1984

STATE OF CONNECTICUT ANNUAL AIR QUALITY SUMMARY

William A. O'Neill Governor

Leslie Carothers Commissioner

TABLE OF CONTENTS

	PAGE
LIST OF TABLES	iii
LIST OF FIGURES	v
I. INTRODUCTION	1
A. Overview of Air Pollutant Concentrations in Connecticut	1
1. Total Suspended Particulates 2. Sulfur Dioxide 3. Ozone 4. Nitrogen Dioxide 5. Carbon Monoxide 6. Lead	1 1 1 2 2 2
B. Trends	5
1. TSP	5
C. Air Monitoring Network	15
D. Pollutant Standards Index	16
E. Quality Assurance	16
1. Precision	18 18
II. TOTAL SUSPENDED PARTICULATES	20
III. SULFUR DIOXIDE	99
IV. OZONE	119
V. NITROGEN DIOXIDE	134
VI. CARBON MONOXIDE	140
VII. LEAD	156
VIII. ACID PRECIPITATION	201
IV CURATOR OCICAL DATA	220

TABLE OF CONTENTS

		PAGE
х.	ATTAINMENT AND NON-ATTAINMENT OF NAAQS IN CONNECTICUT'S AQCR'S	227
XI.	CONNECTICUT SLAMS AND NAMS NETWORK	230
XII.	EMISSIONS INVENTORY	238
XIII.	PUBLICATIONS	256
XIV	ERRATA	259

LIST OF TABLES

TABLE NUMBER		PAGE
1	Assessment of Ambient Air Quality	3
. 2	Air Quality Standards Exceeded in Connecticut in 1984 Based Solely upon Measured Concentrations	4
3	TSP Trends, 1975-1984 (Paired t Test)	7
4	SO 2 Trends from Continuous Data, 1978-1984 (Paired t Test)	9
5	1982-1984 TSP Annual Averages and Statistical Projections	25
6	Confidence of Compliance with Annual TSP Standards during 1984	30
7	1984 Maximum 24-Hour TSP Concentrations	31
8	Summary of the Statistically Predicted Number of Sites Exceeding the 24-Hour TSP Standards	35
9	Quarterly Chemical Characterization of 1984 Hi-Vol TSP	36
10	Monthly Chemical Characterization of 1984 Lo-Vol TSP	79
11	1984 Ten Highest 24-Hour Average TSP Days with Wind Data	81
12	1984 Annual Arithmetic Averages of Sulfur Dioxide at Sites with Continuous Monitors	103
13	1984 Sulfur Dioxide Annual Averages and Statistical Projections	104
14	1984 Maximum 24-Hour Running Average Sulfur Dioxide Concentrations	106
15	Comparisons of 1984 First and Second High Running and Calendar Day 24-Hour SO 2 Averages	108
16	1984 Maximum Running 3-Hour Sulfur Dioxide Concentrations	109
17	1984 Ten Highest 24-Hour Average SO 2 Days with Wind Data	111
18	Number of Days on Which the 1-Hour Ozone Standard Was Exceeded in 1984	123
19	Number of Exceedances of the 1-Hour Ozone Standard in 1984	124
20	1984 Maximum 1-Hour Ozone Concentrations	125
21	1984 Ten Highest 1-Hour Average Ozone Days with Wind Data	126

LIST OF TABLES

TABLE NUMBER	TITLE OF TABLE	PAGE
22	1982-1984 Nitrogen Dioxide Annual Averages and Statistical Projections	137
23	1984 Ten Highest 24-Hour Average NO 2 Days with Wind Data	138
24	1984 Carbon Monoxide Standards Assessment Summary	144
25	1984 Carbon Monoxide Seasonal Features	145
26	1984 Ten Highest 1-Hour Average CO Days with Wind Data	146
26a	Exceedances of 8-hour CO Standard	148
27	1984 3-Month Running Average Lead Concentrations	161
28	Atmospheric Deposition Data for the Plainfield Site	204
29	Atmospheric Deposition Data for the Morris Dam Site	207
30	Atmospheric Deposition Data for the Marlborough Site	209
31	1983 and 1984 Climatological Data, Bradley International Airport, Windsor Locks	221
32	1983 and 1984 Climatological Data, Sikorsky International Airport, Stratford	222
33	Connecticut's Compliance with the NAAQS (by AQCR) for 1984	229
34	U.S. EPA Approved Monitoring Methods Used in Connecticut in 1984	232
35	1984 SLAMS and NAMS Sites	233
36	Summary of Probe Siting Criteria	236
37	1984 Connecticut Department of Environmental Protection Emissions Inventory by County	239

LIST OF FIGURES

FIGURE NUMBER	TITLE OF FIGURE	PAGE
1	Total Suspended Particulate Matter Trend	8
2	Sulfur Dioxide Trend from Continuous Data	10
2A	Annual Geometric Mean Concentration of SO 2 from 1979-1984	11
2B	The Average of the Annual Geometric Mean SO 2 Concentrations at 5 Concurrently Operating SO 2 Sites with Continuous Monitors	12
2C	Three-Year Running Average of the Annual Geometric Mean SO ₂ Concentrations at 5 Concurrently Operating SO ₂ Sites with Continuous Monitors	13
2D	Trend of Annual Geometric Mean Concentrations of SO 2 at 5 Concurrently Operating Sites from 1979-1984	14
3	Pollutant Standards Index	17
4	Location of 1984 Total Suspended Particulate Matter Instruments	24
5	Location of 1984 Continuous Sulfur Dioxide Instruments	102
6	Location of 1984 Chemiluminescent Ozone Instruments	122
7	Wind Rose for April-September 1983, Bradley International Airport, Windsor Locks, Connecticut	130
8	Wind Rose for April-September 1984, Bradley International Airport, Windsor Locks, Connecticut	131
9	Wind Rose for April-September 1983, Newark International Airport, Newark, New Jersey	132
10	Wind Rose for April-September 1984, Newark International Airport, Newark, New Jersey	133
11	Location of 1984 Nitrogen Dioxide Instruments	136
12	Location of 1984 Carbon Monoxide Instruments	143
13	Exceedances of the 8-hour CO Standard	149
14	36-Month Running Average CO Concentration	152
A	Statewide Annual Lead Emissions from Gasoline and Statewide Annual Average Lead Concentrations	158

LIST OF FIGURES

FIGURE NUMBER	TITLE OF FIGURE	PAGE
В	Statewide Annual Lead Emissions from Gasoline vs. Statewide Annual Average Lead Concentrations	159
15	Location of 1984 Lead Instruments	160
16	3-Month Running Averages for Lead	162
C	Annual Average Lead Concentration	183
D	3-Year Running Average Lead Concentration	192
17	Location of Precipitation Collectors	203
18	Inches of Precipitation, Plainfield Site, 1984	211
19	pH of Precipitation, Plainfield Site, 1984	212
20	Specific Conductance of Precipitation, Plainfield Site, 1984	213
21	Inches of Precipitation, Morris Dam Site, 1984	214
22	pH of Precipitation, Morris Dam Site, 1984	215
23	Specific Conductance of Precipitation, Morris Dam Site, 1984	216
24	Inches of Precipitation, Marlborough Site, 1984	217
25	pH of Precipitation, Marlborough Site, 1984	218
26	Specific Conductance of Precipitation, Marlborough Site, 1984	219
27	Annual Wind Rose 1983, Bradley International Airport, Windsor Locks, Connecticut	223
28	Annual Wind Rose 1984, Bradley International Airport, Windsor Locks, Connecticut	224
29	Annual Wind Rose 1983, Newark International Airport, Newark, New Jersey	225
30	Annual Wind Rose 1984, Newark International Airport, Newark, New Jersey	226
31	Connecticut's Air Quality Control Regions	228
32	State of Connecticut County Map	240
33	1984 Connecticut Department of Environmental Protection Emissions Inventory by County, Total Suspended Particulates	241
34	1984 Total Suspended Particulates, Total Emissions by County	242

LIST OF FIGURES

FIGURE NUMBER	TITLE OF FIGURE	PAGE
35	1984 Total Suspended Particulates, Total Emissions by County, Three-Dimensional View of TSP Emissions	243
36	1984 Connecticut Department of Environmental Protection Emissions Inventory by County, Sulfur Dioxide	244
37	1984 Sulfur Dioxide, Total Emissions by County	245
38	1984 Sulfur Dioxide, Total Emissions by County, Three-Dimensional View of SO 2 Emissions	246
39	1984 Connecticut Department of Environmental Protection Emissions Inventory by County, Carbon Monoxide	247
40	1984 Carbon Monoxide, Total Emissions by County	248
å 41	1984 Carbon Monoxide, Total Emissions by County, Three-Dimensional View of CO Emissions	249
42	1984 Connecticut Department of Environmental Protection Emissions Inventory by County, Volatile Organic Compounds	250
43	1984 Volatile Organic Compounds, Total Emissions by County	251
44	1984 Volatile Organic Compounds, Total Emissions by County, Three-Dimensional View of VOC Emissions	252
45	1984 Connecticut Department of Environmental Protection Emissions Inventory by County, Nitrogen Oxides (Expressed as NO 2)	253
46	1984 Nitrogen Oxides (Expressed as NO 2), Total Emissions by County	254
47	1984 Nitrogen Oxides (Expressed as NO 2), Total Emissions by County, Three-Dimensional View of NO 2 Emissions	255

I. INTRODUCTION

The 1984 Air Quality Summary of Ambient Air Quality in Connecticut is a compilation of all air pollutant measurements made at the Department of Environmental Protection (DEP) air monitoring network sites.

A. Overview of Air Pollutant Concentrations in Connecticut

The assessment of ambient air quality in Connecticut is made by comparing the measured concentrations of a pollutant to each of two Federal air quality standards. The first is the primary standard which is established to protect public health with an adequate margin of safety. The second is the secondary standard which is established to protect plants and animals and to prevent economic damage. The specific air quality standards are listed in Table 1 along with the time constraints imposed on each.

The following section briefly describes the status of Connecticut's air quality for the year 1984. More detailed discussions of each of the six pollutants are provided in subsequent sections of this Air Quality Summary.

