United States Geological Survey, 450 Main Street, Hartford, Connecticut 06103 at (203) 722-2528, or from the Natural Resources Center, Department of Environmental Protection, 165 Capitol Avenue, Hartford, Connecticut 06106 at (203) 566-3540.

TABLE 28

ATMOSPHERIC DEPOSITION DATA FOR THE PLAINFIELD SITE

Event <u>Number</u>	Period of Collection	Specific <u>Conductance</u>	рH	Inches of Precipitation
1 2 3 4 5 6	10/23/81 - 10/27/81 11/14/81 - 11/16/81 12/01/81 - 12/02/81 12/14/81 12/15/81 - 12/16/81 12/27/81 - 12/28/81	15 15 14 12 12 51	4.5 4.5 4.4 4.6 4.0	2.30 1.01 2.68 0.58 2.90 0.20
1 2 3 4 5 6 7 8 9 10	01/04/82 - 01/05/82 04/26/82 - 04/27/82 05/29/82 - 05/31/82 06/02/82 06/04/82 - 06/06/82 07/28/82 - 07/29/82 08/09/82 08/09/82 11/28/82 - 11/29/82 12/16/82	15 11 18 5 10 18 25 31 8 16	4.8 4.4 5.0 5.1 4.4 4.2 4.8 4.9	2.70 0.99 1.43 2.86 4.28 0.11 0.96 0.71 0.98 0.85
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23	01/05/83 - 01/06/83 01/13/83 01/22/83 - 01/24/83 01/29/83 - 01/31/83 02/03/83 02/06/83 - 02/07/83 02/11/83 - 02/12/83 03/02/83 03/02/83 03/06/83 - 03/09/83 03/19/83 - 03/21/83 03/27/83 - 03/28/83 04/03/83 04/10/83 04/10/83 04/10/83 04/16/83 - 04/17/83 04/19/83 - 04/20/83 04/24/83 05/31/83 06/04/83 06/27/83 - 06/28/83 07/06/83 07/22/83 07/25/83	15 18 8 26 14 13 6 17 26 47 20 22 32 13 16 13 15 30 41 68 27 79 38	4.4 4.7 4.9 4.2 4.7 4.9 4.5 4.2 4.5 4.2 4.5 4.2 4.5 4.2 4.5 4.2 4.5 4.2 4.5 4.2 4.5 4.2 4.5 4.2 4.5 4.2 4.5 4.2 4.5 4.2 4.5 4.2 4.5 4.5 4.2 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	0.49 0.78 1.17 0.36 1.21 0.44 0.04 1.09 0.37 1.37 1.91 1.11 0.02 2.37 0.96 2.84 2.42 1.47 0.99 1.22 0.38 0.25 0.29
24 25	08/11/83 - 08/12/83 09/12/83	39 87	4.0 3.7	1.60 0.54

TABLE 28, CONTINUED

Event		Specific		Inches of
Number	Period of Collection	<u>Conductance</u>	<u>pH</u>	Precipitation
26	09/23/83	14	4.7	0.95
27	10/01/83 - 10/02/83	17	4.4	1.33
28	10/12/83 - 10/13/83	4	5.4	1.10
29	10/18/83	45	4.0	0.28
3U 21	10/23/83 - 10/25/83	8	4.8	1.15
20	11/03/83 - 11/04/83	30	4.2	0.60
32	11/15/92 11/16/93	17	4.4	1.08
33	11/0/03 - 11/10/03	8	4.8	2.46
35	11/21/03	14 E	4.6	0.69
36	11/28/83 - 11/29/83	25	5.2 4.3	2.89 0.97
1	01/10/84 - 01/11/84	24	4.2	0.81*
2	01/18/84 - 01/19/84	52	4.1	0.30*
3	01/24/84	25	4.3	0.32
4	02/03/84 - 02/05/84	24	4.3	1.47
5	02/11/84	37	4.1	0.30
6	02/14/84 - 02/18/84	37	4.9	1.58
/	02/24/84 - 02/25/84	25	4.4	0.81
8	02/28/84 - 03/01/84	11	4.6	1.88
9	03/05/84	54	3.9	0.40
10	03/13/84 - 03/14/84	20	4.2	1.24
12	03/16/64 - 03/19/84	11	4.5	0.42
12	02/22/04	22	4.3	0.58
14	03/20/04 - 03/30/04	10	4.8	1.03
15	04/05/04 04/14/84 = 04/15/84	21	4.0	1.96
16	04/23/84 = 04/23/84	2 I 6 2	4.5	0.07
17	05/03/84 - 05/04/84	02 / Q	5.9	0.12
18	05/08/84	40	4.0	1.05
19	05/12/84 - 05/14/84	62	30	0.42
20	05/19/84 - 05/21/84	69	3.5	1.05
21	05/27/84 - 05/31/84	21	43	5.85
22	05/31/84 - 06/03/84	8	4.8	0.88
23	06/19/84	71	3.8	0.49
24	06/24/84	16	4.5	0.52
25	06/27/84 - 06/29/84	51	4.0	0.75
26	07/09/84	14	4.5	3.50
27	07/16/84	54	3.9	0.62
28	07/19/834	36	4.0	1.07
29	07/23/84	8	5.0	1.08
30	07/27/84	45	4.0	0.41
31	09/04/84	50	3.9	0.66
32	09/12/84	39	4.1	0 19

* Water equivalent of snowfall

()

TABLE 28, CONTINUED

Period of Collection	Specific Conductance	рH	Inches of Precipitation
		<u> <u> </u></u>	
09/15/84	31	4.2	1.07
10/01/84 - 10/02/84	12	4.6	2.31
10/22/84 - 10/23/84	17	4.5	1 67
10/23/84 - 10/24/84	25	4.4	0.15
10/26/84 - 10/29/84	38	4.0	1.22
11/05/84	6	5.0	0 55
11/11/84	8	4.8	1.79
11/15/84	55	4.0	0.18
11/29/84	17	4.7	0 42
12/03/84	21	4.4	0.65
12/05/84 - 12/06/84	10	4.7	1.19*
12/19/84	40	4.1	0 33
12/21/84 - 12/22/84	47	4.0	0.91*
01/01/85 - 01/02/85	32	4.1	0.40
01/04/85 - 01/05/85	73	4.1	0.23*
01/08/85	34	4.2	0.99*
01/17/85	40	4.4	0.19*
01/19/85 - 01/20/85	54	4.0	0.06*
02/01/85 - 02/02/85	31	4.2	1.88*
02/05/85 - 02/06/85	23	4.3	2.01*
03/04/85 - 03/05/85	53	4.0	3.67*
03/07/85 - 03/08/85	35	4.1	0.39
03/12/85	32	4.2	1.09
03/18/85 - 03/19/85	82	3.9	0.11
03/31/85 - 04/01/85	32	4.2	0.53
04/07/85 - 04/08/85	32	4.3	0.32
04/14/85 - 04/15/85	96	3.8	0.03
04/22/85	70	3.8	0.05
04/26/85 - 04/28/85	135	3.6_	0.10
05/02/85 - 05/06/85	25	4.4	2.31
05/18/85 - 05/19/85	11	5.1	0.06
05/27/85 - 05/28/85	20	4.4	1.31
06/01/85	14	4.6	0.39
06/05/85	24	4.3	0.80
06/08/85	98	3.7	0.06
06/16/85 - 06/17/85	37	4.1	1.15
06/24/85	36	4.1	0.39
06/25/85 - 06/29/85	15	4.5	1.15
07/03/85	93	3.7	0.16
07/06/85 - 07/07/85	41	4.1	0.25
07/09/85	74	3.7	0.33
07/12/85 - 07/14/85	113	3.6	0.35
07/15/85	59	3.9	0.35
	Period of Collection 09/15/84 10/01/84 - 10/02/84 10/22/84 - 10/23/84 10/23/84 - 10/24/84 10/26/84 - 10/29/84 11/05/84 11/15/84 11/15/84 12/03/84 12/03/84 12/05/84 - 12/06/84 12/19/84 12/21/84 - 12/22/84 01/01/85 - 01/02/85 01/04/85 - 01/05/85 01/04/85 - 01/02/85 01/04/85 - 01/02/85 01/04/85 - 01/02/85 01/04/85 - 01/02/85 01/04/85 - 01/02/85 01/04/85 - 01/02/85 02/01/85 - 02/02/85 02/01/85 - 02/02/85 02/01/85 - 02/02/85 03/04/85 - 03/08/85 03/07/85 - 03/08/85 03/12/85 03/12/85 03/18/85 - 03/19/85 03/11/7/85 04/07/85 - 04/01/85 04/07/85 - 04/01/85 04/07/85 - 04/15/85 04/14/85 - 04/15/85 04/22/85 04/26/85 - 04/28/85 05/02/85 - 05/06/85 05/18/85 - 05/19/85 05/27/85 - 05/28/85 06/01/85 06/05/85 06/01/85 06/024/85 06/024/85 06/24/85 07/03/85 07/06/85 - 07/07/85 07/09/85 07/12/85 - 07/14/85 07/12/85 - 07/14/85 07/12/85 - 07/14/85	Period of Collection Specific Conductance 09/15/84 31 10/01/84 - 10/02/84 12 10/22/84 - 10/23/84 17 10/23/84 - 10/24/84 25 10/26/84 - 10/29/84 38 11/05/84 6 11/11/84 8 11/15/84 55 11/29/84 17 12/03/84 21 12/05/84 - 12/06/84 10 12/19/84 40 12/21/84 - 12/22/84 47 01/01/85 - 01/02/85 32 01/04/85 - 01/02/85 32 01/04/85 - 01/02/85 31 02/05/85 - 02/06/85 23 03/04/85 - 03/05/85 33 03/04/85 - 03/05/85 32 03/12/85 32 03/18/85 - 04/15/85 32 03/18/85 - 04/15/85 32 03/18/85 - 04/15/85 32 03/18/85 - 05/19/85 135 05/02/85 - 04/28/85 135 05/02/85 - 05/28/85 25 05/18/85 - 06/17/85 37<	Period of Collection Specific Conductance pH 09/15/84 31 4.2 10/01/84 - 10/02/84 12 4.6 10/22/84 - 10/23/84 17 4.5 10/23/84 - 10/24/84 25 4.4 10/26/84 - 10/29/84 38 4.0 11/05/84 6 5.0 11/11/84 8 4.8 11/15/84 17 4.7 12/03/84 17 4.7 12/03/84 21 4.4 12/05/84 - 12/06/84 10 4.7 12/21/84 12/22/84 47 4.0 01/01/85 - 01/02/85 32 4.1 01/04/85 - 01/20/85 34 4.2 01/17/85 40 4.4 01/19/85 - 01/20/85 53 4.0 02/01/85 - 02/02/85 31 4.2 01/17/85 40 4.4 01/19/85 - 03/08/85 35 4.1 03/07/85 - 03/08/85 35 4.1 03/12/85 - 03/19/85 82

TABLE 28, CONTINUED

Event <u>Number</u>	Period of Collection	Specific <u>Conductance</u>	<u>pH</u>	Inches of Precipitation
31	07/21/85	80	3.8	1 62
32	07/26/85 - 07/27/85	20	4.3	1 30
33	07/31/85 - 08/01/85	65	3.8	2 19
34	08/07/85 - 08/08/85	29	4.1	0.24
35	08/15/85	74	3.8	0.11
36	08/25/85 - 08/26/85	13	4.4	1.51
37	08/30/85 - 08/31/85	49	3.9	1 30
38	09/04/85 - 09/05/85	58	3.9	0.66
39	09/06/85 - 09/08/85	43	4.0	0.99
40	09/09/85 - 09/10/85	77	3.8	0.44
41	09/24/85	6	5.4	0.41
42	10/03/85 - 10/04/85	87	3.9	0.26
43	10/05/85	21	4.4	0.53
44	10/13/85 - 10/15/85	51	4.1	0.41
45	10/19/85	99	3.6	0.19
46	10/25/85	13	4.6	0.22
47	11/05/85 - 11/06/85	9	4.7	2.61
48	11/11/85 - 11/12/85	44	4.0	0.75
49	11/14/85	50	4.0	0.19
50	11/16/85 - 11/17/85	6	4.8	1.23
51	11/22/85 - 11/24/85	29	4.2	0.56
52	11/26/85 - 11/27/85	35	4.1	0.68
53	11/28/85 - 11/30/85	28	4.2	0.82
54	12/11/85	54	3.9	0.50
55	12/13/85	29	4.3	0.14
56	12/20/85 - 12/23/85	46	4.0	0.70*