1. Total Suspended Particulates (TSP)

Measured total suspended particulate (TSP) levels did not exceed the primary annual standard of 75 ug/m or the secondary annual standard of 60 ug/m in Connecticut during 1984. No site exceeded the primary 24-hour standard of 260 ug/m in 1984. Nor did any site exceed the secondary 24-hour standard of 150 ug/m, whereas such exceedances were recorded at two (2) sites in 1982 and at fourteen (14) sites in 1981. Two (2) exceedances of a standard are required at a particular site for the standard to be violated. No site recorded violations of any particulate standard in 1984.

In general, measured TSP levels in Connecticut were higher in 1984 in terms of annual average concentration values than they were in 1983 (see Table 3).

2. Sulfur Dioxide (SO 2)

None of the air quality standards for sulfur dioxide were exceeded in Connecticut in 1984. Measured concentrations were below the 80 ug/m primary annual standard, the 365 ug/m primary 24-hour standard, and the 1300 ug/m secondary 3-hour standard.

The results of continuous SO₂ monitoring indicate that sulfur dioxide levels in 1984 were not significantly different from those in 1983 (see Table 4). Temperature is an important factor in determining SO₂ emissions. The lack of change in measured SO₂ levels may have been due to the fact that, for coastal Connecticut, 1984 was not appreciably warmer than 1983. This can be shown by the number of "degree days": a measure of heating requirement (see Tables 31 and 32). As the number of degree days increases, the amount of fuel that must be burned to heat buildings also increases. Consequently, as more fossil fuel is burned, the emissions of sulfur oxides are proportionately increased. There was only about a 1% increase in degree days for Connecticut as a whole from 1983 to 1984.

3. Ozone (O_1)

National Ambient Air Quality Standards - (NAAQS) - On February 8, 1979, the U.S. Environmental Protection Agency (EPA) established an ambient air quality standard for ozone

of 0.12 ppm for a one-hour average. That level is not to be exceeded more than once per year. Furthermore, in order to determine compliance with the 0.12 ppm ozone standard, EPA directs the states to record the number of daily exceedances of 0.12 ppm at a given monitoring site over a consecutive 3-year period and then calculate the average number of daily exceedances for this interval. If the resulting average value is less than or equal to 1.0; that is, if the fourth highest daily value in a consecutive 3-year period is less than or equal to 0.12 ppm, the ozone standard is considered to be attained. The definition of the pollutant was also changed, along with the numerical value of the standard, partly because the instruments used to measure photochemical oxidants in the air really measure only ozone. Ozone is one of a group of chemicals which are formed photochemically in the air and are called photochemical oxidants. In the past, the two terms have often been used interchangeably. This 1984 Air Quality Summary uses the term "ozone" in conjunction with the new NAAQS to reflect the changes in both the numerical value of the NAAQS and the definition of the pollutant.

The primary 1-hour ozone standard was exceeded at all the DEP monitoring sites in 1984 (see Table 2).

The incidence of ozone levels in excess of the 1-hour 0.12 ppm ozone standard decreased significantly from 1983 to 1984 (see Tables 18 and 19). Most of this difference is attributable to the changes in meteorological factors which occur from year-to-year. The formation of ozone is facilitated by high temperatures and strong sunlight in the presence of hydrocarbons and oxides of nitrogen. The prevailing southwest wind transports hydrocarbons and nitrogen oxides generated in the New Jersey - New York City Metropolitan Area into Connecticut. Along the way, these chemicals react in the presence of strong sunlight, forming ozone. Consequently, the ozone levels across Connecticut are highest when the prevailing wind flow is out of the southwest (see Table 21). However, there are recorded exceedences of the NAAQS for ozone on non-southwest wind days. This suggests that pollution control programs currently being implemented in this state are needed to protect the public health of Connecticut's citizenry on days when Connecticut is responsible for its own pollution.

4. Nitrogen Dioxide (NO₂)

The method by which the DEP measures NO $_2$ was changed in 1981. 1984 was the third full year the DEP used continuous electronic analyzers to measure NO $_2$ levels. The annual average NO $_2$ standard, 100 ug/m 3 , was not exceeded in 1984 at any site in Connecticut.

5. Carbon Monoxide (CO)

The primary eight-hour standard of 9 ppm was exceeded at two of the five carbon monoxide monitoring sites in Connecticut during 1984 (see Table 2). The standard was exceeded three times at Stamford-020 and two times at Hartford 017. Two exceedances at a particular site are required for a standard to be violated. For comparison, there were exceedances at all five sites in 1983 and violations of the eight-hour standard at New Britain 002 and Hartford 012.

There were no violations of the primary one-hour standard of 35 ppm.

6. Lead (Pb)

The primary and secondary ambient air quality standard for lead is 1.5 ug/m³, maximum arithmetic mean averaged over three consecutive calendar months. As was the case in 1983, the lead standard was not exceeded at any site in Connecticut during 1984.

A downward trend in measured concentrations of lead has been observed since 1978. This trend is probably due to the decreasing use of leaded, relative to unleaded, gasoline.

TABLE 1

ASSESSMENT OF AMBIENT AIR QUALITY

AMBIENT AIR QUALITY STANDARDS	SECONDARY STANDARD ug/m3 ppm	60* 150 ·	1300 0.50	Same as Primary	Same as Primary	Same as Primary	Same as Primary Same as Primary
ENT AIR QUAL	PRIMARY STANDARD ug/m3 ppm	10.0	0.03	0.05	0.12	IO.	10 * * 9 40 * 35
AMBI	STATISTICAL SASE SASE U9/	Annual Geometrig Mean 75 24-Hour Average 3	Annual Arithmetic Mean 80 24-Hour Average 3 3-Hour Average	Annual Arithmetic Mean 100	1-Hour Average ⁴ . 235	Weighted 3-Month 1.5 Average	8-Hour Average ³ 10-Hour Average ³ 46
	DATA REDUCTION	24~Hour Average	1-Hour Average	1-Hour Average	1-Hour Average	Monthly Composite	1-Hour Average
	SAMPLING PERIOD	24-Hours Every Sixth Day ¹	Continuous ²	Continuous ²	Continuous ²	24 Hours Every Sixth Day ⁵	Continuous ²
	POLLUTANT	Total Suspended Particulates	Sulfur Oxides (Measured as Sulfur Dioxide)	Nitrogen Dioxide Continuous	Ozone	Lead	.Carbon Monoxide

1 EPA assessment criteria require at least 5 samples per calendar quarter, and, if one month has no samples, then the other two months in that quarter must have at least two samples each.

2 EPA assessment criteria require 75% of possible data to compute valid averages.

3 Not to be exceeded more than once per year.

4 Not to be exceeded more than an average of once per year in three years.

5 State of Connecticut assessment criteria require 75% of possible data to compute valid averages.

* A guide to be used in assessing implementation plans to achieve the 24-hour standard.

Units: $ug/m^3 = micrograms$ per cubic meter; $mg/m^3 = milligrams$ per cubic meter; ppm = partsper million

TABLE 2

AIR QUALITY STANDARDS EXCEEDED IN CONNECTICUT IN 1984 BASED SOLELY UPON MEASURED CONCENTRATIONS

CARBON MONOXIDE	Level exceeding	8-Hour/1-Hour	dard	Highest Number	Observed Level of Times	8-Hour/1-Hour Standard	opm) Exceeded				×		_	×					×
				Number Hig	_	0	(mdd) (bbm)	12	13	7	× × ×	22	× 13.9	18	14	12	7	x 10.7	ac.
OZONE	Level Exceeding	Exc.	St	Highest	_		(ppm) E	0.197	0.215	0.167	0.196	0.226	×	0.241	0.177	0.218	0.181	×	000
							Site	123	123	003	017	005	017	002	200	123	001	020	700
							Town	Bridgeport	Danhury	East Hartford	Greenwich	Groton	Hartford	Madison	Middletown	New Haven	Stafford	Stamford	71111

X: Pollutant not monitored at site-: No violation

B. Trends

Any attempt to assess statewide trends in air pollution levels must account for the tendency of local changes to obscure the statewide pattern. In order to reach some statistically valid conclusions concerning trends in pollutant levels in Connecticut, the DEP has applied a statistical test called a paired t test (referred to hereafter as the t test) to the annual average data for two pollutants. The t test has been applied to 1975-1984 total suspended particulate (TSP) data and to 1978-1984 continuous SO $_2$ data.

The t test is a parametric test which can ascertain statistically significant changes (increases or decreases) in the annual average pollutant concentrations at all the monitoring sites in Connecticut. The t test makes it possible to overcome the trend analysis problems which arise due to the changes in the number and location of monitoring sites from year-to-year, as well as problems associated with making equitable comparisons among sites. The annual mean pollutant concentrations for consecutive years are compared at each site; there is no inter-site comparison. Data for two consecutive years are required and the size of the change (increase or decrease) is noted. For example, if a high proportion of sites experienced an increase and/or if the magnitude of the increases at several sites is of much greater importance than the magnitude of the decreases at other sites, the t test will show that the increase was statistically significant for those two years.

The results of the t test for TSP and continuous SO 2 data are presented in Tables 3 and 4, respectively. These analyses were performed only on data computed for sites at which the EPA's minimum sampling criteria were met. The years of data that were paired, the number of sites used, and the statewide average and standard deviation of the geometric mean pollutant concentrations at the sites are provided in the first four columns of each table. The statistical significance of any change in the statewide pollutant average is provided in the remaining columns. The significance of a change is indicated by an arrow for each confidence limit, and is also given numerically as the number of chances in 10,000 of not occurring under the heading "actual significance of change". For example, the statewide annual average for TSP decreased between 1977 and 1978 from 54.8 to 52.7. This change represented a significant decrease at the 95% confidence level, but it did not represent a significant change at the 99% confidence level. The "actual significance of change" is given as 0.0216, meaning that there are 216 chances in 10,000 that this measured decrease in TSP levels did not occur.

1. TSP

The results of the t test for TSP (see Table 3) show that total suspended particulate levels in Connecticut remained relatively constant from 1975 to 1977, decreased from 1977 to 1978, and remained unchanged from 1978 to 1979. Between 1979 and 1980 there was a significant drop in measured TSP levels. This has been attributed to the elimination of passive sampling error through the use of retractable lids on the hi-vol monitors. TSP levels again fell significantly from 1980 to 1981. TSP levels increased from 1981 to 1982, decreased from 1982 to 1983 and then increased from 1983 to 1984.

These trend analyses do not account for the uncertainty associated with the individual annual mean computed for each TSP site. Most TSP sampling is conducted only every sixth day, producing a maximum possible total of 61 samples per year. Therefore, the t test really compares year-to-year averages of the sampled concentrations, not actual annual averages. However, the every-sixth-day sampling schedule is believed to be sufficient to produce representative annual averages. The every-sixth-day schedule for TSP sampling began in 1971.

Significant changes in annual TSP levels can also be caused simply by changes of weather, particularly the wind. Such changes may explain most of the increase observed between 1974 and 1975, and the decrease from 1977 to 1978.

Figure 1 shows the long-term trend of TSP concentrations in Connecticut in graphical form. The trend chart is based on data obtained from high volume sampling devices. High volume sampler data at a site are included only if there was a sufficient number of samples taken in a year to compute a valid annual geometric mean concentration.

2. SO 2

Connecticut has been measuring ambient levels of sulfur dioxide since prior to the inception of the SO₂ standards in 1971. Several monitoring methods have been employed including bubblers, sulfation plates, and various types of continuous instruments. The bubblers became the EPA reference method, but unfortunately the field data have turned out to be very unreliable. The sulfation plates were in use for 15 years, but they do not measure SO₂ directly. Sulfation rate-derived SO₂ values were thought to be reliable, but recent information has cast doubt on their reliability. Continuous monitors presently yield reliable data, but this has not always been the case. The earliest continuous monitors (conductometric and coulometric) were subject to interference from many chemicals other than SO₂ and also had difficulties with quality control. Later generations of instruments (flame photometric and pulsed fluorescent) alleviated these problems, and there has been a corresponding increase in the reliability of the data, especially since 1978.

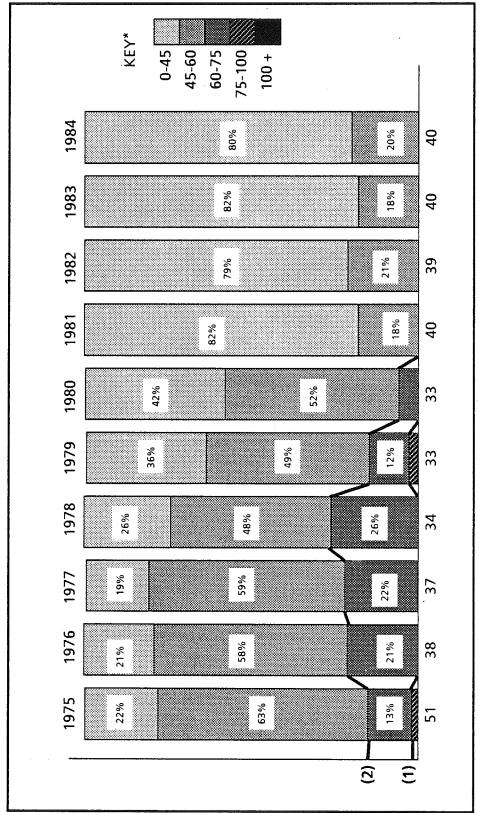
In order to perform a valid trend analysis, the data for the period of interest must be adequate, reliable and from similar sampling methods. Up until 1978, the only method which consistently fit these criteria was the sulfation plate. Between 1978 and 1982 there were approximately three times as much sulfation rate data as continuous SO₂ data and the former method was used for the purpose of analyzing SO₂ trends. However, recent information now indicates that sulfation rate-derived SO₂ values may not be as accurate as once thought. Sulfation rate data are dependent on relative humidity and wind speed — being extremely sensitive to the latter — and the precision of the data suffers even under uniform conditions. Furthermore, EPA has requested that DEP use continuous SO₂ data in order to analyze SO₂ trends. Consequently, the SO₂ trend analysis uses only continuous SO₂ data. The data are restricted to the period 1976-1983 because earlier data are judged not to be adequate or reliable. The results are summarized in Table 4 and Figure 2. Table 4 does not present a trend analysis for the period 1976-1977 or the period 1977-1978 because the number of monitors that operated for the duration of each period was 2 and 3, respectively — too few to establish an accurate statewide trend.

In response to the skyrocketing prices of low sulfur fuels in the late 1970's, most states relaxed their sulfur-in-fuel requirements to the full extent the law allowed, creating considerable pressure on Connecticut to follow suit. This caused Connecticut to reevaluate its philosophy for controlling sulfur oxide emissions in 1981. To meet the challenge of increased costs of fuel in the economy, DEP restructured its air pollution control requirements for fuel burning sources. Under this new "three-pronged" program Connecticut's businesses and industries are (1) now allowed (effective November 1981) to burn a less expensive grade of oil with a higher sulfur content — one percent (1.0%) sulfur oil and (2) are allowed to burn higher sulfur content oil in exchange for reductions in energy use. The third aspect of the program was the repeal of the 24-hour secondary air quality standard for sulfur oxides.

TABLE 3

TSP TRENDS, 1975-1984
(PAIRED t TEST)

		Average Of Annual	,	<u>Sig</u>	nificanc	<u>e Ĺevel</u> Probability
Paired Years	Number Of Sites	Geometric Means (ug/m³)	Standard Deviation (ug/m³)	Trend 95% Level*	l at 99% <u>Level*</u>	That Change Is Not Significant
75 76	29 29	53.3 53.3	9.8 9.5	N.C.	N.C.	0.9588
76 77	35 35	53.6 53.7	8.8 9.2	N.C.	N.C.	0.8715
77 78	30 30	54.8 52.7	9.8 9.3	\	N.C.	0.0216
78 79	32 32	51.4 49.9	12.1 12.5	N.C.	N.C.	0.1530
79 80	32 32	49.3 45.4	13.2 10.0	\	4	0.0001
80 81	26 26	45.2 38.0	10.1 8.4	\	\	0.0001
81 82	37 37	38.3 40.5	6.8 8.0	†	†	0.0001
82 83	36 36	41.3 39.5	7.3 6.7	\	↓	0.0001
83 84	38 38	39.6 40.5	6.7 6.5	†	↑	0.0008


^{*} Key to Symbols:

= Significant Downward Trend

| Significant Upward Trend
| N.C. = No Significant Change

FIGURE 1

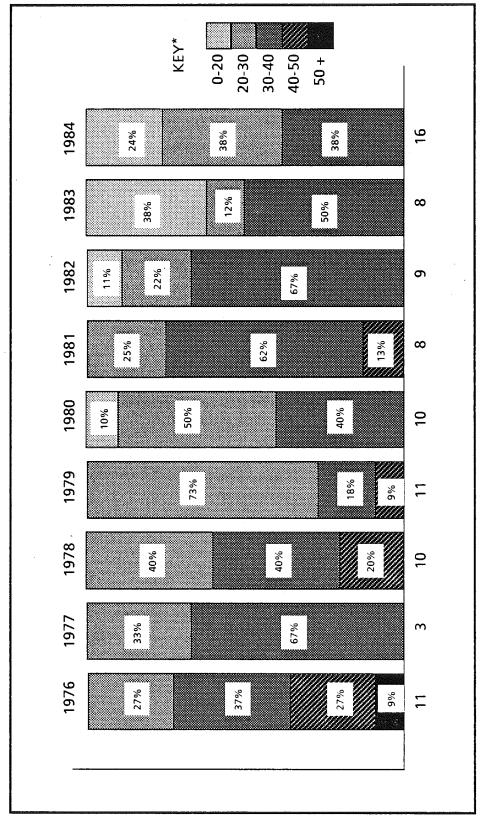
TOTAL SUSPENDED PARTICULATE MATTER TRENDS "PERCENT OF SITES WITHIN EACH RANGE"

NUMBER OF SITES

(1) PRIMARY ANNUAL STANDARD 75 µg/m³

(2) SECONDARY ANNUAL STANDARD 60 µg/m³

* ANNUAL GEOMETRIC MEAN µg/m³

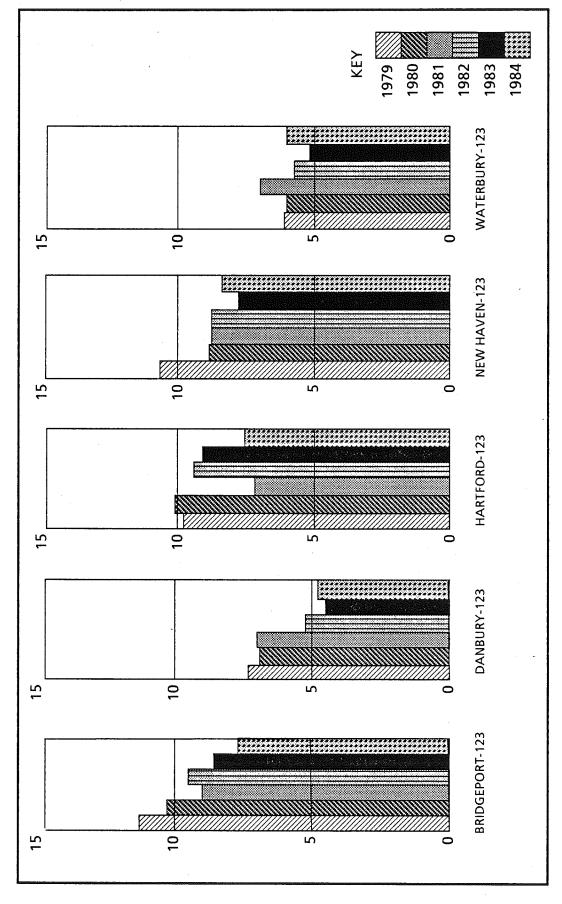

TABLE 4

SO₂ TRENDS FROM CONTINUOUS DATA, 1978-1984
(PAIRED t TEST)

		Average Of Annual		Sig	gnificanc	<u>e Level</u> Probability
Paired Year's	Number Of Sites	Geometric Means (ug/m³)	Standard Deviation (ug/m³)	Trend 95% <u>Level*</u>	d at 99% <u>Level*</u>	That Change Is Not Significant
78 79	9 9	23.8 21.3	6.1 5.3	N.C.	N.C.	0.1238
79 80	10 10	21.8 19.8	4.5 5.2	\	N.C.	0.0215
80 81	8 8	21.1 20.9	4.1 4.4	N.C	N.C.	0.9100
81 82	8 8	20.9 21.0	4.4 4.5	N.C.	N.C.	0.9522
82 83	8 8	20.0 18.1	5.0 5.1	. ↓	4	0.0002
83 84	8 8	18.1 18.2	5.1 4.5	N.C.	N.C.	0.9237