TABLE 29

ATMOSPHERIC DEPOSITION DATA FOR THE MORRIS DAM SITE

Event		Specific		Inches of
<u>Number</u>	Period of Collection	Conductance	Нq	Precipitation
1	12/16/82	22	4.5	1.18
1	01/05/83 - 01/06/83	18	4.4	0 64
2	01/10/83 - 01/11/83	6	4.9	2.39
3	01/23/83	13	4.5	1.45
4	02/02/83 - 02/03/83	19	4.4	1.89
5	02/06/83 - 02/07/83	50	4.0	0.45*
6	02/11/83 - 02/12/83	9	4.9	1.30*
7	02/17/83	46	4.0	0.21
8	03/02/83	22	4.3	0.27
9	03/07/83 - 03/09/83	37	4.1	1.22
10	03/19/83 - 03/21/83	14	4.5	1.29
11	03/27/83 - 03/28/83	18	4.4	1.29
12	04/03/83	11	4.7	1.07
13	04/10/83	9	4.6	2.70
14	04/16/83 - 04/17/83	10	4.5	2.61
15	04/19/83 - 04/20/83	23	4.3	1.27
16	04/24/83	16	4.5	1.35
17	05/15/83 - 05/16/83	35	4.1	0.87
18	05/29/83 - 05/30/83	39	4.1	0.81
19	06/04/83	49	3.9	1.39
20	06/28/83	58	3.9	1.71
21	07/05/83	67	3.9	1.54
22	07/25/83	46	4.1	0.75
23	08/11/83 - 08/12/83	49	3.9	1.60
24	09/12/83	65	3.8	0.24
25	09/23/83	20	4.5	0.94
26	10/01/83 - 10/02/83	9	4.6	1.18
27	10/12/83 - 10/13/83	6	4.9	3.34
28	10/18/83	30	4.1	0.33
29	10/23/83 - 10/25/83	9	4.8	2.32
30	11/03/83 - 11/04/83	80	3.8	0.11
31	11/10/83	40	4.2	0.94
32	11/15/83 - 11/16/83	10	4.6	1.64
33	11/21/83	14	4.6	0.57
34	11/24/83 - 11/25/83	21	4.5	1.45
35	11/28/83 - 11/29/83	24	4.3	0.71
30	12/06/83	32	4.2	1.04
3/	12/12/83 - 12/14/83	26	4.5	3.41
1	01/10/84 - 01/11/84	12	4.5	0.47*

TABLE 29, CONTINUED

Event		Specific		Inches of
<u>Number</u>	Period of Collection	<u>Conductance</u>	<u>pH</u>	Precipitation
2	01/18/84 - 01/19/84	45	4.0	0.21*
3	01/24/84	34	4.0	0.21
4	01/30/84 - 01/31/84	22	43	0.43
5	02/03/84 - 02/05/84	41	4.0	0.69
6	02/11/84	43	4.0	0.48
7	02/14/84 - 02/16/84	23	4.7	1.53
8	02/24/84 - 02/25/84	80	3.8	0.86
9	02/28/84 - 03/01/84	10	4.6	1.34
10	03/05/84 - 03/06/84	25	4.2	0.53
11	03/18/84 - 03/19/84	30	4.1	0.52
12	03/21/84	24	4.3	0.65
13	03/28/84 - 03/30/84	10	4.8	1.61*
14	04/05/84	25	4.4	2.79
15	04/13/04 - 04/10/84	32	4.2	1.25
17	04/23/84 - 04/24/84	1/	4.0	0.55
18	05/08/84	20	4.2	1.24
19	05/12/84 - 05/14/84	54 55	4.2	0.99
20	05/19/84 - 05/21/84	78	3.3	0.77
21	05/25/84	19	ΔΔ	0.21
22	05/27/84 - 05/31/84	13	45	6 11
23	05/31/84 - 06/03/84	5	5.0	0.74
24	06/24/84 - 06/25/84	20	4.3	0.87
25	06/27/84 - 07/01/84	39	4.0	0.60
26	07/09/84	24	4.2	0.23
27	07/16/84	62	3.9	0.71
28	07/19/84	52	4.0	0.53
29	07/27/84	18	4.4	0.70
30	09/04/84	50	3.9	0.80
31	09/12/84	20	4.4	0.22
32	10/01/84 - 10/02/84	8	4.8	0.51
27	10/22/84 - 10/23/84	20	4.4	0.91
34	10/25/64 - 10/24/64	55	4.4	0.07
36	11/05/84	01	3.8 E 0	0.63
37	11/29/84	0 15	5.0	0.96
38	12/03/84	33	4.0	0.54
39	12/05/84 - 12/06/84	10	5.0	0.54
40	12/19/84	39	4 1	0.40
41	12/21/84 - 12/22/84	46	3.9	0.33
1	01/01/85 - 01/02/85	31	4.1	0.28
2	01/08/85	24	4.3	0.10*
3	01/17/85	11	4.7	0.29*

TABLE 29, CONTINUED

Event		Specific		Inches of
Number	Period of Collection	<u>Conductance</u>	<u>pH</u>	Precipitation
4	01/19/85 - 01/20/85	66	4.1	0.13*
5	01/31/85	57	3.9	0.05*
6	02/01/85 - 02/02/85	31	4.2	0.30*
/	02/05/85 - 02/06/85	28	4.2	0.64*
8	02/12/85	14	4.5	1.38
9 10	03/04/85 - 03/05/85	60	3.9	0.69*
11	03/31/85 - 04/01/85	30	4.2	1.23
12	04/07/85 - 04/08/85	30 15	4.1	0.30
13	04/14/85 - 04/15/85	40 50	4.1	0.30
14	04/19/85	27	4.1	0.00
15	04/22/85	53	4.0	0.10
16	04/26/85 - 04/28/85%	38	3.6	0.04
17	05/02/85 - 05/06/85	25	4.3	2.37
18	05/18/85 - 05/19/85	16	4.6	0.30
19	05/27/85 - 05/28/85	21	4.4	1.56
20	06/01/85	16	4.5	1.20
21	06/05/85	25	4.3	0.77
22	06/12/95	/1	3.9	0.22
23	06/16/95 06/17/95	55	3.9	0.21
25	06/18/85	28	4.2	1.02
26	06/24/85	96	3.9 27	0.07
27	06/25/85 - 06/29/85	27	4.2	0.11
28	07/03/85	80	37	0.25
29	07/06/85 - 07/07/85	30	4.2	0.47
30	07/09/85	65	3.8	0.29
31	07/12/85 - 07/14/85	67	3.8	0.77
32	07/15/85	83	3.8	0.15
33	07/21/85	108	3.7	1.44
34	0//26/85 - 0//27/85	21	4.3	1.27
33	07/31/85-08/01/85	90	3.7	1.35
30	00/11/00	/0	3.8	0.19
38	08/30/85 - 08/31/85	17	4.2	2.48
39	09/04/85 - 09/05/85	22	5.0 12	0.54
40	09/06/85 - 09/08/85	22	4.5	1.03
41	09/09/85 - 09/10/85	33	4.J 4 1	1.36
42	09/24/85	8	4.9	0.54
43	09/27/85	12	5.0	3.68
44	10/03/85 - 10/04/85	35	4.1	0.47
45	10/05/85	32	4.1	1.30
46	10/13/85 - 10/15/85	68	3.8	0.36
47	10/19/85	89	3.7	0.11
TABLE 29, CONTINUED

Event <u>Number</u>	Period of Collection	Specific <u>Conductance</u>	<u>pH</u>	Inches of Precipitation
48	10/25/85	10		0.27
49	11/05/85 - 11/06/95	15	4.4	0.27
	11/05/05 - 11/00/05	0	4.9	1.06
50	1 1/1 1/85 - 11/12/85	43	4.0	1.01
51	11/14/85	54	4.0	0.41
52	11/16/85 - 11/17/85	7	47	1 40
53	11/22/85 - 11/24/85	13	45	0.31
54	11/26/85 - 11/27/85	53	3 9	0.51
55	11/28/85 - 11/30/85	10	1.5	0.70
56	10/10/05	19	4.5	0.97
50	12/13/85	24	4.3	0.21
57	12/20/85 - 12/23/85	41	4.1	0.39*

ATMOSPHERIC DEPOSITION DATA FOR THE MARLBOROUGH SITE

Event	Deviad of Collection	Specific		Inches of
Number	Period of Collection	Conductance	<u>pH</u>	Precipitation
1	05/29/83 - 05/31/83	36	4.1	1.39
2	06/04/83	42	4.1	0.99
3	06/27/83 - 06/28/83	75	3.8	2.63
4	07/05/83 - 07/06/83	89	3.7	0.27
5	07/21/83	46	4.0	0.39
07	09/11/22 00/12/02	40	4.0	0.91
2 2	00/12/02	27	4.2	1.75
Ğ	03/23/03 10/01/82 10/03/93	11	4./	1.18
10	10/07/83 - 10/02/83	5 10	4.8	2.22
11	10/18/83	20	4.0	1.22
12	10/23/83 - 10/24/83	Σ Δ	4.2	1 07
13	11/03/83 - 11/04/83	38	4.0	0.75
14	11/10/83	20	4.4	1 27
15	11/15/83 - 11/16/83	6	4.9	1.73
16	11/21/83	12	4.7	0.49
17	11/24/83 - 11/25/83	7	4.9	2.43
18	11/28/83 - 11/29/83	. 21	4.4	1.04
19	12/06/83	30	4.3	0.68
20	12/12/83 - 12/14/83	40	4.6	1.89
1	01/10/84 - 01/11/84	7	4.7	0.77*
2	01/18/84 - 01/19/84	38	4.1	0.62*
3	01/24/84	23	4.4	0.18
4	01/30/84 - 01/31/84	36	4.1	0.64*
5	02/03/84 - 02/05/84	28	4.2	0.83
7	02/11/84	50	3.9	0.20
8	02/14/04 - 02/10/04	16	4.9	0.83
ğ	02/24/84 = 02/23/84 02/28/84 = 03/01/84		4.5	1.20
10	03/04/84 - 03/06/84	26	4.0	1.57
11	03/13/84 - 03/14/84	10	4.2	0.20
12	03/18/84 - 03/19/84	48	39	0.27
13	03/21/84	15	4.4	0.47
14	03/28/84 - 03/30/84	6	5.0	0.44*
15	04/05/84	25	4.4	2.47
16	04/13/84 - 04/16/84	20	4.4	2.12
17	04/23/84 - 04/24/84	15	4.6	0.52
18	05/03/84 - 05/04/84	34	4.1	1.37
19	05/08/84	35	4.1	0.48
20	U5/12/84 - 05/14/84	44	40	0.57

TABLE 30, CONTINUED

Event		Specific		Inches of
Number	Period of Collection	<u>Conductance</u>	рH	Precipitation
21	05/19/84 - 05/21/84	60	39	0.41
22	05/25/84	18	44	0.50
23	05/27/84 - 05/31/84	16	4.5	6 35*
24	05/31/84 - 06/02/84	7	4.8	1.46
25	06/19/84	57	3.9	0.12
26	06/25/84	11	4.9	1.73
27	06/28/84 - 06/29/84	63	3.9	0.21
28	07/07/84	13	4.5	4.18
29	07/16/84	88	3.8	0.15
30	07/18/84 - 07/19/84	26	4.3	1.09
31	07/21/84 - 07/22/84	4	5.1	1.35
32	07/27/84	32	4.2	0.57
33	09/04/84	39	4.1	3.91
34 25	09/15/84	30	4.3	1.04
33	10/01/84 - 10/02/84	7	4.8	1.96
27	10/22/84 - 10/23/84	18	4.4	2.41
38	10/25/04 - 10/24/84	33	4.3	0.13
30	11/05/94	39	4.0	1.32
40	11/11/9/	8 C	4.9	0.52
40	11/15/84	64	5.0	1.93
42	12/03/84	04 22	3.9	0.10
43	12/05/84 - 12/06/84	22 6	4.5	0.50
44	12/19/84	42	4.9	1.19"
45	12/21/84 - 12/22/84	59	4.0 3.8	0.50
			5.0	0.54
1	01/01/85 - 01/02/85	28	4.1	0.33
2	01/04/85 - 01/05/85	38	4.1	0.20*
3	01/08/85	28	4.2	0.12*
4	01/17/85	11	4.7	0.11*
5	01/19/85 - 01/20/85	70	3.8	0.41*
6	01/31/85	50	4.0	0.10*
/	02/01/85 - 02/02/85	22	4.3	0.45*
8	02/05/85 - 02/06/85	18	4.3	0.59*
9	02/12/85	13	4.6	1.27
10	03/04/85 - 03/05/85	53	4.0	0.83*
17	03/07/85 - 03/08/85	41	4.0	0.34
13	03/12/03 03/19/95 03/10/95	20	4.2	1.19
14	03/21/25 04/01/05	49	4.0	0.15
15	03/31/03 - 04/01/03 04/07/85 - 04/00/05	20	4.3	0.60
16	04/07/03 - 04/00/03 04/14/85 - 04/15/95	41	4.2	0.33
17	04/19/85	60	3.9	0.05
18	04/22/85	00	5.9 1 1	0.10
	J-7/22/03	42	4.1	0.70