FIGURE 2

SULFUR DIOXIDE TREND FROM CONTINUOUS DATA "PERCENT OF SITES WITHIN EACH RANGE"



NUMBER OF SITES

* ANNUAL ARITHMETIC MEAN µg/m³

PRIMARY ANNUAL STANDARD = $80 \mu g/m^3$

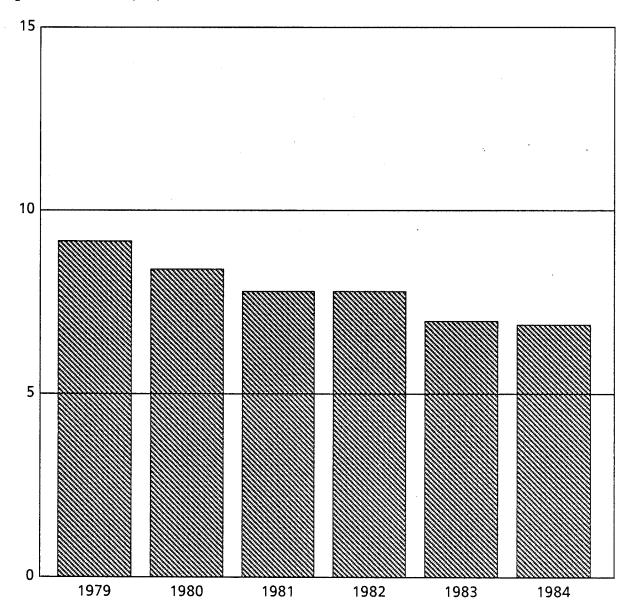

ANNUAL GEOMETRIC MEAN CONCENTRATION OF SO₂ (PPB) FROM 1979-1984 FIGURE 2A

FIGURE 2B

THE AVERAGE OF THE ANNUAL GEOMETRIC MEAN SO₂ CONCENTRATIONS AT 5 CONCURRENTLY OPERATING SO₂ SITES WITH CONTINUOUS MONITORS

SO₂ CONCENTRATION (PPB)

FIGURE 2C

THREE-YEAR RUNNING AVERAGE OF THE ANNUAL GEOMETRIC MEAN SO₂ CONCENTRATIONS AT 5 CONCURRENTLY OPERATING SO₂ SITES WITH CONTINUOUS MONITORS

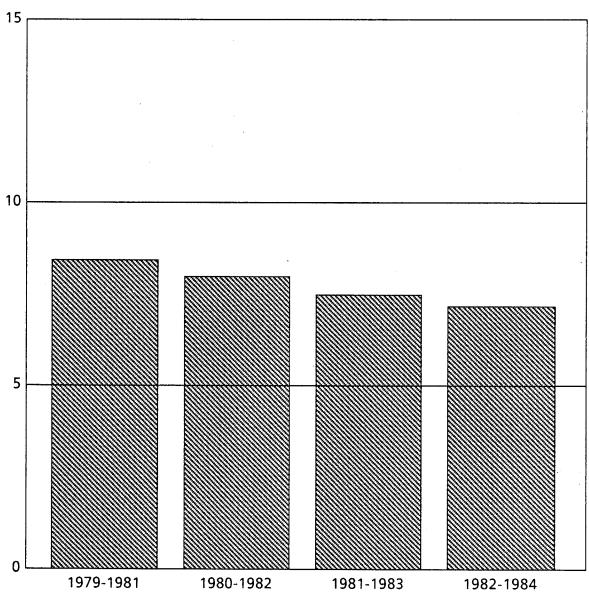
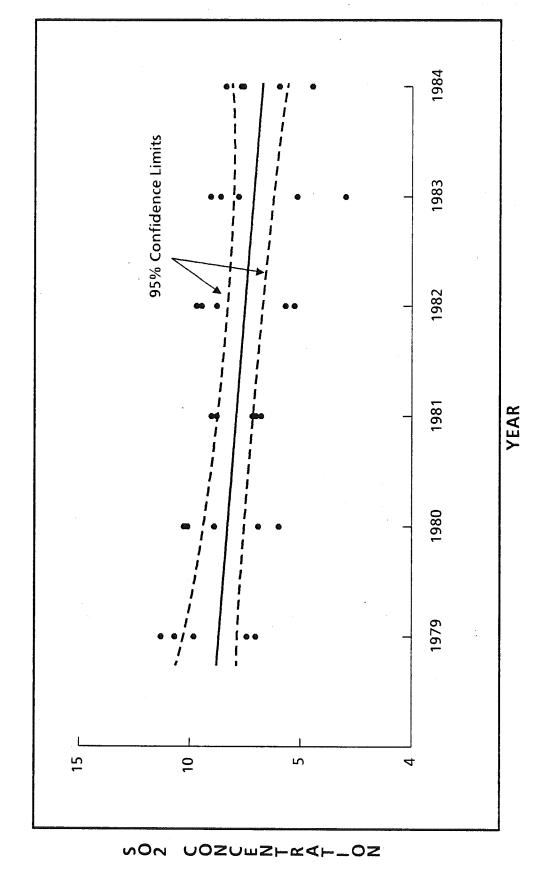



FIGURE 2D

TREND OF ANNUAL GEOMETRIC MEAN CONCENTRATIONS OF SO2 (PPB) AT FIVE CONCURRENTLY OPERATING SITES FROM 1979-1984

This action increased statewide allowable sulfur oxide emissions by almost 60%. (Sulfur oxide emissions were not doubled by going from 0.5% to 1.0% sulfur-in-fuel since residential fuel users, which account for almost one-third of annual statewide sulfur oxide emissions, use distillate fuel oil with a sulfur content of 0.5%.) One would expect measured SO₂ levels to increase in 1982 and subsequent years, as compared to 1981, due to the use of 1.0% sulfur oil. However, no significant trend was apparent in 1982; and in 1983 SO₂ levels actually declined (see Table 4). This may be attributable to the year-to-year fluctuations in meteorology or the decreased fuel use caused by the increased price of this energy source.

The long-term trend of SO₂ concentrations is shown in graphical form in Figure 2. An improvement in SO₂ levels is demonstrated by the decrease over time of concentrations in excess of 40 ug/m³. Table 4 shows the year-to-year trend in ambient SO₂ levels. Decreases in SO₂ concentrations from 1979 to 1980 and from 1982 to 1983 are evident.

Continuous SO₂ monitors were operated each year at five (5) sites between 1978 and 1984. Based on measurements at these five (5) locations, mean SO₂ levels are depicted in Figures 2A and 2B. Figure 2A shows SO₂ levels clearly decreasing at the Bridgeport and Danbury sites and exhibiting a slight trend downward at the other three sites. Figure 2B shows the average of the mean SO₂ concentrations for all the sites steadily decreasing over the 5-year period. Figure 2D is a linear regression analysis of this data which also shows a downward trend in SO₂ levels since 1979. Using the data presented in Figure 2B, Figure 2C shows the three-year running average of the mean SO₂ concentrations. Three-year running averages tend to smooth out the year-to-year effects of meteorology on pollutant levels. Like Figures 2A and 2B, Figure 2C illustrates again that SO₂ levels appear to be decreasing. This long term trend analysis also demonstrates that SO₂ levels are declining even though fuel burning sources have been allowed to use 1% sulfur oil since 1982.

C. Air Monitoring Network

A computerized Air Monitoring Network consisting of an IBM System 7 computer and 25 telemetered monitoring sites was operated in 1984. As many as 12 measurement parameters are transmitted from a site via telephone lines to the System 7 unit located in the DEP Hartford office. The data are then compiled twice daily into 24-hour summaries. The telemetered sites are located in the towns of Bridgeport, Danbury, East Hartford, East Haven, Enfield, Greenwich, Groton, Hartford, Madison, Middletown, Milford, New Britain, New Haven, Norwalk, Preston, Stafford, Stamford, Stratford and Waterbury.

Continuously measured parameters include the pollutants sulfur dioxide, particulates (measured as the coefficient of haze), carbon monoxide, nitrogen dioxide and ozone. Meteorological data consists of wind speed and direction, wind horizontal sigma, temperature, dew point, precipitation, barometric pressure and solar radiation (insolation).

The real-time capabilities of the System 7 telemetry network have enabled the Air Monitoring Unit to report the Pollutant Standards Index for a number of towns on a daily basis while continuously keeping a close watch for high pollution levels which may occur during adverse weather conditions.

The complete monitoring network used in 1984 consisted of:

- 43 Total suspended particulate hi-vol sites
- 2 Total suspended particulate lo-vol sites
- 16 Lead hi-vol sites
- 5 Lead lo-vol sites

- 19 Sulfur dioxide sites (continuous monitors)
- 10 Ozone sites
- 3 Nitrogen dioxide sites
- 5 Carbon monoxide sites

A complete description of all permanent air monitoring sites in Connecticut operated by DEP in 1984 is available from the Department of Environmental Protection, Air Compliance Unit, Monitoring Section, State Office Building, Hartford, Connecticut, 06106.

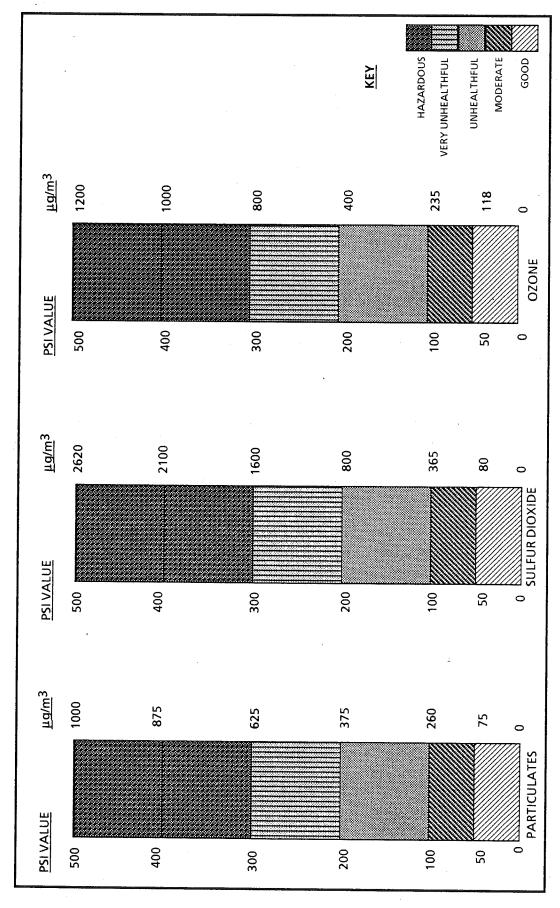
D. Pollutant Standards Index

The Pollutant Standards Index (PSI) is a daily air quality index recommended for common use in state and local agencies by the U.S. Environmental Protection Agency. Starting on November 15, 1976, Connecticut began reporting the PSI on a 7-day basis, but is currently reporting the PSI on a 5-day basis. The PSI incorporates three pollutants - sulfur dioxide, total suspended particulates and ozone. The index converts each air pollutant concentration into a normalized number where the National Ambient Air Quality Standard for each pollutant corresponds to PSI = 100 and the Significant Harm Level corresponds to PSI = 500.

Figure 3 shows the breakdown of index values for the commonly reported pollutants (TSP, SO 2, and O 3) in Connecticut. For the winter of 1984, Connecticut reported the total suspended particulate PSI for the towns of Ansonia, Bridgeport, Danbury, Greenwich, Hartford, New Britain, New Haven, Norwalk, Stamford, Stratford, Wallingford, and Waterbury; and reported the sulfur dioxide PSI for the towns of Bridgeport, East Haven, Greenwich, Hartford, Milford, New Haven, Stamford, and Waterbury. For the summer, the ozone PSI was reported for the towns of Bridgeport, Danbury, East Hartford, Greenwich, Groton, Madison, Middletown, New Haven, Stafford, and Stratford. Each day the pollutant with the highest PSI value of all the pollutants being monitored is reported for each town, along with the dimensionless PSI number and a descriptor word to characterize the daily air quality.

A telephone recording of the PSI is taped each afternoon at approximately 3 PM, five days a week, and can be heard by dialing 566-3449. Predictions for weekends are included on the Friday recordings. For residents outside of the Hartford telephone exchange, the PSI is now available toll-free from the DEP representative at the Governor's State Information Bureau. The number is 1-800-842-2220. This information is also available to the public during weekday afternoons from the American Lung Association of Connecticut in East Hartford. The number there is 289-5401 or 1-800-992-2263.

E. Quality Assurance


Quality Assurance requirements for State and Local Air Monitoring Stations (SLAMS) and the National Air Monitoring Stations (NAMS) which, as part of the (SLAMS) network, are specified by the code of Federal Regulations, Title 40, Part 58, Appendix A.

The regulations were enacted to provide a consistent approach to Quality Assurance activities across the country so that ambient data with a defined precision and accuracy is produced.

A Quality Assurance program was initiated in Connecticut with written procedures covering, but not limited to, the following:

Equipment Procurement Equipment Installation Equipment Calibration Equipment Operation Sample Analysis

FIGURE 3
POLLUTANT STANDARDS INDEX

Maintenance Audits Performance Audits Data Handling and Assessment

Quality Assurance procedures for the above activities were fully operational on January 1, 1981 for all NAMS monitoring sites. On January 1, 1983 the above procedures were fully operational for all SLAMS monitoring sites.

Data precision and accuracy values are reported in the form of 95% probability limits as defined by equations found in Appendix A of the Federal regulations cited above.

1. Precision

Precision is a measure of data repeatability (grouping) and is determined in the following manner:

a. Manual Samplers (TSP and Lead)

A second (co-located) TSP hi-vol sampler is placed alongside a regular TSP network sampler and operated concurrently. The concentration values from the co-located hi-vol sampler are compared to the network sampler and precision values are generated from the comparison.

b. Automated Analyzers (SO 2, O 3, CO and NO 2)

All NAMS and SLAMS analyzers are challenged with a low level pollutant concentration (.08 to .10 PPM) a minimum of once every two weeks. The comparison of analyzer response to input concentration is used to generate automated analyzer precision values.

2. Accuracy

Accuracy is an estimate of the closeness of a measured value to a known value (i.e., how close each value is to the "bull's eye").

a. Manual Methods (TSP)

TSP accuracy is assessed by auditing the flow measurement phase of the TSP sampling method. In Connecticut, this is accomplished by attaching a secondary standard calibrated orifice to the hi-vol inlet and comparing the flow rates. A minimum of 25% of the TSP network samplers are audited each quarter.

b. Manual Methods (Lead)

Lead accuracy is assessed by analyzing spiked audit strips and comparing the analyzed results to the known spiked values. A low- and a high-valued spike are analyzed during lead filter processing — approximately once per month.

c. Automated Analyzers (SO₂,O₃, CO and NO₂)

Automated analyzer data accuracy is determined by challenging each analyzer with three predetermined concentration levels. Accuracy values are calculated for a number of analyzers, in a pollutant sampling network, at each concentration level. Automated analyzer response is audited at three concentration levels and zero. The

results for each concentration for a particular pollutant are used to assess automated analyzer accuracy. The audit concentration levels are as follows:

SO ₂ , O ₃ , and NO ₂ (PPM)	CO (PPM)
0.03 to 0.08	3 to 8
0.15 to 0.20	15 to 20
0.35 to 0.45	35 to 45

Statistical computations are performed on the results of the precision and span checks.

II. TOTAL SUSPENDED PARTICULATES

Health Effects

Particulates are solid particles or liquid droplets small enough to remain suspended in air. They include dust, soot, and smoke — particles that may be irritating but are usually not poisonous — and bits of solid or liquid substances that may be highly toxic. The smaller the particles, the more likely they are to reach the innermost parts of the lungs and work their damage.

The harm may be physical: clogging the lung sacs, as in anthracosis, or coal miners' "black lung" from inhaling coal dust; asbestosis or silicosis in people exposed to asbestos fibers or dusts from silicate rocks; and byssinosis, or textile workers' "brown lung" from inhaling cotton fibers.

The harm may also be chemical: changes in the human body caused by chemical reactions with pollution particles that pass through the lung membranes to poison the blood or be carried by the blood to other organs. This can happen with inhaled lead, cadmium, beryllium, and other metals, and with certain complex organic compounds that can cause cancer.

Many studies indicate that particulates and sulfur oxides (they often occur together) increase the incidence and severity of respiratory disease.

Conclusions

Measured TSP levels did not exceed the primary annual standard of 75 ug/m or the secondary annual standard of 60 ug/m during 1984. No site had a measured value exceeding the primary 24-hour standard of 260 ug/m . And the 24-hour secondary standard of 150 ug/m was not exceeded at any monitoring site in 1984. In order for the secondary standard to be *violated*, the second highest TSP level at a site must exceed 150 ug/m . No site violated the standard in 1984, which was also the case in 1983.

Sample Collection and Analysis

High Volume Sampler (Hi-vol) - "Hi-vols" resemble vacuum cleaners in their operation, with an 8" x 10" piece of fiberglass filter paper replacing the vacuum bag. Retractable lids have been installed on the hi-vols in order to eliminate the passive sampling error. The samplers operate (from midnight to midnight) every sixth day at most sites and every third day at certain urban stations.

The matter collected on the filters is analyzed for weight and chemical composition. The air flow through the filter is recorded during sampling. The weight in micrograms (ug) divided by the volume of air in cubic meters (m ³) yields the pollutant concentration for the day, in micrograms per cubic meter.

The chemical composition of the suspended particulate matter is determined at each hi-vol site as follows. Three standardized strips of every hi-vol filter are cut out and prepared for three different analyses. In the first analysis, a composite sample composed of a strip from each of several filters collected in a quarter-year is digested in acid, and the resulting solution is analyzed for metals by means of an atomic absorption spectrophotometer. The results are reported for each individual metal in ug/m³. In the second analysis, a composite sample is dissolved in water, filtered and the resulting solution is analyzed by means of wet chemistry techniques to determine the concentration of the particular water soluble components. The results are reported for each individual constituent of the water soluble fraction in ug/m³. In the third analysis, total sulfates are determined by means of the same procedure used in the second analysis, but each of several samples collected in the quarter-year is

analyzed *individually* and the results from all the samples are averaged. This is the second year that individual, rather than composite, samples have been used to determine total sulfates. Future sulfate analyses will be done in this manner.

Low Volume Sampler (Lo-vol) - The low volume sampler is a 30-day continuous sampler. It is enclosed in a shelter similar to a hi-vol, uses the same glass fiber filter paper, but operates at an air sampling flow rate approximately one-tenth that used by a standard hi-vol (i.e., 4 cfm as opposed to 40-60 cfm). The air flow through the lo-vol is measured by a temperature compensating dry gas meter. The lo-vol measurement is essentially an arithmetic average for the 30-day sampling interval. The filters are chemically analyzed in the same manner as those from the hi-vol sampler.

Discussion of Data

Monitoring Network - In 1984 both hi-vol and lo-vol particulate samplers were operated in Connecticut (see Figure 4). Because the Federal EPA does not recognize the lo-vol instrument as an equivalent to the reference (hi-vol) method of sampling for TSP, only hi-vol data are analyzed for compliance with the National Ambient Air Quality Standards (NAAQS).

Precision and Accuracy - Precision checks were conducted at three hi-vol sampling sites which had co-located samplers. On the basis of 169 precision checks, the 95% probability limits for precision ranged from -10% to +10%. Accuracy is based on air flow through the monitor. The 95% probability limits for accuracy, based on 93 audits conducted on the hi-vol monitoring system network, ranged from -5% to +6%. (See section I.E. of this Air Quality Summary for a discussion of precision and accuracy.)

Annual Averages - The Federal EPA has established minimum sampling criteria (see Table 1) for use in determining compliance with either the primary or secondary annual NAAQS for TSP. Using the EPA criteria, one finds that neither the primary annual standard nor the secondary annual standard was exceeded. Of the 38 sites that had valid annual geometric means (as determined by EPA minimum sampling criteria) in both 1983 and 1984, ten (10) sites had lower annual geometric means when compared to 1983. Of the twenty-seven (27) sites whose annual geometric means increased, none increased more than 4.1 ug/m (see Table 5).