TABLE 30, CONTINUED

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Event <u>Number</u>	Period of Collection	Specific <u>Conductance</u>	<u>pH</u>	Inches of Precipitation
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	04/26/85 - 04/28/85	59	3.5	0.13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	05/02/85 - 05/06/85	26	4.3	2.55
22 $05/27/85 - 05/28/85$ 264.3 1.95 23 $06/01/85$ 234.4 0.51 24 $06/05/85$ 314.2 0.85 25 $06/08/85$ 733.8 0.29 26 $06/12/85 - 06/17/85$ 184.4 1.67 28 $06/18/85 - 06/17/85$ 184.4 1.67 29 $06/25/85 - 06/29/85$ 384.1 0.84 30 $06/25/85 - 06/29/85$ 384.1 0.80 31 $07/03/85 - 80$ 3.7 0.25 32 $07/12/85 - 07/14/85 - 95$ 3.7 0.40 33 $07/15/85 - 07/27/85 - 12$ 4.62.5736 $07/21/85 - 07/27/85 - 12$ 4.62.5736 $07/31/85 - 08/01/85 - 69$ 3.82.3037 $08/25/85 - 09/05/85 - 70$ 3.9 0.266 40 $09/06/85 - 09/05/85 - 70$ 3.9 0.266 41 $09/09/85 - 09/05/85 - 70$ 3.9 0.77 42 $09/24/85 - 85 - 4.99 - 0.77$ 4.4 0.711 43 $09/27/85 - 85 - 4.99 - 0.77$ 4.4 0.711 44 $10/03/85 - 10/04/85 - 355 - 4.2 - 0.31$ 45 $10/05/85 - 11/06/85 - 11 - 4.6 - 0.25$ 56 $4.0 - 0.61$ 47 $10/25/85 - 11/17/85 - 56 - 4.0 - 0.61$ 48 $10/25/85 - 11/17/85 - 56 - 4.0 - 0.23$ 57 $11/26/85 - 11/17/85 - 11 - 4.6 - 0.35$ 55 $11/26/85 - 11/29/85 - 47 - 4.0 - 0.55$ 57 $12/31/85 - 10/26/85 - 19 - 4.3 - 0.27$ 56 $10/271/85 - 11/$	21	05/18/85 - 05/19/85	17	4.6	0.11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	05/27/85 - 05/28/85	26	4.3	1.95
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	06/01/85	23	4.4	0.51
25 $06/08/85$ 73 3.8 0.29 26 $06/12/85$ 60 3.9 0.27 27 $06/16/85 - 06/17/85$ 18 4.4 1.67 28 $06/18/85$ 48 4.0 0.84 29 $06/24/85$ 86 3.8 0.24 30 $06/25/85 - 06/29/85$ 38 4.1 0.80 31 $07/03/85$ 80 3.7 0.25 32 $07/12/85 - 07/14/85$ 95 3.7 0.40 33 $07/15/85$ 103 3.7 0.94 35 $07/26/85 - 07/27/85$ 12 4.6 2.57 36 $07/31/85 - 08/01/85$ 69 3.8 2.30 37 $08/25/85 - 08/26/85$ 16 4.4 3.20 38 $08/30/85 - 08/31/85$ 46 4.0 1.00 39 $09/04/85 - 09/05/85$ 70 3.9 0.26 40 $09/06/85 - 09/08/85$ 22 4.3 1.34 41 $09/09/85 - 09/10/85$ 95 3.7 0.17 42 $09/24/85$ 85 4.9 0.77 44 $10/03/85 - 10/15/85$ 56 4.0 0.61 47 $10/9/85 - 911/85$ 56 4.0 0.23 49 $11/05/85 - 11/06/85$ 11 4.6 0.23 52 $11/14/85$ 56 4.9 1.60 53 $11/22/85 - 11/29/85$ 47 4.0 0.55 55 $11/28/85 - 11/29/85$ 43 0.27 <td>24</td> <td>06/05/85</td> <td>31</td> <td>4.2</td> <td>0.85</td>	24	06/05/85	31	4.2	0.85
26 $06/12/85$ 60 3.9 0.27 27 $06/16/85 \cdot 06/17/85$ 18 4.4 1.67 28 $06/24/85 \cdot 06/29/85$ 86 3.8 0.24 30 $06/25/85 \cdot 06/29/85$ 38 4.1 0.80 31 $07/03/85 \cdot 07/14/85$ 95 3.7 0.40 33 $07/15/85 \cdot 07/14/85$ 95 3.7 0.40 33 $07/15/85 \cdot 07/14/85$ 103 3.7 0.94 35 $07/26/85 \cdot 07/27/85 \cdot 12$ 4.6 2.57 36 $07/31/85 \cdot 08/26/85 \cdot 16$ 4.4 3.20 37 $08/25/85 \cdot 08/26/85 \cdot 16$ 4.4 3.20 38 $08/30/85 \cdot 08/31/85 \cdot 466$ 4.0 1.00 39 $09/04/85 \cdot 09/05/85 \cdot 70$ 3.9 0.26 40 $09/06/85 \cdot 09/08/85 \cdot 95$ 3.7 0.17 42 $09/24/85 \cdot 85 \cdot 4.9$ 0.77 44 $10/03/85 \cdot 10/04/85 \cdot 355 \cdot 4.2$ 0.31 45 $10/05/85 \cdot 11/06/85 \cdot 19 \cdot 4.4$ 0.661 47 $10/985 \cdot 91 \cdot 3.7$ 0.14 48 $10/25/85 \cdot 11/06/85 \cdot 10 \cdot 4.7$ 1.79 50 $11/11/85 \cdot 11/12/85 \cdot 40 \cdot 4.0$ 0.23 52 $11/12/85 \cdot 11/28/5 \cdot 47 \cdot 4.0$ 0.23 52 $11/12/85 \cdot 11/28/85 \cdot 11 \cdot 4.6$ 0.35 54 $11/26/85 \cdot 11/29/85 \cdot 47 \cdot 4.0$ 0.55 55 $11/28/85 \cdot 11/29/85 \cdot 47 \cdot 4.0$ 0.55 55 $11/28/85 \cdot 11/29/85 \cdot 47 \cdot 4.0$ 0.56 57 $12/13/85 \cdot 10/2$	25	06/08/85	73	3.8	0.29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	06/12/85	60	3.9	0.27
28 $06/18/85$ 48 4.0 0.84 29 $06/24/85$ 86 3.8 0.24 30 $06/25/85 - 06/29/85$ 38 4.1 0.80 31 $07/03/85$ 80 3.7 0.25 32 $07/12/85 - 07/14/85$ 95 3.7 0.40 33 $07/15/85$ 51 4.0 0.19 34 $07/21/85$ 103 3.7 0.94 35 $07/26/85 - 07/27/85$ 12 4.6 2.57 36 $07/31/85 - 08/01/85$ 69 3.8 2.30 37 $08/25/85 - 08/26/85$ 16 4.4 3.20 38 $08/30/85 - 08/31/85$ 46 4.0 1.00 39 $09/04/85 - 09/05/85$ 70 3.9 0.26 40 $09/06/85 - 09/08/85$ 22 4.3 1.34 41 $09/09/85 - 09/10/85$ 95 3.7 0.17 42 $09/24/85$ 85 4.9 0.77 44 $10/03/85 - 10/04/85$ 35 4.2 0.31 45 $10/05/85$ 19 4.4 0.71 46 $10/13/85 - 10/15/85$ 56 4.0 0.61 47 $10/08/85 - 11/12/85$ 10 4.7 1.79 50 $11/11/85 - 11/12/85$ 56 4.9 1.60 53 $11/28/85 - 11/29/85$ 47 4.0 0.55 54 $11/28/85 - 11/29/85$ 47 4.0 0.55 56 1.9 0.56 <td>2/</td> <td>06/16/85 - 06/17/85</td> <td>18</td> <td>4.4</td> <td>1.67</td>	2/	06/16/85 - 06/17/85	18	4.4	1.67
29 $06/24/85$ 86 3.8 0.24 30 $06/25/85 \cdot 06/29/85$ 38 4.1 0.80 31 $07/03/85$ 80 3.7 0.25 32 $07/12/85 \cdot 07/14/85$ 95 3.7 0.40 33 $07/15/85$ 51 4.0 0.19 34 $07/21/85 \cdot 07/27/85$ 12 4.6 2.57 36 $07/21/85 \cdot 08/01/85$ 69 3.8 2.30 37 $08/25/85 \cdot 08/26/85$ 16 4.4 3.20 38 $08/30/85 \cdot 08/31/85$ 46 4.0 1.00 39 $09/04/85 \cdot 09/05/85$ 70 3.9 0.26 40 $09/06/85 \cdot 09/08/85$ 22 4.3 1.34 41 $09/09/85 \cdot 09/10/85$ 95 3.7 0.17 42 $09/24/85$ 85 4.9 0.77 44 $10/03/85 \cdot 10/04/85$ 35 4.2 0.31 45 $10/05/85$ 19 4.4 0.71 46 $10/13/85 \cdot 10/15/85$ 56 4.0 0.61 47 $10/9/85 \cdot 11/06/85$ 11 4.6 0.29 49 $11/05/85 \cdot 11/08/5$ 10 4.7 1.79 50 $11/14/85$ 56 4.0 0.23 52 $11/16/85 \cdot 11/12/85$ 47 4.0 0.55 55 $11/28/85 \cdot 11/20/85$ 19 4.4 1.06 56 $12/11/85$ 56 3.9 0.56 57 $12/21/85$ 19 <td< td=""><td>20</td><td>06/24/95</td><td>48</td><td>4.0</td><td>0.84</td></td<>	20	06/24/95	48	4.0	0.84
30 $00/23/85 - 00/29/85$ 38 4.1 0.80 31 $07/03/85$ 80 3.7 0.25 32 $07/12/85 - 07/14/85$ 95 3.7 0.40 33 $07/15/85$ 51 4.0 0.19 34 $07/21/85$ 103 3.7 0.94 35 $07/26/85 - 07/27/85$ 12 4.6 2.57 36 $07/31/85 - 08/01/85$ 69 3.8 2.30 37 $08/25/85 - 08/26/85$ 16 4.4 3.20 38 $08/30/85 - 08/31/85$ 46 4.0 1.00 39 $09/04/85 - 09/05/85$ 70 3.9 0.26 40 $09/06/85 - 09/08/85$ 22 4.3 1.34 41 $09/09/85 - 09/10/85$ 95 3.7 0.17 42 $09/24/85$ 85 4.9 0.77 44 $10/03/85 - 10/18/5$ 35 4.2 0.31 45 $10/05/85$ 19 4.4 0.71 46 $10/13/85 - 10/15/85$ 56 4.0 0.61 47 $10/19/85$ 91 3.7 0.14 48 $10/25/85$ 11 4.6 0.23 52 $11/16/85 - 11/17/85$ 6 4.9 1.60 53 $11/22/85 - 11/29/85$ 47 4.0 0.55 54 $11/26/85 - 11/29/85$ 47 4.0 0.55 54 $11/28/85 - 11/29/85$ 47 4.0 0.55 57 $12/13/85$ 10 <td>29</td> <td></td> <td>86</td> <td>3.8</td> <td>0.24</td>	29		86	3.8	0.24
31 $07/03/65$ 80 3.7 0.25 32 $07/12/85 - 07/14/85$ 95 3.7 0.40 33 $07/15/85$ 51 4.0 0.19 34 $07/21/85$ 103 3.7 0.94 35 $07/26/85 - 07/27/85$ 12 4.6 2.57 36 $07/31/85 - 08/01/85$ 69 3.8 2.30 37 $08/25/85 - 08/26/85$ 16 4.4 3.20 38 $08/30/85 - 08/31/85$ 46 4.0 1.00 39 $09/04/85 - 09/05/85$ 70 3.9 0.26 40 $09/06/85 - 09/08/85$ 22 4.3 1.34 41 $09/09/85 - 09/10/85$ 95 3.7 0.17 42 $09/24/85$ 85 4.9 0.77 44 $10/03/85 - 10/04/85$ 35 4.2 0.31 45 $10/05/85$ 91 3.7 0.14 48 $10/25/85$ 91 3.7 0.14 48 $10/25/85$ 11 4.6 0.29 49 $11/05/85 - 11/12/85$ 40 4.0 1.09 51 $11/14/85$ 56 4.0 0.23 52 $11/26/85 - 11/29/85$ 47 4.0 0.55 55 $11/28/5 - 11/28/5$ 19 4.4 1.06 56 $12/11/85$ 56 3.9 0.56 57 $12/13/85$ $12/20/95$ 4.3 0.27	30	00/23/03 - 00/29/03	38	4.1	0.80
32 $07/12/85 + 07/14/85$ 95 3.7 0.40 33 $07/15/85$ 51 4.0 0.19 34 $07/21/85$ 103 3.7 0.94 35 $07/26/85 + 07/27/85$ 12 4.6 2.57 36 $07/31/85 + 08/01/85$ 69 3.8 2.30 37 $08/25/85 + 08/26/85$ 16 4.4 3.20 38 $08/30/85 + 08/26/85$ 16 4.4 3.20 38 $08/30/85 + 09/05/85$ 70 3.9 0.26 40 $09/06/85 + 09/05/85$ 70 3.9 0.26 40 $09/06/85 + 09/08/85$ 22 4.3 1.34 41 $09/09/85 + 09/08/85$ 92 3.7 0.17 42 $09/24/85$ 8 5.1 0.54 43 $09/27/85$ 85 4.9 0.77 44 $10/03/85 + 10/04/85$ 35 4.2 0.31 45 $10/05/85$ 91 3.7 0.14 48 $10/25/85$ 11 4.6 0.29 49 $11/05/85 + 11/16/85$ 10 4.7 1.79 50 $11/11/85 + 11/12/85$ 40 4.0 1.09 51 $11/12/85 + 11/2/85$ 11 4.6 0.35 54 $11/26/85 + 11/29/85$ 47 4.0 0.55 55 $11/28/85 - 11/30/85$ 19 4.4 1.06 56 $12/11/85$ 56 3.9 0.56 57 $12/13/85 + 10/20/95$	30	07/13/05 07/14/05	80	3./	0.25
33 $07/21/85$ 51 4.0 0.19 34 $07/21/85$ 103 3.7 0.94 35 $07/26/85 - 07/27/85$ 12 4.6 2.57 36 $07/31/85 - 08/01/85$ 69 3.8 2.30 37 $08/25/85 - 08/26/85$ 16 4.4 3.20 38 $08/30/85 - 08/31/85$ 46 4.0 1.00 39 $09/04/85 - 09/05/85$ 70 3.9 0.26 40 $09/06/85 - 09/08/85$ 22 4.3 1.34 41 $09/09/85 - 09/10/85$ 95 3.7 0.17 42 $09/24/85$ 8 5.1 0.54 43 $09/27/85$ 85 4.9 0.77 44 $10/03/85 - 10/04/85$ 35 4.2 0.31 45 $10/05/85$ 19 4.4 0.71 46 $10/13/85 - 10/15/85$ 56 4.0 0.61 47 $10/25/85$ 11 4.6 0.29 49 $11/05/85 - 11/12/85$ 40 4.0 1.09 51 $11/14/85 - 56$ 4.0 0.23 52 $11/16/85 - 11/17/85$ 6 4.9 1.60 53 $11/22/85 - 11/24/85 - 11$ 4.6 0.355 54 $11/26/85 - 11/29/85 - 47$ 4.0 0.55 55 $11/28/5 - 10/20/95 - 43$ 0.27	32	07/15/85	95 E1	3./	0.40
35 $07/26/85 - 07/27/85$ 103 3.7 0.94 36 $07/31/85 - 08/01/85$ 69 3.8 2.57 36 $07/31/85 - 08/26/85$ 16 4.4 3.20 37 $08/25/85 - 08/26/85$ 16 4.4 3.20 38 $08/30/85 - 08/31/85$ 46 4.0 1.00 39 $09/04/85 - 09/05/85$ 70 3.9 0.26 40 $09/06/85 - 09/08/85$ 22 4.3 1.34 41 $09/09/85 - 09/10/85$ 95 3.7 0.17 42 $09/24/85$ 8 5.1 0.54 43 $09/27/85$ 85 4.9 0.77 44 $10/03/85 - 10/04/85$ 35 4.2 0.31 45 $10/05/85$ 19 4.4 0.71 46 $10/13/85 - 10/15/85$ 56 4.0 0.61 47 $10/19/85$ 91 3.7 0.14 48 $10/25/85$ 11 4.6 0.29 49 $11/05/85 - 11/106/85$ 10 4.7 1.09 51 $11/14/85 - 11/17/85$ 6 4.9 1.60 53 $11/22/85 - 11/28/5$ 11 4.6 0.35 54 $11/26/85 - 11/29/85$ 47 4.0 0.55 55 $11/28/85 - 11/30/85$ 19 4.4 1.06 56 $12/11/85$ 56 3.9 0.56 57 $12/13/85 - 10/29/85$ 16 4.3 0.27	32	07/21/85	5 I 102	4.0	0.19
36 $07/31/85 - 08/01/85$ 12 4.0 2.37 37 $08/25/85 - 08/26/85$ 16 4.4 3.20 38 $08/30/85 - 08/31/85$ 46 4.0 1.00 39 $09/04/85 - 09/05/85$ 70 3.9 0.26 40 $09/06/85 - 09/08/85$ 22 4.3 1.34 41 $09/09/85 - 09/08/85$ 22 4.3 1.34 41 $09/09/85 - 09/10/85$ 95 3.7 0.17 42 $09/24/85$ 8 5.1 0.54 43 $09/27/85$ 85 4.9 0.77 44 $10/03/85 - 10/04/85$ 35 4.2 0.31 45 $10/05/85$ 19 4.4 0.71 46 $10/13/85 - 10/15/85$ 91 3.7 0.14 48 $10/25/85$ 11 4.6 0.29 49 $11/05/85 - 11/06/85$ 10 4.7 1.09 51 $11/14/85 - 11/12/85$ 47 4.0 0.23 52 $11/16/85 - 11/12/85$ 11 4.6 0.35 54 $11/26/85 - 11/29/85$ 47 4.0 0.55 55 $11/28/85 - 11/29/85$ 47 4.0 0.55 57 $12/13/85$ 56 3.9 0.56 57 $12/13/85$ 29 4.3 0.27	35	07/26/85 - 07/27/85	105	5.7	0.94
37 $08/25/85 - 08/26/85$ 16 4.4 3.20 38 $08/30/85 - 08/31/85$ 46 4.0 1.00 39 $09/04/85 - 09/05/85$ 70 3.9 0.26 40 $09/06/85 - 09/08/85$ 22 4.3 1.34 41 $09/09/85 - 09/10/85$ 95 3.7 0.17 42 $09/24/85$ 8 5.1 0.54 43 $09/27/85$ 85 4.9 0.77 44 $10/03/85 - 10/04/85$ 35 4.2 0.31 45 $10/05/85$ 19 4.4 0.71 46 $10/13/85 - 10/15/85$ 56 4.0 0.61 47 $10/19/85$ 91 3.7 0.14 48 $10/25/85$ 11 4.6 0.29 49 $11/05/85 - 11/06/85$ 10 4.7 1.79 50 $11/11/85 - 11/12/85$ 6 4.0 1.09 51 $11/26/85 - 11/28/5$ 11 4.6 0.23 52 $11/28/5 - 11/28/5$ 11 4.6 0.35 54 $11/26/85 - 11/28/85$ 11 4.6 0.35 54 $11/26/85 - 11/29/85$ 47 4.0 0.55 55 $11/28/85 - 11/30/85$ 19 4.4 1.06 56 $12/11/85$ 56 3.9 0.56 57 $12/13/85$ 29 4.3 0.27	36	07/31/85 - 08/01/85	69	4.0 2 Q	2.37
38 $08/30/85 - 08/31/85$ 464.01.0039 $09/04/85 - 09/05/85$ 70 3.9 0.26 40 $09/06/85 - 09/08/85$ 22 4.3 1.34 41 $09/09/85 - 09/10/85$ 95 3.7 0.17 42 $09/24/85$ 8 5.1 0.54 43 $09/27/85$ 85 4.9 0.77 44 $10/03/85 - 10/04/85$ 35 4.2 0.31 45 $10/05/85$ 19 4.4 0.71 46 $10/13/85 - 10/15/85$ 56 4.0 0.61 47 $10/19/85$ 91 3.7 0.14 48 $10/25/85$ 11 4.6 0.29 49 $11/05/85 - 11/06/85$ 10 4.7 1.79 50 $11/11/85 - 11/12/85$ 40 4.0 1.09 51 $11/12/85 - 11/12/85$ 11 4.6 0.35 52 $11/26/85 - 11/12/85$ 11 4.6 0.35 54 $11/26/85 - 11/12/85$ 47 4.0 0.55 55 $11/28/85 - 11/30/85$ 19 4.4 1.06 56 $12/11/85$ 56 3.9 0.56 57 $12/13/85$ 29 4.3 0.27	37	08/25/85 - 08/26/85	16	Δ.Δ	2.30
39 $09/04/85 - 09/05/85$ 703.9 0.26 40 $09/06/85 - 09/08/85$ 224.31.3441 $09/09/85 - 09/10/85$ 953.70.1742 $09/24/85$ 85.10.5443 $09/27/85$ 854.90.7744 $10/03/85 - 10/04/85$ 354.20.3145 $10/05/85$ 194.40.7146 $10/13/85 - 10/15/85$ 564.00.6147 $10/05/85$ 114.60.2949 $11/05/85 - 11/06/85$ 104.71.7950 $11/11/85 - 11/12/85$ 404.01.0951 $11/12/85 - 11/12/85$ 404.00.2352 $11/16/85 - 11/12/85$ 114.60.3554 $11/26/85 - 11/29/85$ 474.00.5555 $11/28/85 - 11/30/85$ 194.41.0656 $12/11/85$ 563.90.5657 $12/13/85$ 294.30.27	38	08/30/85 - 08/31/85	46	4.0	1.00
40 $09/06/85 - 09/08/85$ 224.31.3441 $09/09/85 - 09/10/85$ 953.70.1742 $09/24/85$ 85.10.5443 $09/27/85$ 854.90.7744 $10/03/85 - 10/04/85$ 354.20.3145 $10/05/85$ 194.40.7146 $10/13/85 - 10/15/85$ 564.00.6147 $10/19/85$ 913.70.1448 $10/25/85$ 114.60.2949 $11/05/85 - 11/06/85$ 104.71.7950 $11/11/85 - 11/12/85$ 404.01.0951 $11/14/85$ 564.00.2352 $11/16/85 - 11/17/85$ 64.91.6053 $11/22/85 - 11/24/85$ 114.60.3554 $11/26/85 - 11/29/85$ 474.00.5555 $11/28/85 - 11/30/85$ 194.41.0656 $12/11/85$ 563.90.5657 $12/13/85$ 294.30.27	3 9	09/04/85 - 09/05/85	70	39	0.26
41 $09/09/85 - 09/10/85$ 95 3.7 0.17 42 $09/24/85$ 8 5.1 0.54 43 $09/27/85$ 85 4.9 0.77 44 $10/03/85 - 10/04/85$ 35 4.2 0.31 45 $10/05/85$ 19 4.4 0.71 46 $10/13/85 - 10/15/85$ 56 4.0 0.61 47 $10/19/85$ 91 3.7 0.14 48 $10/25/85$ 11 4.6 0.29 49 $11/05/85 - 11/06/85$ 10 4.7 1.79 50 $11/11/85 - 11/12/85$ 40 4.0 1.09 51 $11/14/85$ 56 4.0 0.23 52 $11/16/85 - 11/12/85$ 11 4.6 0.35 54 $11/26/85 - 11/29/85$ 47 4.0 0.55 55 $11/28/85 - 11/30/85$ 19 4.4 1.06 56 $12/11/85$ 56 3.9 0.56 57 $12/13/85$ 29 4.3 0.27	40	09/06/85 - 09/08/85	22	4.3	1 34
42 $09/24/85$ 8 5.1 0.54 43 $09/27/85$ 85 4.9 0.77 44 $10/03/85 - 10/04/85$ 35 4.2 0.31 45 $10/05/85$ 19 4.4 0.71 46 $10/13/85 - 10/15/85$ 56 4.0 0.61 47 $10/19/85$ 91 3.7 0.14 48 $10/25/85$ 11 4.6 0.29 49 $11/05/85 - 11/06/85$ 10 4.7 1.79 50 $11/11/85 - 11/12/85$ 40 4.0 1.09 51 $11/16/85 - 11/12/85$ 6 4.9 1.60 53 $11/22/85 - 11/24/85$ 11 4.6 0.35 54 $11/26/85 - 11/29/85$ 47 4.0 0.55 55 $11/28/85 - 11/30/85$ 19 4.4 1.06 56 $12/11/85$ 56 3.9 0.56 57 $12/213/85$ $10/20/65$ $10/20/65$ $10/20/65$	41	09/09/85 - 09/10/85	95	3.7	0.17
43 $09/27/85$ 85 4.9 0.77 44 $10/03/85 - 10/04/85$ 35 4.2 0.31 45 $10/05/85$ 19 4.4 0.71 46 $10/13/85 - 10/15/85$ 56 4.0 0.61 47 $10/19/85$ 91 3.7 0.14 48 $10/25/85$ 11 4.6 0.29 49 $11/05/85 - 11/06/85$ 10 4.7 1.79 50 $11/11/85 - 11/12/85$ 40 4.0 1.09 51 $11/14/85$ 56 4.0 0.23 52 $11/16/85 - 11/17/85$ 6 4.9 1.60 53 $11/22/85 - 11/24/85$ 11 4.6 0.35 54 $11/26/85 - 11/29/85$ 47 4.0 0.55 55 $11/28/85 - 11/30/85$ 19 4.4 1.06 56 $12/11/85$ 56 3.9 0.56 57 $12/13/85$ 29 4.3 0.27	42	09/24/85	8	5.1	0.54
44 $10/03/85 - 10/04/85$ 35 4.2 0.31 45 $10/05/85$ 19 4.4 0.71 46 $10/13/85 - 10/15/85$ 56 4.0 0.61 47 $10/19/85$ 91 3.7 0.14 48 $10/25/85$ 11 4.6 0.29 49 $11/05/85 - 11/06/85$ 10 4.7 1.79 50 $11/11/85 - 11/12/85$ 40 4.0 1.09 51 $11/14/85$ 56 4.0 0.23 52 $11/16/85 - 11/17/85$ 6 4.9 1.60 53 $11/22/85 - 11/24/85$ 11 4.6 0.35 54 $11/26/85 - 11/29/85$ 47 4.0 0.55 55 $11/28/85 - 11/30/85$ 19 4.4 1.06 56 $12/11/85$ 56 3.9 0.56 57 $12/13/85$ 29 4.3 0.27	43	09/27/85	85	4.9	0.77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44	10/03/85 - 10/04/85	35	4.2	0.31
46 $10/13/85 - 10/15/85$ 56 4.0 0.61 47 $10/19/85$ 91 3.7 0.14 48 $10/25/85$ 11 4.6 0.29 49 $11/05/85 - 11/06/85$ 10 4.7 1.79 50 $11/11/85 - 11/12/85$ 40 4.0 1.09 51 $11/14/85$ 56 4.0 0.23 52 $11/16/85 - 11/17/85$ 6 4.9 1.60 53 $11/22/85 - 11/24/85$ 11 4.6 0.35 54 $11/26/85 - 11/29/85$ 47 4.0 0.55 55 $11/28/85 - 11/30/85$ 19 4.4 1.06 56 $12/11/85$ 56 3.9 0.56 57 $12/13/85$ 29 4.3 0.27	45	10/05/85	19	4.4	0.71
47 $10/19/85$ 91 3.7 0.14 48 $10/25/85$ 11 4.6 0.29 49 $11/05/85 - 11/06/85$ 10 4.7 1.79 50 $11/11/85 - 11/12/85$ 40 4.0 1.09 51 $11/14/85$ 56 4.0 0.23 52 $11/16/85 - 11/12/85$ 6 4.9 1.60 53 $11/22/85 - 11/24/85$ 11 4.6 0.35 54 $11/26/85 - 11/29/85$ 47 4.0 0.55 55 $11/28/85 - 11/30/85$ 19 4.4 1.06 56 $12/11/85$ 56 3.9 0.56 57 $12/13/85$ 29 4.3 0.27	46	10/13/85 - 10/15/85	56	4.0	0.61
48 $10/25/85$ 11 4.6 0.29 49 $11/05/85 - 11/06/85$ 10 4.7 1.79 50 $11/11/85 - 11/12/85$ 40 4.0 1.09 51 $11/14/85$ 56 4.0 0.23 52 $11/16/85 - 11/17/85$ 6 4.9 1.60 53 $11/22/85 - 11/24/85$ 11 4.6 0.35 54 $11/26/85 - 11/29/85$ 47 4.0 0.55 55 $11/28/85 - 11/30/85$ 19 4.4 1.06 56 $12/11/85$ 56 3.9 0.56 57 $12/13/85$ 29 4.3 0.27	4/	10/19/85	91	3.7	0.14
49 $11/05/85 - 11/06/85$ 10 4.7 1.79 50 $11/11/85 - 11/12/85$ 40 4.0 1.09 51 $11/14/85$ 56 4.0 0.23 52 $11/16/85 - 11/17/85$ 6 4.9 1.60 53 $11/22/85 - 11/24/85$ 11 4.6 0.35 54 $11/26/85 - 11/29/85$ 47 4.0 0.55 55 $11/28/85 - 11/30/85$ 19 4.4 1.06 56 $12/11/85$ 56 3.9 0.56 57 $12/13/85$ 29 4.3 0.27	48	10/25/85	11	4.6	0.29
50 11/11/85 - 11/12/85 40 4.0 1.09 51 11/14/85 56 4.0 0.23 52 11/16/85 - 11/17/85 6 4.9 1.60 53 11/22/85 - 11/24/85 11 4.6 0.35 54 11/26/85 - 11/29/85 47 4.0 0.55 55 11/28/85 - 11/30/85 19 4.4 1.06 56 12/11/85 56 3.9 0.56 57 12/13/85 29 4.3 0.27	49	11/05/85 - 11/06/85	10	4.7	1.79
51 11/14/85 56 4.0 0.23 52 11/16/85 - 11/17/85 6 4.9 1.60 53 11/22/85 - 11/24/85 11 4.6 0.35 54 11/26/85 - 11/29/85 47 4.0 0.55 55 11/28/85 - 11/30/85 19 4.4 1.06 56 12/11/85 56 3.9 0.56 57 12/13/85 29 4.3 0.27	50	11/11/85 - 11/12/85	40	4.0	1.09
52 11/16/85 - 11/1/85 6 4.9 1.60 53 11/22/85 - 11/24/85 11 4.6 0.35 54 11/26/85 - 11/29/85 47 4.0 0.55 55 11/28/85 - 11/30/85 19 4.4 1.06 56 12/11/85 56 3.9 0.56 57 12/13/85 29 4.3 0.27	51		56	4.0	0.23
53 11/22/85 - 11/24/85 11 4.6 0.35 54 11/26/85 - 11/29/85 47 4.0 0.55 55 11/28/85 - 11/30/85 19 4.4 1.06 56 12/11/85 56 3.9 0.56 57 12/13/85 29 4.3 0.27	52		6	4.9	1.60
54 11/20/85 - 11/29/85 47 4.0 0.55 55 11/28/85 - 11/30/85 19 4.4 1.06 56 12/11/85 56 3.9 0.56 57 12/13/85 29 4.3 0.27	55	11/22/03 - 11/24/03	 A7	4.6	0.35
55 11/28/85 - 11/30/85 19 4.4 1.06 56 12/11/85 56 3.9 0.56 57 12/13/85 29 4.3 0.27	55		4/	4.0	0.55
57 12/13/85 29 4.3 0.27	56	12/11/85	19	4.4	1.06
	57	12/13/85	20	3.9 ∕\>	0.50 7 C D
סס 12/20/85 - 12/23/85 46 4.0 0 13*	58	12/20/85 - 12/23/85	46	4.0	0.27