Historical Data - A summary of annual average TSP data for 1982-1984 is presented in Table 5. For data going back to 1957, see the 1980 and 1981 versions of the Air Quality Summary. Table 5 also includes an indication of whether the aforementioned EPA minimum sampling criteria were met at each site for each year. If the sampling was insufficient to meet the EPA criteria, an asterisk appears next to the number of samples.

Statistical Projections - The statistical projections presented in Table 5 are prepared by a DEP computer program which analyzes data from all sites operated by DEP. Input to the program includes site location and year, the number of samples (usually a maximum of 61), the annual geometric mean concentration and the geometric standard deviation. The program lists the input and calculates the 95% confidence limits about the mean and the statistical projections of the number of days in each year the primary and secondary 24-hour NAAQS would have been exceeded if sampling had been conducted every day. This analysis, like the ambient standards, is based on the assumption that the particulate data are log-normally distributed.

Because manpower and economic limitations dictate that hi-vol sampling for particulate matter cannot be conducted every day, a degree of uncertainty is introduced as to whether the air quality at a site has either met or exceeded the national standards. This uncertainty for the annual standard can be quantified by determining 95% confidence limits about each of the annual geometric means. For example (see Table 5), in Danbury at site 002 in 1982, 58 samples were analyzed and a geometric mean

of 48.7 ug/m was then calculated. The columns labeled "95-PCT-LIMITS" show the lower and upper limits for a 95% confidence interval of 43 and 55 ug/m respectively. This means that if a larger sample set (i.e., greater than 58 samples) were collected in 1982 at this site there is a 95% chance that the geometric mean would fall between these limits. If the upper limit happened to be greater than 60 ug/m the national ambient secondary standard for particulates, then one could not be confident that the secondary standard was met at the site.

In Table 6, one can examine the 1984 monitoring sites for compliance with air quality standards, using the State's hi-vol confidence limit criteria. The table shows with 95% confidence that no sites exceeded the primary annual standard. The table also shows that the DEP is 95% confident that the secondary standard was not exceeded at any site during 1984.

24-Hour Averages - Table 7 presents the 1st and 2nd high 24-hour concentrations recorded at each site. There were no violations of the primary 24-hour standard recorded in Connecticut during 1984. No measured violations of the secondary 24-hour standard were recorded at any site in 1984, which was also the case in 1983. The 2nd high 24-hour average increased at 25 of the 38 paired sites which met the minimum EPA sampling criteria in both 1983 and 1984. Five (5) of these increases were greater than or equal to 20 ug/m. The 2nd high 24-hour average decreased at 13 of the sites, and all of these decreases were less than or equal to 12 ug/m.

Table 8 summarizes the statistical predictions from Table 5 regarding the number of days exceeding the 24-hour standards. This table shows that, if sampling had been conducted every day in 1984, there would have been no site with a violation of the primary 24-hour standard and four (4) sites with violations of the secondary 24-hour standard. In 1983, no site was predicted to have exceeded the primary 24-hour standard and two (2) sites were predicted to have exceeded the secondary 24-hour standard.

Hi-vol Averages - Quarterly and annual averages of fourteen components or characteristics of the particulate matter collected at each hi-vol sampling location have been computed for the year 1984 and are presented in Table 9.

Lo-vol Averages - For a number of years, the DEP has been experimenting and gathering data with the lo-vol particulate monitor. Lo-vols, which operate continuously for 30-day periods, have three advantages and one disadvantage in relation to hi-vols. First, the lo-vol's continuous operation can provide annual averages which include every day of the year, rather than the fractional portion of the year sampled by hi-vols every sixth day or every third day. Second, the lo-vol needs less frequent servicing (12 times/year) than the hi-vol (61 times/year for every-sixth-day sampling). Therefore, it is more cost-effective to operate. Third, the lo-vol has a higher collection efficiency than the hi-vol, especially for small, respirable particles. The disadvantage of the lo-vol is that it does not provide daily samples for direct comparison to the 24-hour TSP standards (although 24-hour averages can be obtained by statistical interpolation).

The two lo-vol sites are located at rural locations. One site is in Mansfield and the other is in Putnam. The use of the lo-vols made it possible to continue to obtain data on annual average particulate levels at these rural sites.

Monthly and annual averages of the chemical components from the lo-vol TSP monitors have been computed for 1984 and are presented in Table 10.

10 High Days with Wind Data - Table 11 lists the 10 highest 24-hour average TSP readings with the dates of occurrence for each TSP hi-vol site in Connecticut during 1984. This table also shows the average wind conditions which occurred on each of these dates. The resultant wind direction (DIR, in compass degrees clockwise from north) and velocity (VEL, in mph), the average wind speed (SPD, in

mph), and the ratio between the velocity and the speed are presented for each of four National Weather Service stations located in or near Connecticut. The resultant wind direction and velocity are vector quantities and are computed from the individual wind direction and speed readings in each day. The closer the wind speed ratio is to 1.000, the more persistent the wind. Note that the Connecticut stations have local influences which change the speed and shift the direction of the near-surface air flow (e.g., the Bradley Field air flow is channeled north-south by the Connecticut River Valley and the Bridgeport air flow is frequently subject to sea breezes).

On a statewide basis, this table shows that approximately 63% of the high TSP days occur with winds out of the southwest quadrant and most of those days have persistent winds. This relationship between southwest winds and high TSP levels is more prevalent in southwestern Connecticut. However, many of the maximum levels at some urban sites do not occur with southwest winds, indicating that these sites are possibly influenced by local sources or transport from different out-of-state sources. As noted above, a large scale southwesterly air flow is often diverted into a southerly flow up the Connecticut River Valley. At many sites in the Connecticut River Valley most of the highest TSP days occur when the winds at Bradley Airport are from the south.

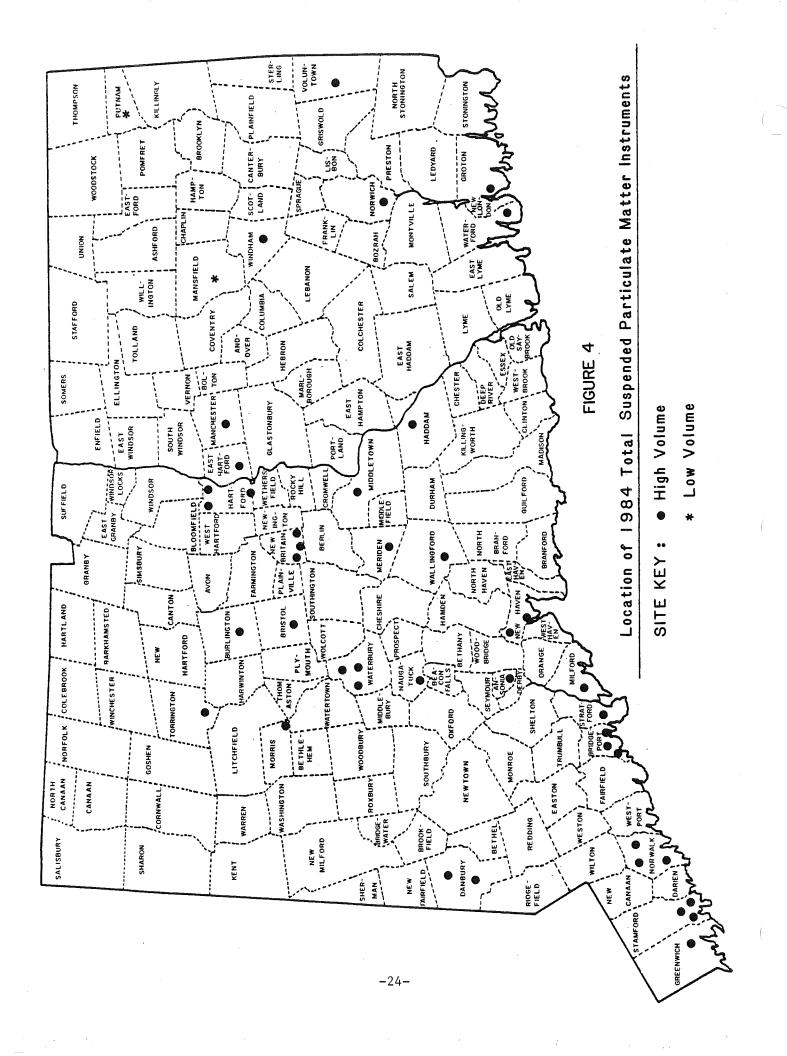


TABLE 5

1982-1984 TSP ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

DISTRIBUTION--LOGNORMAL

PREDICTED DAYS OVER 260 UG/M3							
PREDICTED DAYS OVER 150 UG/M3	7 7	1	1	4 W Ø	r ·	инн мни	
GEOM STD DEV	1,651 1.540 1.503	1.507	1.551 1.539 1.556	1.530 1.530 1.514	1.684 1.528 1.554 1.615 1.797 1.778	1.666 1.537 1.537 1.674 1.590	1.677 1.504 1.507
LIMITS UPPER	24 24 24	24 94 24 42	\$ \$ \$ \$	09 09 28	23 24 24 24	644 644 648 848	44 43 46
95-PCT-LIMITS LOWER UPPER	40 38 39	38 37 39	36 35 37	53 49 48	32 29 31 19 18	44 40 39 38 38 38 38	26 35 37
GEOM MEAN	43.4 42.2 42.7	42.4 41.0 42.8	39.8 39.1 41.6	56.3 54.1 52.6	36.3 32.2 34.5 19.9 20.3	48.7 44.6 43.8 43.2 43.1 42.8	32.9 38.8 41.2
SAMPLES	116 60 60	09 28 28	61 57 58	115 59 57	59 56 56 117 58 58	58 57 57 58 53 57	19* 60 57
YEAR	1982 1983 1984	1982 1983 1984	1982 1983 1984	1982 1983 1984	1982 1983 1984 1982 1983	1982 1983 1984 1982 1983 1984	1982 1983 1984
SITE	003 003 003	001 001 001	600	123· 123 123	001 001 001 001 001	002 002 002 123 123	004 004 004
TOWN NAME	ANSONIA ANSONIA ANSONIA	BRIDGEPORT BRIDGEPORT BRIDGEPORT	BRIDGEPORT BRIDGEPORT BRIDGEPORT	BRIDGEPORT BRIDGEPORT BRIDGEPORT	BRISTOL BRISTOL BRISTOL BURLINGTON BURLINGTON BURLINGTON	DANBURY DANBURY DANBURY DANBURY DANBURY	EAST HARTFORD EAST HARTFORD EAST HARTFORD

* SAMPLING NOT RANDOM OR OF INSUFFICIENT SIZE FOR REPRESENTATIVE ANNUAL STATISTICS.