INCHES OF PRECIPITATION

PLAINFIELD SITE, 1985

זקי, ד ווט

SPECIFIC CONDUCTANCE OF PRECIPITATION

PLAINFIELD SITE, 1985

-213-

INCHES OF PRECIPITATION

MORRIS DAM SITE, 1985

-214-

ACIDITY OF PRECIPITATION

MORRIS DAM SITE, 1985

ACIDITY = 7 - pH

SPECIFIC CONDUCTANCE OF PRECIPITATION

MORRIS DAM SITE, 1985

INCHES OF PRECIPITATION

MARLBOROUGH SITE, 1985

-217-

MARLBOROUGH SITE, 1985

ACIDITY = 7 - pH

SPECIFIC CONDUCTANCE OF PRECIPITATION

MARLBOROUGH SITE, 1985

-219-

IX. CLIMATOLOGICAL DATA

Weather is often the most significant factor influencing short-term changes in air quality. It also has an affect on long-term trends. Climatological information from the National Weather Service station at Bradley International Airport in Windsor Locks is shown in Table 31 for the years 1984 and 1985. Table 32 contains information from the National Weather Service station located at Sikorsky Memorial Airport near Bridgeport. All data are compared to "mean" or "normal" values. Wind speeds" and temperatures are shown as monthly and yearly averages. Precipitation data includes both the number of days with more than 0.01 inches of precipitation and the total water equivalent. Also shown are degree days^{**} (heating requirement) and the number of days with temperatures exceeding 90°F.

Wind roses for Bradley Airport and Newark Airport have been developed from 1985 National Weather Service surface observations and are shown in Figures 28 and 30, respectively. Wind roses from these stations for 1984 are shown in Figures 27 and 29, respectively.

* The mean wind speed for a month or year is calculated for all the hourly wind speeds, regardless of the wind directions.

** The degree day value for each day is arrived at by subtracting the average temperature of the day from 65°F. This number (65) is used as a base value because it is assumed that there is no heating requirement when the outside temperature is 65°F.

ĺ

1984 AND 1985 CLIMATOLOGICAL DATA

BRADLEY INTERNATIONAL AIRPORT, WINDSOR LOCKS

	DNIN	(H)	Mean ^d	9.0	9.4	10.0	10.1	8.9	8.1	7.5	7.1	7.2	7.7	8.4	8.6	8.5	
	ERAGE V	EED (MI	1985	7.5	8.4	9.3	7.7	7.9	6.7	6.2	5.2	5.5	6.0	7.4	7.7	۲.1	
	AVE	ß	1984	6.0	7.5	9.2	7.9	7.8	7.2	6.7	5.5	6.0	6.2	7.3	6.7	7.0	
r'S H A N	OF	N	Mean ^d	11	10	12	11	12	11	10	10	6	8	11	12	127	
OF DA	INCHES	IPITATI	1985	11	6	6	6	6	13	11	6	10	6	14	10	123	
NO. HTIW	0.01	PREC	1984	13	14	14	12	15	10	10	٢	7	7	7	14	130	
NO	ENT	ATER	Mean ^a	3.51	3.24	3.74	3.78	3.62	3.54	3.52	3.81	3.61	3.16	3.77	3.74	43.05	
CIPITATI	QUIVAL	S OF W	1985	0.73	1.72	2.16	1.54	2.77	3.55	4.55	6.44	3.83	2.27	6.04	1.28	36.88	
PRE	Ξ.	INCHE	1984	1.80	4.72	3.93	4.24	11.55	2.16	4.22	1.32	1.20	2.76	2.45	2.46	42.85	
		AYS	Normal	1234	1047	874	486	197	20	0	8	102	391	702	1113	6174	
		GREE D	1985	1341	975	776	428	167	76	0	14	119	401	648	1157	6102	
		B	1984	1332	884	1035	503	286	32	m	m	186	298	698	896	6156	
AYS	TEMP.	<u>30 f</u>	Mean ^b	0	0	0	*	-	4	80	2	2	*	0	0	19	
0. OF DA	I MAX.	EEDED	1985	0	0	0	0		0	-	2	-	0	0	0	ŝ	
Ň	WHEN	EXC	1984	0	0	0	0	0	9	2	4	0	0	•	0	12	
	щ	바 바	Mean ^a	26.5	27.8	37.0	48.1	59.1	67.9	73.2	71.0	63.5	53.0	42.0	30.4	50.0	
	AVERAG	PERATU	1985	21.5	29.9	39.7	50.7	60.6	63.7	72.4	70.2	63.4	51.9	43.2	27.5	49.6	
	`	TEM	1984	21.8	34.3	31.4	48.0	56.0	69.8	71.8	73.2	59.8	55.2	41.5	35.7	49.9	
				Jan	Feb	Mar	Apr	May	Jun	InL	Aug	Sep	Oct	Nov	Dec	YEAR	

National Oceanic and Atmospheric Administration Environmental Data Service

Extracted From: Local Climatological Data Charts

U.S. Department of Commerce

* Less than 0.5 a 1905-1985 b 1960-1985 c 1951-1980 d 1955-1985

-221-

1984 AND 1985 CLIMATOLOGICAL DATA

SIKORSKY INTERNATIONAL AIRPORT, STRATFORD

QNI	Ĥ	Mean ^f	13.2	13.6	13.5	13.0	11.6	10.5	10.0	10.1	11.2	11.9	12.7	13.0	12.0	
RAGE W	EED (MP	1985	I	l	ł	ł	ł	l	ł	ł	l	1	I	ł	1	
AVE	SP	1984	ł	ł	***	ł	I			ł	ł	ţ	ł	1	I	
YS FHAN OF	NO	Mean ^e	11	10	1	11	11	6	8	6	8	٢	10	11	117	
OF DA MORE T	CIPITATI	1985	12	ŝ	11	:	10	12	6	6	9	٢	14	13	119	
NO WITH 0.01	PRE	1984	13	12	12	7	14	10	11	8	7	80	10	13	125	
ION ENT	/ATER	Meand	3.59	3.30	3.96	3.89	3.75	3.39	3.69	3.98	3.50	3.34	3.78	3.68	43.84	
CIPITAT QUIVAI	S OF M	1985	1.25	1.72	1.93	0.69	5.11	5.34	5.19	4.62	1.60	1.48	5.67	1.25	35.85	
PRE IN E	INCHE	1984	1.52	4.72	3.49	4.37	8.14	3.53	6.54	1.23	2.24	2.79	1.83	2.56	42.96	
	AYS	Normalc	1101	963	831	492	220	20	0	0	49	285	585	955	5501	
	GREE D.	1985	1197	908	713	423	138	43	0	7	54	278	541	1032	5329	
	Ĕ	1984	1188	819	952	508	227	18	0	0	104	219	593	761	5389	
AYS TEMP.	90 ±F	Mean ^b	0	0	0	0	*	-	ĸ	2	*	0	0	0	9	
0. OF D/	EEDED	1985	0	0	0	0	0	0	0	7	-	0	0	0	e.	
N N	EXC	1984	0	0	0	0	0	2	2	2	0	0	0	0	6	
щ	RE F	Mean ^a	28.3	30.5	37.9	48.0	58.4	67.8	73.4	71.9	65.2	54.8	44.2	33.2	51.1	
AVERAG	PERATU	1985	26.2	32.3	41.8	50.8	60.9	65.6	73.6	72.8	66.6	56.0	46.6	31.4	52.1	
	TEM	1984	26.6	36.5	34.1	47.9	57.8	71.0	73.1	74.8	63.3	57.7	45.0	40.2	52.3	
			Jan	Feb	Mar	Apr	May	Jun	InL	Aug	Sep	Oct	Nov	Dec	YEAR	

t 1963-1985 1958-1980

e 1949-1985

National Oceanic and Atmospheric Administration Environmental Data Service

Extracted From: Local Climatological Data Charts

* Less than 0.5

a 1903-1985 b 1960-1985 c 1951-1980 d 1955-1985

U.S. Department of Commerce

-222-

ANNUAL WIND ROSE FOR 1984 BRADLEY INTERNATIONAL AIRPORT WINDSOR LOCKS, CONNECTICUT

ANNUAL WIND ROSE FOR 1985 BRADLEY INTERNATIONAL AIRPORT WINDSOR LOCKS, CONNECTICUT

ANNUAL WIND ROSE FOR 1984 NEWARK INTERNATIONAL AIRPORT NEWARK, NEW JERSEY

X. ATTAINMENT AND NON-ATTAINMENT OF NAAQS IN CONNECTICUT'S AQCR'S

The attainment status designations for Connecticut's four Air Quality Control Regions (AQCR's, see Figure 31) with regard to the National Ambient Air Quality Standards (NAAQS) have been determined for 1985 for the following pollutants: total suspended particulates (TSP); sulfur dioxide (SO₂); ozone (O₃); nitrogen dioxide (NO₂); carbon monoxide (CO); and lead (Pb). Table 33 shows the attainment status of each AQCR by pollutant. The AQCR's are classified as attainment, non-attainment or unclassifiable. These classifications conform to federal EPA guidelines and were applied in each case only after federal approval was granted. The federal EPA classifies an AQCR as attainment for a particular pollutant when all standards are attained (i.e., short term, long term, primary and secondary, wherever applicable). This notwithstanding, Table 33 contains the AQCR classifications with respect to all relevant short-term and long-term standards.

CONNECTICUT'S COMPLIANCE BY AQCR WITH THE NAAQS IN 1985

Pollutant	Primary or <u>Secondary</u>	NAAQS	AQCR	AQCR	AQCR 43	AQCR 44
TSP	Primary	Annual 24-Hour	A A	A A	A A	A A
	Secondary	Annual 24-Hour	A X	A X	A X	A X
SO ₂	Primary	Annual 24-Hour	A A	A A	A A	A A
	Secondary	3-Hour	А	А	А	Α
Ozone	Both	1-Hour	Х	x	x	х
NO ₂	Both	Annual	A	А	А	А
со	Both	1-Hour 8-Hour	A U	A X	A X	A U
Lead	Both	3-Month	A	A	A	A

X = Non-Attainment U = Unclassifiable A = Attainment

XI. CONNECTICUT SLAMS AND NAMS NETWORK

On May 10, 1979, the U.S. Environmental Protection Agency made public its final rulemaking for ambient air monitoring and data reporting requirements in the "Federal Register" (Vol. 44, No. 92). These regulations are meant to ensure the acceptability of air measurement data, the comparability of data from all monitoring stations, the cost-effectiveness of monitoring networks, and timely data submission for assessment purposes. The regulations address a number of key areas including quality assurance, monitoring methodologies, network design and probe siting. Detailed requirements and specific criteria are provided which form the framework for ambient air quality monitoring. These regulations apply to all parties conducting ambient air quality monitoring for the purpose of supporting or complying with environmental regulations. In particular, state/local control agencies and industrial/private concerns involved in air monitoring are directly influenced by specific requirements, compliance dates and recommended guidelines.

QUALITY ASSURANCE

The regulations specify the minimum quality assurance requirements for State and Local Air Monitoring Stations (SLAMS) networks, National Air Monitoring Stations (NAMS) networks, and Prevention of Significant Deterioration (PSD) air monitoring. Two distinct and equally important functions make up the quality assurance program: assessment of the quality of monitoring data by estimating their precision and accuracy, and control of the quality of the data by implementation of quality control policies, procedures, and corrective actions. (See Part E of Section I, Quality Assurance).

The data assessment requirements entail the determination of precision and accuracy for both continuous and manual methods. A one-point precision check must be carried out at least once every other week on each automated analyzer used to measure SO₂, NO₂, CO and O₃. Standards from which the precision check test data are derived must meet specifications detailed in the regulations. For manual methods, precision checks are to be accomplished by operating co-located duplicate samplers. In addition, precision checks for lead are also accomplished by analysis of duplicate strips. In 1985, Connecticut maintained three co-located TSP monitors (Bridgeport 009, Hartford 003, and Waterbury 005) and one co-located lead sampler (Waterbury 123), and performed duplicate strip analyses at four sites (Hartford 016, New Haven 018, New Haven 123, and Waterbury 123).

Accuracy determinations for automated analyzers (SO_2, NO_2, CO, O_3) are accomplished by audits performed by an independent auditor utilizing equipment and gases which are disassociated from the normal network operations. Accuracy determinations are accomplished via traceable standard flow devices for hi-vols and via spiked strip analyses for lead. For SLAMS analyzers, accuracy audits must be performed on each analyzer at least once per calendar year. Each PSD analyzer must be audited at least once each calendar quarter.

All precision and accuracy data are derived through calculation methods specified by the regulations, with the results reported quarterly on Data Assessment Report Forms. The NAMS network is actually part of the SLAMS network; so the SLAMS accuracy determinations also apply to the NAMS network. The distinguishing characteristics of NAMS are: 1) only continuous instruments are used to monitor gaseous pollutants; 2) the regulations specify a minimum number and locations for them; and 3) the data, in addition to being included in the annual report, are reported quarterly to EPA.

In order to control the quality of data, the monitoring program must have operational procedures for each of the following activities:

- 1. Installation of equipment,
- 2. Selection of methods, analyzers, or samplers,
- 3. Zero/span checks and analyzer adjustments,
- 4. Calibration,
- 5. Control limits for zero/span and other control checks, and respective corrective actions when such limits are exceeded,
- 6. Control checks and their frequency,
- 7. Preventive and remedial maintenance,
- 8. Calibration and zero/span checks for multi-range analyzers,
- 9. Recording and validating data, and
- 10. Documentation of quality control information.

MONITORING METHODOLOGIES

Except as otherwise stated within the regulations, the monitoring methods used must be "reference" or "equivalent," as designated by the EPA. Table 34 lists methods used in Connecticut's network in 1985 which were on the EPA-approved list as of September 18, 1980. Additional updates to these approved methods are provided through the "Federal Register."

NETWORK DESIGN

The regulations also describe monitoring objectives and general criteria to be applied in establishing the SLAMS networks and for choosing general locations for new monitors. Criteria are also presented for determining the location and number of monitors. These criteria serve as the framework for all State Implementation Plan (SIP) monitoring networks that were to be complete and in operation by January 1, 1984.

The SLAMS network must be designed to meet four basic monitoring objectives: (1) to determine the highest pollutant concentration in the area; (2) to determine representative concentrations in areas of high population density; (3) to determine the ambient impact of significant sources or source categories; and (4) to determine general background concentration levels. Proper siting of a monitor requires precise specification of the monitoring objectives, which usually includes a desired spatial scale of representativeness. The spatial scales of representativeness are specified in the regulations for each pollutant and monitoring objective. The 1985 SLAMS and NAMS networks in Connecticut are presented and described in Table 35.

PROBE SITING

Location and exposure of monitoring probes have been an area of confusion for a number of years because of conflicting guidelines and a lack of guidance or recommended criteria. The probe siting criteria promulgated in the regulations are specific. They are also sufficiently comprehensive to define the requirements for ensuring the uniform collection of compatible and comparable air quality data.

These criteria are detailed by pollutant and include vertical and horizontal probe placement, spacing from obstructions and trees, spacing from roadways, probe material and sample residence time, and various other considerations. A summary of the probe siting criteria is presented in Table 36. The siting criteria generally apply to all spatial scales except where noted. The most notable exception is spacing from roadways which is dependent on traffic volume.

For the chemically reactive gases SO_2 , NO_2 , and O_3 , the regulations specify borosilicate glass, FEP teflon or their equivalent as the only acceptable probe materials. Additionally, in order to minimize the

effects of particulate deposition on probe walls, sampling probes for reactive gases must have residence times of less than 20 seconds.

ĺ

U. S. EPA-APPROVED MONITORING METHODS USED IN CONNECTICUT IN 1985

		Monitoring Methods	
<u>Pollutant</u>	Reference Manual	Reference Automated	Equivalent Automated
TSP	High Volume Method		
50 ₂			Thermo Electron 43 (0.5)
03		Bendix 8002 (0.5)	
СО		Bendix 8501-5CA (50)	
NO ₂		Thermo Electron 14 B/E (0.5)	
Lead	High Volume Method Low Volume Method*		

* This is a modified reference method approved by EPA on 2/29/84.

() = Approved range in ppm

Town	<u>Urban Area</u>	Site	SLAMS or <u>NAMS</u>	Sampling & Analytic Method	Operating Schedule	Monitoring Objective	Spatial Scale and <u>Representativeness</u>
				SULFUR DIC	XIDE		
Bridgeport	Bridgeport	012	s	Pulsed Fluorescence	Continuous	High Concentration	Neichhorhood
Bridgeport	Bridgeport	123	z	Pulsed Fluorescence	Continuous	Population	Neighborhood
Danbury	Danbury	123	S	Pulsed Fluorescence	Continuous	Population	Neichborhood
E. Hartford	Hartford	005	S	Pulsed Fluorescence	Continuous	Population	Naiabhorbood
East Haven	New Haven	003	S	Pulsed Fluorescence	Continuous	Population	Naiabhorhood
Enfield	Springfield/	005	s	Pulsed Fluorescence	Continuous	Backaround	Reginatiou
	Hartford						
Greenwich	Stamford	017	S	Pulsed Fluorescence	Continuous	Background	lirhan
Groton	New London/	007	s	Puised Fluorescence	Continuous	Population	Neighborhood
	Norwich						
Hartford	Hartford	123	S	Puised Fluorescence	Continuous	Population	Nainhharhand
Milford	Bridgeport	002	S	Pulsed Fluorescence	Continuous	Source	Middle
New Britain	New Britain	011	s	Puised Fluorescence	Continuous	High Concentration	Neighborhood
New Haven	New Haven	017	S	Pulsed Fluorescence	Continuous	Population	Neighborhood
New Haven	New Haven	123	z	Pulsed Fluorescence	Continuous	High Concentration	Neighborhood
Norwalk	Norwalk	013	S	Pulsed Fluorescence	Continuous	Population	Neighborhood
Preston	New London/	002	S	Pulsed Fluorescence	Continuous	Backaround	Regional
	Norwich						
Stamford	Stamford	025	S	Pulsed Fluorescence	Continuous	Population	Neighborhood
Stamford	Stamford	123	S	Pulsed Fluorescence	Continuous	High Concentration	Neighborhood
Waterbury	Waterbury	123	S	Pulsed Fluorescence	Continuous	Population	Neighborhood

1985 SLAMS AND NAMS SITES IN CONNECTICUT

-234-

1985 SLAMS AND NAMS SITES IN CONNECTICUT

Spatial Scale and <u>Representativeness</u>		Neighborhood	Neighborhood Neighborhood			Neighborhood	Urban	Neiahborhood	Regional	Urban		Urban	Neighborhood	Urban	Urban		Micro	Micro	Micro	Micro	Micro
<u>Monitoring Objective</u>		High Concentration	High Concentration			Population	Population	Population	Background	High Concentration		High Concentration	Population	High Concentration	High Concentration		High Concentration	High Concentration	High Concentration	High Concentration	High Concentration
Operating <u>Schedule</u>	<u>OXIDES</u>	Continuous	Continuous	ш		Continuous	Continuous	Continuous	Continuous	Continuous		Continuous	Continuous	Continuous	Continuous	NOXIDE	Continuous	Continuous	Continuous	Continuous	Continuous
Sampling & Analytic Method	NITROGEN	Chemiluminescent Chemiluminescent	Chemiluminescent	OZON	:	Chemiluminescent	Chemiluminescent	Chemiluminescent	Chemiluminescent	Chemiluminescent		Chemiluminescent	Chemiluminescent	Chemiluminescent	Chemiluminescent	CARBON MO	NDIR	NDIR	NDIR	NDIR	NDIR
SLAMS or <u>NAMS</u>		Ś	ŝ		:	z	S	z	S	S		z	z	z	z		s	S	S	S	S
Site		123 003	123			123	123	003	017	008		007	123	001	007		004	017	002	007	020
<u>Urban Area</u>		Bridgeport Hartford	New Haven			Bridgeport	Danbury	Hartford	Stamford	New London/	Norwich	Hartford	New Haven	NONE	Bridgeport		Bridgeport	Hartford	New Britain	New Haven	Stamford
Town		Bridgeport E. Hartford	New Haven			Bridgeport	Danbury	E. Hartford	Greenwich	Groton		Middletown	New Haven	Stafford	Stratford		Bridgeport	Hartford	New Britain	New Haven	Stamford

		-1		AIVIS AIVI		ES IN CONN	ECTICUT	
Town	<u>Urban Area</u>	Site	SLAMS or NAMS	Sampling Method	Analytic Method	Operating Schedule	Monitoring Objective	Spatial Scale and Representativeners
				TOTAL	SUSPENDED PA	RTICULATES		
Ansonia	Bridgeport	004	s	Hi-Vol	Gravimetric	6 th dav	Population	Neighborhood
Bridgeport	Bridgeport	001	z	Hi-Vol	Gravimetric	6th day	Population	Neighborhood
Bridgeport	Bridgeport	600	Z	Hi-Vol	Gravimetric	6th day	Population	Neighborhood
Bridgeport	Bridgeport	123	z	Hi-Vol	Gravimetric	6th day	High Concentration	Neighborhood
Bristol	Bristol	001	Ś	Hi-Vol	Gravimetric	6th day	Population	Neiahborhood
Burlington	NONE	001	S	Hi-Vol	Gravimetric	6th day	Background	Regional
Danbury	Danbury	002	z	Hi-Vol	Gravimetric	6th day	High Concentration	Neiahborhood
Danbury	Danbury	123	z	Hi-Vol	Gravimetric	6th day	Population	Neiahborhood
E. Hartford	Hartford	004	S	Hi-Vol	Gravimetric	6th day	Population	Neiahborhood
Greenwich	Stamford	008	S	Hi-Vol	Gravimetric	6th day	Population	Neiahborhood
Groton	New London/	006	s	Hi-Vol	Gravimetric	6th day	Population	Neiahborhood
	Norwich					•		
Hartford	Hartford	003	z	Hi-Vol	Gravimetric	6 th dav	High Concentration	Neighborhood
Hartford	Hartford	013	z	Hi-Vol	Gravimetric	6th day	High Concentration	Neiahborhood
Hartford	Hartford	014	z	Hi-Vol	Gravimetric	6th day	Population	Neighborhood
Manchester	Hartford	001	s	Hi-Vol	Gravimetric	6 th day	Population	Neiahborhood
Meriden	Meriden	002	z	Hi-Vol	Gravimetric	6 th day	High Concentration	Neighborhood
Middletown	Hartford	003	S	Hi-Vol	Gravimetric	6 th day	Population	Neighborhood
Milford	Bridgeport	002	S	Hi-Vol	Gravimetric	6 th day	Population	Neighborhood
Morris	NONE	001	S	Hi-Vol	Gravimetric	6 th day	Background	Regional
Naugatuck	Waterbury	001	S	Hi-Vol	Gravimetric	6th day	Population	Neighborhood
New Britain	New Britain	007	z	Hi-Vol	Gravimetric	6th day	High Concentration	Neighborhood
New Britain	New Britain	008	z	Hi-Vol	Gravimetric	6th day	Population	Neighborhood
New Britain	New Britain	600	z	Hi-Vol	Gravimetric	6th day	High Concentration	Neighborhood
New Haven	New Haven	002	z	Hi-Vol	Gravimetric	6 th day	High Concentration	Neighborhood
New Haven	New Haven	013	z	Hi-Vol	Gravimetric	6th day	Population	Neighborhood

TABLE 35, CONTINUED

1985 SLAMS AND NAMS SITES IN CONNECTICL

ш
7
<u> </u>
Z
$\overline{\mathbf{a}}$
\mathbf{O}
C
LO
m
ш
~
цц.