N.B. THE GEOMETRIC MEAN HAS UNITS OF MICROGRAMS PER CUBIC METER.

-25-

TABLE 5, CONTINUED

1982-1984 TSP ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

DISTRIBUTION--LOGNORMAL

PREDICTED DAYS OVER 260 UG/M3						
PREDICTED DAYS OVER 150 UG/M3		ı	2			
GEOM STD DEV	1.513 1.466 1.450	1.659	1.554 1.558 1.513 1.509	1.511 1.580 1.539 1.481 1.512	1.607 1.481 1.552	1.444 1.552 1.510 1.516 1.532
95-PCT-LIMITS LOWER UPPER	48 40 45	39 42 30 28	52 52 52	45 43 45 45	40 37 35	45 47 41
95-PCT- LOWER	39 33 37	. 33 33 25 55 57	3 4 4 4	37 38 40 36 36 38	32 31 28	41 36 35 35 34
GEOM MEAN	43.4 36.4 40.9	35.8 37.3 26.9 24.7	47.6 46.3 48.3	40.9 42.8 44.2 39.6 40.3	35.4 33.7 31.4	44.7 40.6 42.4 38.8 37.2
SAMPLES	59 46* 61	59 56 57 28*	60 91* 57 60	59 60 57 60 60 60	09 26 09	57 55 60 57 57
YEAR	1982 1983 1984	1983 1984 1982 1983	1984 1982 1983 1984	1982 1983 1984 1982 1983	1982 1983 1984	1982 1983 1984 1982 1983
SITE	008 008 008	006 006 002 002	003 003 003	013 013 013 014 014	001 001 001	002 002 002 003 008
TOWN NAME	GREENWICH GREENWICH GREENWICH	GROTON GROTON HADDAM HADDAM	HADDAM HARTFORD HARTFORD HARTFORD	HARTFORD HARTFORD HARTFORD HARTFORD HARTFORD	MANCHESTER MANCHESTER MANCHESTER	MERIDEN MERIDEN MERIDEN MERIDEN

* SAMPLING NOT RANDOM OR OF INSUFFICIENT SIZE FOR REPRESENTATIVE ANNUAL STATISTICS. N.B. THE GEOMETRIC MEAN HAS UNITS OF MICROGRAMS PER CUBIC METER.

TABLE 5, CONTINUED

1982-1984 TSP ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

DISTRIBUTION--LOGNORMAL

PREDICTED DAYS OVER 260 UG/M3						
PREDICTED DAYS OVER 150 UG/M3			r 2		ппп	٠
GEOM STD DEV	1.524 1.484 1.509	1.497 1.405 1.460 1.517	1.718 1.506 1.562	1.607 1.590 1.506 1.598 1.598 1.569	1.468 1.537 1.555 1.519 1.519 1.521	1.491 1.438 1.421
95-PCT-LIMITS LOWER UPPER	43 43 43	44 44 45 27 33	53 44 46	40 40 43 41 41	44 40 40 40 40 40 40 40 40 40 40 40 40 4	64 64 94
95-PCT- Lower	35 35 35	36 37 24 22	41 36 37	324 324 324 334 3354 3354	37 32 43 44 41	40 40 42
GEOM MEAN	38.9 38.2 38.8	39.7 40.9 40.8 25.5 27.0	46.8 40.2 41.4	36.9 35.8 36.7 38.2 35.8	40.1 36.6 36.0 48.2 48.8 45.5	42.9 43.8 45.3
SAMPLES	56 57 55	61 58 61 102 15*	59 59	120 59 59 60 61	58 60 60 60 65 64	111 58 59
YEAR	1982 1983 1984	1982 1983 1984 1984 1984	1982 1983 1984	1982 1983 1984 1982 1983 1984	1982 1983 1984 1982 1983 1984	1982 1983 1984
SITE	003	002 002 002 001 001	001 001 001	007 007 007 008 008	009 009 009 002 002	013 013 013
TOWN NAME	MIDDLETOWN MIDDLETOWN MIDDLETOWN	MILFORD MILFORD MILFORD MORRIS	NAUGATUCK NAUGATUCK NAUGATUCK	NEW BRITAIN NEW BRITAIN NEW BRITAIN NEW BRITAIN NEW BRITAIN	NEW BRITAIN NEW BRITAIN NEW BRITAIN NEW HAVEN NEW HAVEN	NEW HAVEN NEW HAVEN NEW HAVEN

* SAMPLING NOT RANDOM OR OF INSUFFICIENT SIZE FOR REPRESENTATIVE ANNUAL STATISTICS.

N.B. THE GEOMETRIC MEAN HAS UNITS OF MICROGRAMS PER CUBIC METER.

TABLE 5, CONTINUED

1982-1984 TSP ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

DISTRIBUTION--LOGNORMAL

PREDICTED DAYS OVER	260 UG/M3																											
PREDICTED DAYS OVER	150 UG/M3	1			м	-		H							Ŋ	2	7							ď				1
GEOM	STD DEV	1.539	1.491	1.506	1.609	1.506	1.475	1.571	1.542	1.500	1.461	1.462	1.485	1.514	1.642	1.573	1.600	1.473	1.462	1.423	1.418	1.468	1.457	1.560	1.435	1.502	1.526	1.637
LIMITS	UPPER	48	44	94	52	50	20	48	45	45	45	43	47	51	28	21	51	48	49	64	48	20	24	52	48	64	41	43
95-PCT-LIMITS	LOWER	39	36	38	45	41	45	39	37	37	38	36	33	40	95	41	41	40	41	41	41	41	45	42	41	40	33	34
	GEOM MEAN	42.9	40.0	41.8	48.2	45.3	45.6	43.3	41.1	40.9	41.4	39.6	39.6	45.2	51.6	45.4	45.4	43.9	44.7	44.8	44.4	45.3	49.6	46.4	4.4.4	44.1	36.8	38.0
	SAMPLES	57	58	27	113	58	57	09	09	09	28	59	20 *	41 *	58	59	28	09	59	59	25	59	22	59	58	09	26	19
	YEAR	1982	1983	1984	1982	1983	1984	1982	1983	1984	1982	1983	1984	1984	1982	1983	1984	1982	1983	1984	1982	1983	1984	1982	1983	1984	1983	1984
	SITE	100	001	001	005	005	900	012	012	012	001	100	100	005	100	100	100	200	007	007	021	021	021	900	005	900	001	001
	TOWN NAME	NORWALK	NORWALK	NORMALK	NORWALK	NORWALK	NORMALK	NORMALK	NORMALK	NORWALK	NORWICH	NORWICH	NORWICH	NORWICH	STAMFORD	STRATFORD	STRATFORD	STRATFORD	TORRINGTON	TORRINGTON								

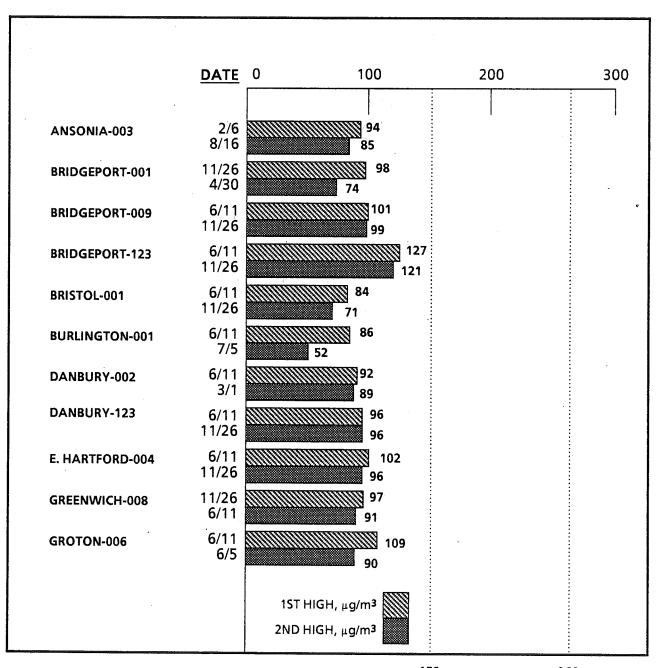
* SAMPLING NOT RANDOM OR OF INSUFFICIENT SIZE FOR REPRESENTATIVE ANNUAL STATISTICS. N.B. THE GEOMETRIC MEAN HAS UNITS OF MICROGRAMS PER CUBIC METER.