1985 SLAMS AND NAMS SITES IN CONNECTICUT

Spatial Scale and Representativeness		Neichhorhood	Neighbornood	Noiabharhaad	Neighborhood		Mainthorhood	Neighborhood	Neighborhood	Neighborhood	Noiabhachaod	Neigribornood	Regional	Neighborhood		Neignbornood	Neighborhood	Neighborhood		Neighborhood	Neighborhood			Neighborhood	Neighborhood	Neiahborhood	Neighborhood
Monitoring Objective		High Concentration	High Concentration	Population	Population	-	High Concentration	High Concentration	Population	Population	Population	Perkaroni	Periodical Contra	Population	Population Bonulation	ropulation	High Concentration	Population		Population	Population	High Concentration		Population	Population	Population	Population
Operating Schedule	RTICULATES	6th dav	6th day	6th day	6th day	•	6th dav	6th day	6th day	6th day	6th day	6 th day	6th day	6th day	6th day		6 th day	6th day		6th day	6th day	1 month		o ^{rn} day	6 th day	6th day	6 th day
Analytic Method	SUSPENDED PA	Gravimetric	Gravimetric	Gravimetric	Gravimetric		Gravimetric	Gravimetric	Gravimetric	Gravimetric	Gravimetric	Gravimetric	Gravimetric	Gravimetric	Gravimetric		Gravimetric	Gravimetric	IEAD	Atomic Abs.	Atomic Abs.	Atomic Abs.	A42	Atomic Abs.	Atomic Abs.	Atomic Abs.	Atomic Abs.
Sampling <u>Method</u>	TOTAL	Hi-Vol	Hi-Vol	Hi-Vol	Hi-Vol		Hi-Vol	Hi-Vol	Hi-Vol	Hi-Vol	Hi-Vol	Hi-Vol	Hi-Vol	Hi-Vol	Hi-Vol		107-1H	Hi-Vol		Hi-Vol	Hi-Vol	Lo-Vol			Hi-Vol	Hi-Vol	Hi-Vol
SLAMS or <u>NAMS</u>		S	z	z	s		z	z	z	s	S	Ś	2	z	ŝ	, 2	2	Ś		s	S	s	v	n 1	S	S	Z
Site		001	005	012	002		001	007	021	005	001	001	001	005	006	200	100	002		004	6 00	010	172	<u>[</u>]	001	002	014
<u>Urban Area</u>		Norwalk	Norwalk	Norwalk	New London/	Norwich	Stamford	Stamford	Stamford	Bridgeport	NONE	NONE	New Haven	Waterbury	Waterbury	Waterhury	valci Dui y	NONE		Bridgeport	Bridgeport	Bridgeport	Bridgenort		Bristol	Danbury	· Hartford
Town		Norwalk	Norwalk	Norwalk	Norwich		Stamford	Stamford	Stamford	Stratford	Torrington	Voluntown	Wallingford	Waterbury	Waterbury	Waterhury		Willimantic		Ansonia	Bridgeport	Bridgeport	Bridgenort		Bristol	Danbury	Hartford

-
\square
ш
<u>En</u>
0
Ŭ
-
S
m
ш
$\mathbf{\omega}$
4

1985 SLAMS AND NAMS SITES IN CONNECTICUT

Town	<u>Urban Area</u>	<u>Site</u>	SLAMS or <u>NAMS</u>	Sampling <u>Method</u>	Analytic Method	Operating Schedule	Monitoring Objective	Spatial Scale and <u>Representativenes</u> s
					LEAD			
Hartford	Hartford	015	S	Lo-Vol	Atomic Abs.	1 month	High Concentration	Micro
Hartford	Hartford	016	z	Lo-Vol	Atomic Abs.	1 month	High Concentration	Micro
Meriden	Meriden	002	S	Hi-Vol	Atomic Abs.	6 th day	Population	Neighborhood
Middletown	Hartford	003	S	Hi-Vol	Atomic Abs.	6 th day	Population	Neighborhood
New Britain	New Britain	007	S	Hi-Vol	Atomic Abs.	6th day	Population	Neighborhood
New Haven	New Haven	016	S	Lo-Vol	Atomic Abs.	1 month	High Concentration	Micro
New Haven	New Haven	018	S	Lo-Vol	Atomic Abs.	1 month	High Concentration	Middle
New Haven	New Haven	123	s	Hi-Vol	Atomic Abs.	6th day	High Concentration	Middle
Norwalk	Norwalk	012	S	Hi-Vol	Atomic Abs.	6th day	Population	Neighborhood
Stamford	Stamford	001	S	Hi-Vol	Atomic Abs.	6th day	Population	Neighborhood
Stamford	Stamford	022	s	Lo-Vol	Atomic Abs.	1 month	High Concentration	Neighborhood
Wallingford	New Haven	001	S	Hi-Vol	Atomic Abs.	6th day	Population	Neighborhood
Waterbury	Waterbury	007	S	Hi-Vol	Atomic Abs.	6th day	Population	Neighborhood
Waterbury	Waterbury	123	S	Hi-Vol	Atomic Abs.	6th day	High Concentration	Middle
West Haven	New Haven	003	s	Lo-Vol	Atomic Abs.	1 month	High Concentration	Middle

Q
ŝ
ш
_
8
۷
F

SUMMARY OF PROBE SITING CRITERIA

	Other Spacing Criteria	 The sampler should be > 20 meters from any trees. The distance from the sampler to an obstacle, such as a building, must be at least twice the height the obstacle protrudes above the sampler.^b There must be unrestricted air flow 270 degrees around the sampler. No furnace or incineration flues should be nearby.^c The sampler must have minimum spacing from roads. This varies with the height of the monitor and the spacial scale. 	 The probe should be > 20 meters from any trees. The distance from the inlet probe to an obstacle, such as a building, must be at least twice the height the obstacle protrudes above the inlet probe.^b There must be unrestricted air flow 270 degrees around the inlet probe, or 180 degrees if the probe is on the side of a building. No furnace or incineration flues should be nearby.^c 	 The probe should be > 20 meters from any trees. The distance from the inlet probe to an obstacle, such as a building, must be at least twice the height the obstacle protrudes above the inlet probe. There must be unrestricted air flow 270 degrees around the inlet probe, or 180 degrees if the probe is on the side of a building. The spacing from roads varies with traffic.^d
Height Above	uround (meters)	2 - 15	7	3 - 15
n Supporting (meters)	Horizontala	>2	7	7
Distance fron Structure	Vertical		3 - 15	7
	Spatial Scale	AII	All	All
	Pollutant	TSP	50 ₂	°O

	A
TABLE 36, CONTINUED	SUMMARY OF PROBE SITING CRITERI

	and an an and a second second	The second second second second second second second second second second second second second second second se		
	Other Spacing Criteria	 The probe must be >10 meters from any intersection and should be at a midblock location. The probe must be 2-10 meters from the edge of the nearest traffic lane. There must be unrestricted airflow 180 degrees around the inlet probe. 	 There must be unrestricted airflow 270 degrees around the inlet probe, or 180 degrees if the probe is on the side of a building. The spacing from roads varies with traffic.^d 	 The probe should be > 20 meters from any trees. The distance from the inlet probe to an obstacle, such as a building, must be at least twice the height the obstacle protrudes above the inlet probe.^b There must be unrestricted air flow 270 degrees around the inlet probe, or 180 degrees if the probe is on the side of a building. The spacing from roads varies with traffic.^d
Height Above	urouna (meters)	2	7	7
n Supporting (meters)	Horizontala	7	7	7
Distance fron Structure	Vertical	3±1/2	3 - 15	3 - 15
	Spatial Scale	Micro	Middle Neighborhood	AII
	Pollutant	9		NO2

^a When the probe is located on a rooftop, this separation distance is in reference to walls, parapets, or penthouses located on the roof.

^b Sites not meeting this criterion would be classified as middle scale.

^c Distance is dependent upon height of furnace or incineration flue, type of fuel or waste burned, and quality of fuel (sulfur and ash content). This is to avoid undue influences from minor pollutant sources.

^d Distance is dependent upon traffic ADT, pollutant, and spatial scale.

-240-

XII. EMISSIONS INVENTORY

The State of Connecticut maintains a computerized emissions inventory which contains a <u>point</u> <u>source</u> file of approximately 7,000 stationary industrial, commercial, and institutional sources of air pollution. Emissions from these sources are determined on the basis of actual operating data for 1985, such as actual fuel use and actual material throughputs, and with the help of pollutant emission factors contained in the Compilation of Air Pollutant Emission Factors, designated as EPA publication AP-42.

This inventory does not account for all the pollution sources in the state, however. There are a host of other industrial, commercial, agricultural, and human activities that account for most of the pollution emitted into Connecticut's air. These sources cannot be individually inventoried either because of their nature, or large numbers, or widespread occurrence, etc. In spite of this, the emissions from these so-called <u>area souces</u> can be quantified by various means. For example, motor vehicle emissions can be determined from Connecticut Department of Transportation figures on vehicle-miles travelled on interstate and local roads, and from EPA MOBILE 3 emission factors; commercial and residential fuel-burning emissions can be determined from U. S. Department of Energy data, census figures, and AP-42 emission factors; and national per capita emissions, which are available from EPA for a number of pollution-causing activities, can be used in conjunction with census figures to calculate emissions by town, county, region, etc.

Together the computerized point source inventory and the more indirectly arrived at, but much larger, area source inventory provide a good picture of the pollutants that are emitted into Connecticut's air each year. Table 37 summarizes the actual in-state emissions of each of the five (5) major air pollutants in Connecticut -- TSP, SO₂, CO, NO₂, and volatile organic compounds or VOC, -- by county, for 1985. The table reveals two things. First, the most populous counties have the largest pollutant totals; second, excluding SO₂, which is largely generated by utilities, area sources (mobile sources in particular) account for the bulk of the total emissions.

County names and geographic locations are displayed in Figure 32, which also serves as a reference for the charts that follow.

Figures 33 through 47 give various visual displays of the level of emissions for each of the major air pollutants. Figures 33, 36, 39, 42, and 45 are pie charts that show the percent of each air pollutant for Connecticut's eight (8) counties. Figures 34, 37, 40, 43, and 46 are pictorial displays of emissions by county, where the darker areas indicate higher emission levels. Figures 35, 38, 41, 44, and 47 are three dimensional graphs of each county's contribution to statewide emissions.

1985 CONNECTICUT EMISSIONS INVENTORY BY COUNTY

			TONS P	ER YEAR OF	EMISSIONS	
<u>County</u>	Sources	TSP	<u>SO</u> 2	<u>co</u>	voc	<u>NO</u> x1
Fairfield	Area	8,068.7	4,507.6	129,306.1	31,700.2	27,299.1
	Point	<u>2,129.1</u>	<u>28,863.2</u>	<u>3,934.7</u>	<u>3,987.3</u>	<u>13,292.7</u>
	All	10,197.8	33,370.8	133,240.8	35,687.5	40,591.8
Hartford	Area	8,912.2	4,605.5	134,872.4	32,848.0	28,120.2
	Point	<u>800.0</u>	<u>3,582.8</u>	<u>532.7</u>	<u>3,942.9</u>	<u>2,887.7</u>
	All	9,712.2	8,188.3	135,405.1	36,790.9	31,007.9
Litchfield	Area	2,553.5	914.0	29,603.4	8,685.6	5,414.7
	Point	<u>180.3</u>	<u>682.5</u>	<u>67.3</u>	<u>942.7</u>	<u>299.0</u>
	All	2,733.8	1596.5	29,670.7	9628.3	5,713.7
Middlesex	Area	2,296.1	915.9	28,535.1	7,768.7	5,604.9
	Point	<u>880.1</u>	<u>7,393.5</u>	<u>532.9</u>	<u>728.1</u>	<u>5,707.5</u>
	All	3,176.2	8,309.4	29,068.0	8,496.8	11,312.4
New Haven	Area	7,874.2	4,174.2	106,698.2	28,096.6	23,640.6
	Point	<u>1,169.5</u>	<u>24,571.9</u>	<u>921.0</u>	<u>5,117.4</u>	<u>7,871.5</u>
	All	9,043.7	28,746.1	107,619.2	33,214.0	31,512.1
New London	Area	3,849.4	1,589.8	50,208.3	13,575.8	9,859.2
	Point	<u>1,066.3</u>	<u>13,577.2</u>	<u>477.9</u>	<u>2,002.2</u>	<u>4,172.7</u>
	All	4,915.7	15,167.0	50,686.2	15,578.0	14,031.9
Tolland	Area	2,104.9	709.6	26,028.9	7,111.2	5,280.2
	Point	<u>108.8</u>	<u>935.2</u>	<u>48.5</u>	<u>111.5</u>	<u>321.4</u>
	All	2,213.7	1,644.8	26,077.4	7,222.7	5,601.6
Windham	Area	1,897.8	562.9	20,916.5	5,945.4	3,734.1
	Point	<u>238.5</u>	<u>549.9</u>	<u>840.4</u>	<u>637.9</u>	<u>320.7</u>
	All	2,136.3	1,112.8	21,756.9	6,583.3	4,054.8
TOTAL	Area	37,556.9	17,979.5	526,168.8	135,731.5	108,953.0
	Point	<u>6,572.6</u>	<u>80,156.1</u>	<u>7,355.5</u>	<u>17,470.0</u>	<u>34,873.2</u>
	All	44,129.5	98,135.6	533,524.3	153,201.5	143,826.2

¹ NO_x emissions are expressed as NO₂

<u>1985 CONNECTICUT EMISSIONS INVENTORY BY COUNTY</u> <u>TOTAL SUSPENDED PARTICULATES</u>

(TOTAL TONS PER YEAR : 44,130)

1985 TOTAL SUSPENDED PARTICULATES Total Emissions by County

1985 TOTAL SUSPENDED PARTICULATES Total Emissions by County

Three Dimensional View of TSP Emissions

1985 CONNECTICUT EMISSIONS INVENTORY BY COUNTY SULFUR DIOXIDE

(TOTAL TONS PER YEAR : 98,136)

Three Dimensional View of S02 Emissions

1985 CONNECTICUT EMISSIONS INVENTORY BY COUNTY CARBON MONOXIDE

(TOTAL TONS PER YEAR : 533,524)

1985 CARBON MONOXIDE Total Emissions by County

Three Dimensional View of CO Emissions

<u>1985 CONNECTICUT EMISSIONS INVENTORY BY COUNTY</u> <u>VOLATILE ORGANIC COMPOUNDS</u>

(TOTAL TONS PER YEAR : 153,202)

1985 VOLATILE ORGANIC COMPOUNDS Total Emissions by County

Three Dimensional View of VOC Emissions

1985 CONNECTICUT EMISSIONS INVENTORY BY COUNTY NITROGEN OXIDES

(Expressed as Nitrogen Dioxide)

(TOTAL TONS PER YEAR : 143,826)

1985 NITROGEN OXIDES (Expressed as Nitrogen Dioxide)

Total Emissions by County

1985 NITROGEN OXIDES (Expressed as Nitrogen Dioxide)

Total Emissions by County

Three Dimensional View of NOx Emissions

XIII. PUBLICATIONS

The following is a partial listing of technical papers and study reports dealing with various aspects of Connecticut air pollutant levels and air quality data.

Bruckman, L., *Asbestos: An Evaluation of Its Environmental Impact in Connecticut*, internal report issued by the Connecticut Department of Environmental Protection, Hartford, Connecticut, March 12, 1976.

Lepow, M. L., L. Bruckman, R.A. Rubino, S. Markowitz, M. Gillette and J. Kapish, "Role of Airborne Lead in Increased Body Burden of Lead in Hartford Children," Environ. Health Perspect., May, 1974, pp. 99-102.

Bruckman, L. and R.A. Rubino, "Rationale Behind a Proposed Asbestos Air Quality Standard," paper presented at the 67th Annual Meeting of the Air Pollution Control Association, Denver, Colorado, June 9-11, 1974, J. Air Pollut. Cntr. Assoc., 25: 1207-15 (1975).

Rubino, R.A., L. Bruckman and J. Magyar, "Ozone Transport," paper presented at the 68th Annual Meeting of the Air Pollution Control Association, Boston, Massachusetts, June 15-20, 1975, J. Air Pollut. Cntr. Assoc.: 26, 972-5 (1976).

Bruckman, L., R.A. Rubino and T. Helfgott, "*Rationale Behind a Proposed Cadmium Air Quality Standard*," paper presented at the 68th Annual Meeting of the Air Pollution Control Association, Boston, Massachusetts, June 15-20, 1975.

Rubino, R.A., L. Bruckman, A. Kramar, W. Keever and P. Sullivan, "Population Density and its *Relationship to Airborne Pollutant Concentrations and Lung Cancer Incidence in Connecticut,*" paper presented at the 68th Annual Meeting of the Air Pollution Control Association, Boston, Massachusetts, June 15-20, 1975.

Lepow, M.L., L. Bruckman, M. Gillette, R.A. Rubino and J.Kapish, "Investigations into Sources of Lead in the Environment of Urban Children," Environ. Res., 10: 415-26 (1975).

Bruckman, L., E. Hyne and P. Norton, "A Low Volume Particulate Ambient Air Sampler," paper presented at the APCA Specialty Conference entitled "Measurement Accuracy as it Relates to Regulation Compliance," New Orleans, Louisiana, October 26-28, 1975, APCA publication SP-16, Air Pollution Control Association, Pittsburgh, Pennsylvania, 1976.

Bruckman, L. and R.A. Rubino, "High Volume Sampling Errors Incurred During Passive Sample Exposure Periods," J. Air Pollut. Cntr. Assoc., 26: 881-3 (1976).

Bruckman, L., R.A. Rubino and B. Christine, "Asbestos and Mesothelioma Incidence in Connecticut," J. Air Pollut. Cntr. Assoc., 27: 121-6 (1977).

Bruckman, L., Suspended Particulate Transport in Connecticut: An Investigation Into the *Relationship Between TSP Concentrations and Wind Direction in Connecticut*, internal report issued by the Connecticut Department of Environmental Protection, Hartford, Connecticut, December 24, 1976.

Bruckman, L. and R.A. Rubino, "Monitored Asbestos Concentrations in Connecticut," paper presented at the 70th Annual Meeting of the Air Pollution Control Association, Toronto, Ontario, June 20-24, 1977.

Bruckman, L., "Suspended Particulate Transport," paper presented at the 70th Annual Meeting of the Air Pollution Control Association, Toronto, Ontario, June 20-24, 1977.

Bruckman, L., "A Study of Airborne Asbestos Fibers in Connecticut," paper presented at the "Workshop in Asbestos: Definitions and Measurement Methods" sponsored by the National Bureau of Standards/U.S. Department of Commerce, July 18-20, 1977.

Bruckman, L., "Monitored Asbestos Concentrations Indoors," paper presented at The Fourth Joint Conference of Sensing Environmental Pollutants, New Orleans, Louisiana, November 6-11, 1977.

Bruckman, L., paper presented at the Joint Conference on Applications of Air Pollution Meteorology, Salt Lake City, Utah, November 28 - December 2, 1977.

Bruckman, L., E. Hyne, W. Keever, "A Comparison of Low Volume and High Volume Particulate Sampling," internal report issued by the Connecticut Department of Environmental Protection, Hartford, Connecticut, 1976.

"Data Validation and Monitoring Site Review," (part of the Air Quality Maintenance Planning Process), internal report issued by the Connecticut Department of Environmental Protection, Hartford, Connecticut, June 15, 1976.

"Air Quality Data Analysis," (part of the Air Quality Maintenance Planning Process), internal report issued by the Connecticut Department of Environmental Protection, Hartford, Connecticut, August 16, 1976.

Bruckman, L., "Investigation into the Causes of Elevated SO2 Concentrations Prevalent Across Connecticut During Periods of SW Wind Flow," paper presented at the 71st Annual Meeting of the Air Pollution Control Association, Paper #78-16.4, Houston, Texas, June 25-29, 1978.

Anderson, M.K., "Power Plant Impact on Ambient Air: Coal vs. Oil Combustion," paper presented at the 68th Annual Meeting of the Air Pollution Control Association, Paper #75-33.5, Boston, MA, June 15-20, 1975.

Anderson, M.K., G. D. Wight, "New Source Review: An Ambient Assessment Technique," paper presented at the 71st Annual Meeting of the Air Pollution Control Association, Paper #78-2.4, Houston, TX, June 25-29, 1978.

Wolff, G.T., P.J. Lioy, G.D. Wight, R.E. Pasceri, "Aerial Investigation of the Ozone Plume Phenomenon," J. Air Pollut.8 Control Association, 27: 460-3 (1977).

Wolff, G.T., P.J. Lioy, R.E. Meyers, R.T. Cederalll, G.D. Wight, R.E. Pasceri, R.S. Taylor, "Anatomy of Two Ozone Transport Episodes in the Washington, D.C., to Boston, Mass., Corridor," Environ. Sci. Technol., 11-506-10 (1977).

Wolff, G.T., P.J. Lioy, G.D. Wight, R.E. Meyers, and R.T Cederwall, "*Transport of Ozone Associated With an Air Mass*," In: Proceed. 70 Annual Meeting APCA, Paper 377-20.3, Toronto, Canada, June, 1977.

Wight, G.D., G.T. Wolff, P.J. Lioy, R.E. Meyers, and R.T.Cederwall, "Formation and Transport of Ozone in the Northeast Quadrant of the U.S.," In: Proceed. ASTM Sym. Air Quality and Atmos. Ozone, Boulder, Colo., Aug. 1977.

Wolff, G.T., P.J. Lioy, and G.D. Wight, "An Overview of the Current Ozone Problem in the Northeastern and Midwestern U.S.," In: Proceed. Mid-Atlantic States APCA Conf. on Hydrocarbon Control Feasibility, p. 98, New York, N.Y., April, 1977.

Wolff, G.T., P.J. Lioy, G.D. Wight, R.E. Meyers, and R.T.Cederwall, "An Investigation of Long-Range Transport of Ozone Across the Midwestern and Eastern U.S.," Atmos. Environ. 11:797 (1977).

 $\mathbb{P}(\mathbf{r}_{n_{1},\dots,n_{k}}^{(n)}) = \mathbb{E}_{\mathbf{r}_{n_{1},\dots,n_{k}}^{(n)}}$

Pollutant NO2 กระวัฒนาไป ประวัญชาติ เป็นสายเหตุ (การเป็นการเป็นการเป็นการเป็นการเป็นการเป็นการเป็นการเป็นการเป็นการเป็นการเป	Town/Site Bridgeport 123 East Hartford 003 New Haven 123	Objective High Conc. High Conc. High Conc.
ovati malà e di di Ozone di di	New Haven 123 Stratford 007	Population High Conc.
TBREAD AND AND AND AND AND AND AND AND AND A	Bridgeport 009 Danbury 002 Danbury 123 New Britain 007	Population High Conc. Population High Conc.
TE mant le groe an leg et an le se Balais I de mart Bagen an agrica	New Britain 008 Stratford 007 Waterbury 005 Waterbury 007	Population High Conc. Population High Conc.
tin begensternet i stran en fer SO2 and taken. N	Bridgeport 123 Milford 002 New Haven 123	High Conc. Source High Conc

• Regarding previous Air Quality Summaries:

- and the second second
 - 1. In Section I.B. of the 1978-1981 editions, a portion of the third sentence in the third paragraph should be rewritten to read: "...the statewide average and standard deviation of the mean pollutant concentrations at the sites..."
- 2. Figure 1 and all references thereto should be ignored in favor of Figure 1 in the 1983 edition.
- 3. Table 2 in the 1978-1981 editions should be ignored in favor of relevant portions of Table 3 in the 1983 edition.

Paragraph I.F.2.b in the 1983 edition should be inserted into the appropriate areas of Section I.F in the 1978-1981 editions.

Table 7 in the 1981 edition is incomplete. The site Stamford 021 should be inserted with a first high of 85 on July 9 and a second high of 83 on March 29.

6. Table 22 in the 1981 edition contains erroneous data. The correct data can be found in Table 22 in the 1983 edition.

- 7. In the 1978-1981 editions, the last sentence in the second paragraph of Section VIII. CLIMATOLOGICAL DATA should be deleted.
- 8. In the 1981 edition, the same corrections should be made to Table 32 that were listed in Item 21 of the foregoing section regarding the 1982 Air Quality Summary.

ERRATA REPORTED IN THE 1982 AIR QUALITY SUMMARY

 Regarding the 1975 TSP data, all references to the following monitoring sites should be ignored: Enfield 123, Enfield 001/123, Danbury 001, Danbury 123, Danbury 001/123, Groton 001, Groton 123, Groton 001/123, Torrington 001, Torrington 123, Torrington 001/123. These sites either had insufficient data for a valid annual average concentration or they included data from two different sites.

S. 400

- Regarding 1976 TSP data, all references to the following monitoring sites should be ignored: Stamford 003, Stamford 123, Stamford 003/123. These sites either had insufficient data for a valid annual average concentration or they included data from two different sites.
- Regarding 1980 TSP data, the following corrections have been made:
 - 1. Bridgeport 001: The number of samples for the year at this site has been changed from 57 to 58, and the annual geometric mean concentration has been changed from 47.8 to 47.6 μ g/m³.
 - 2. Bridgeport 123: the annual geometric mean concentration at this site has been changed from 64.2 to $63.8 \mu g/m^3$.
 - 3. Greenwich 016: All references to this site should be ignored. This site is considered to have been unsuitably located for acceptable particulate monitoring.
 - 4. Morris 001: The standard deviation of the sampling data at this site has been changed from 1.567 to 1.557.
- Regarding 1981 TSP data, the following corrections have been made:
 - 1. Bristol 001: The number of samples for the year at this site has been changed from 55 to 58, and the annual geometric mean concentration has been changed from 34.1 to 34.6 μ g/m³.
- Regarding TSP data for the years 1975 through 1981, all references to sites Torrington 123 and Waterbury 123 should be ignored. These sites are now considered to have been unsuitably located for acceptable particulate monitoring.
- The above corrections, where relevant, are implicit in Table 2 and Table 8 of the 1982 Air Quality Summary. Accordingly, versions of these tables found in post-1974 (and pre-1982) editions of this document contain erroneous information and should be ignored or appropriately footnoted.
- Regarding Table 2, some of the earlier editions of this document have contained versions of this table which appeared to present annual "arithmetic" mean data. This is incorrect. All versions of this table contain annual "geometric" mean data.

10 BI 1.

小板 法押偿性

1

1.1

12.5

-267-

an an an an an an Arganal an an Arganal an an Arganal an Arganal an Arganal an Arganal an Arganal an Arganal a Arganal an Arganal an Arganal an Arganal an Arganal an Arganal an Arganal an Arganal an Arganal an Arganal an Ar

n an the second second second second second second second second second second second second second second seco

. .