TABLE 5, CONTINUED
1982-1984 TSP ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

DISTRIBUTION--LOGNORMAL

TOWN NAME	SITE	YEAR	SAMPLES	GEOM MEAN	95-PCT-LIMITS LOWER UPPER	LIMITS UPPER	GEOM STD DEV	PREDICTED DAYS OVER 150 UG/M3	PREDICTED DAYS OVER 260 UG/M3
VOLUNTOWN VOLUNTOWN VOLUNTOWN	001 001 001	1982 1983 1984	117 59 59	21.1 23.7 23.2	20 72 73 73 73 73 73 73 73 73 73 73 73 73 73	23 27 26	1.558 1.624 1.618		
MALLINGFORD MALLINGFORD MALLINGFORD	001 001 001	1982 1983 1984	58 57 60	43.6 40.4 43.1	40 37 39	48 48 48	1.500 1.512 1.556	r	
MATERBURY MATERBURY MATERBURY	005 005 005	1982 1983 1984	61 58 57	43.5 38.5 41.4	38 35 37	645 746 746	1.703 1.488 1.541	4	
MATERBURY MATERBURY MATERBURY	900 900 900	1982 1983 1984	09 09	39.9 34.2 37.1	35 33	45 38 41	1.727 1.523 1.558	м	
MATERBURY MATERBURY MATERBURY	007 007 007	1982 1983 1984	117 60 59	49.3 47.4 47.5	46 43 43	52 53	1.639 1.472 1.545	4 0	
MATERFORD MATERFORD MATERFORD	001 001 001	1982 1983 1984	56 55 58	27.3 25.6 29.3	24 23 26	31 29 33	1.602 1.646 1.693		
WILLIMANTIC WILLIMANTIC WILLIMANTIC	002	1982 1983 1984	60 60 61	37.7 35.2 37.6	34 34 34	42 39 41	1.551 1.505 1.491		

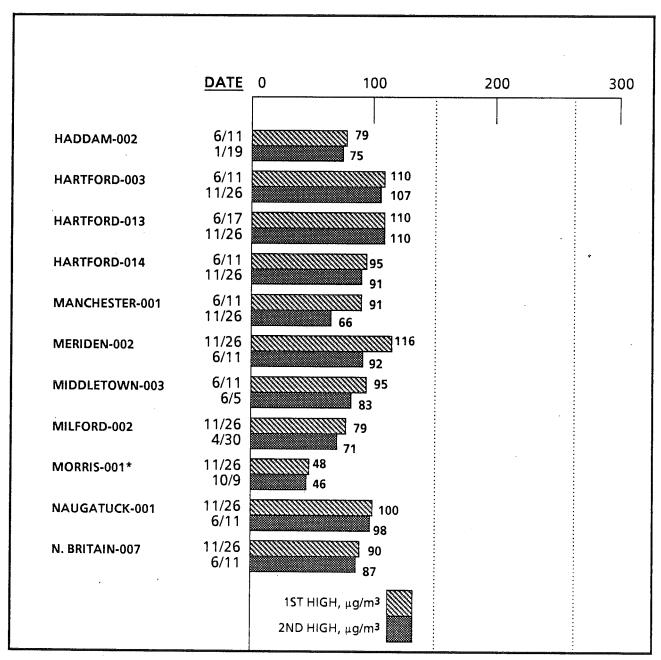
* SAMPLING NOT RANDOM OR OF INSUFFICIENT SIZE FOR REPRESENTATIVE ANNUAL STATISTICS. N.B. THE GEOMETRIC MEAN HAS UNITS OF MICROGRAMS PER CUBIC METER.


TABLE 6

CONFIDENCE OF COMPLIANCE WITH ANNUAL TSP STANDARDS
DURING 1984

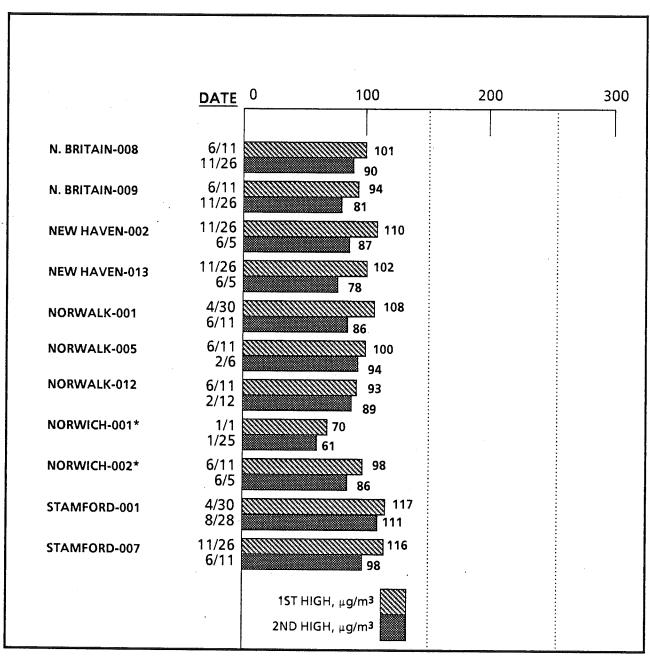
	95% CONFIDENT STANDARD HAS BEEN EXCEEDED	UNCERTAIN WHETHER STANDARD HAS BEEN ACHIEVED OR EXCEEDED
PRIMARY STANDARD (75 μg/m³)	NO SITES	NO SITES
SECONDARY STANDARD (60 μg/m³)	NO SITES	NO SITES

TABLE 7


1984 MAXIMUM 24-HOUR TSP CONCENTRATIONS

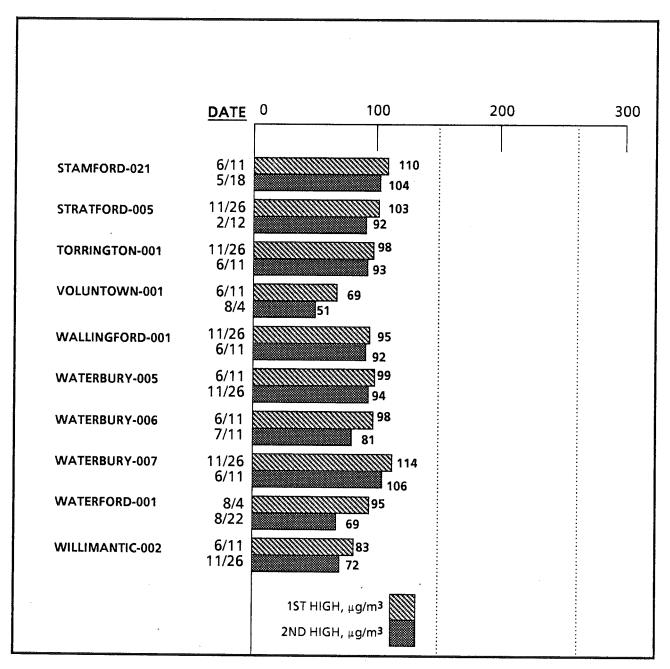
150 SECONDARY STANDARD

Database for the site is deficient in number or distribution of observations.
 When a listed concentration occurs more than once at a site, the earliest date of occurrence is given.


TABLE 7, CONTINUED

150 SECONDARY STANDARD

Database for the site is deficient in number or distribution of observations.
 When a listed concentration occurs more than once at a site, the earliest date of occurrence is given.


TABLE 7, CONTINUED

150 SECONDARY STANDARD

Database for the site is deficient in number or distribution of observations.
 When a listed concentration occurs more than once at a site, the earliest date of occurrence is given.

TABLE 7, CONTINUED

150 SECONDARY STANDARD

Database for the site is deficient in number or distribution of observations.
 N.B. When a listed concentration occurs more than once at a site, the earliest date of occurrence is given.

TABLE 8

Summary of the Statistically Predicted Number of Sites

Exceeding the 24-Hour TSP Standards

<u>YEAR</u>	TOTAL OF HI-VOL SITES 1		H ≥ 2 DAYS HE SECONDARY 0 (150 ug/m³) % of Total Sites	EXCEEDING	TH \(\sum_2\) DAYS THE PRIMARY 260 ug/m³) % of Total Sites
1971	44	37	84%	19	43%
1972	46	43	93%	13	28%
1973	44	31 ·	70%	11	25%
1974	62	49	79%	5	8%
1975	51	38	75%	2	4%
1976	38	33	87%	1	3%
1977	37	25	68%	0	0%
1978	34	20	59%	5	15%
1979	33	20	61%	2	6%
1980	33	14	42%	0	0%
1981	40	14	35%	. 0	0%
1982	39	11	28%	0	0%
1983	40	2	5%	0	0%
1984	40	4	10%	0	0%

Only those sites are used which have sufficient data to calculate a valid annual average concentration

TABLE 9 QUARTERLY CHEMICAL CHARACTERIZATION OF 1984 HI-VOL TSP SITE 003 TOWN AREA

8000

ANSONIA

	- 1ST	QUARTE 2ND	RLY AVG	4TH	ANNUAL AVG
METALS (NG/M3)		21,2	01.0		
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	17.4	7.9	7.2	24.8	14.5
CHROMIUM	3	3	3	4	3.
COPPER	80	120	290	220	180
IRON	650	520	550	620	590
LEAD	250	230	250	310	260
MANGANESE	12	13	13	14	13
NICKEL	15	15	8	16	13
VANADIUM	40	40	20	30	30
ZINC	780	500	310	640	·560
WATER SOLUBLES	(NG/M3)				
NITRATE	3480	3470	1600	1000	2390
SULFATE	5350	7620	6380	5040	6060
AMMONIUM	150	150	160	120	140
PH	8.9	9.6	9.4	9.3	9.3
TSP (UG/M3)	52	49	43	40	46
SAMPLE COUNT	16	14	15	15	

TABLE 9, CONTINUED

TOWN BRIDGEPORT AREA 0060

	1ST	QUARTE 2ND	RLY AVG 3RD	<u>4T</u> H	ANNUAL AVG
	101	2112	5112	1111	
METALS (NG/M3)					
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	2.9	1.9	1.3	2.2	2.1
CHROMIUM	2	7	4	2	4
COPPER	40	80	90	80	70
IRON	460	550	510	430	480
LEAD	310	280	270	430	320
MANGANESE	19	18	15	21	18
NICKEL	15	16	8	12	13
VANADIUM	40	40	20	20	30
ZINC	120	80	50	40	70
	(
WATER SOLUBLES	(NG/M3)				
NITRATE	3300	3930	1760	1960	2690
SULFATE	4950	5920	6330	5490	5650
AMMONIUM	150	170	140	150	150
РН	9.0	9.5	9.5	9.3	9.3
TSP (UG/M3)	46	48	44	44	45
SAMPLE COUNT	16	12	15	15	

TABLE 9, CONTINUED

QUARTERLY CHEMICAL CHARACTERIZATION OF 1984 HI-VOL TSP

TOWN BRIDGEPORT AREA 0060

		QUARTE	RLY AVG		ANNUAL AVG
	lsT	2ND	3RD	4TH	
METALS (NG/M3)					
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	3.6	3.6	1.7	3.0	3.0
CHROMIUM	3	6	4	2	4
COPPER	40	40	80	100	70
IRON	360	600	530	430	480
LEAD	240	210	230	310	250
MANGANESE	13	19	15	17	16
NICKEL	15	15	8	12	12
VANADIUM	40	50	20	20	30
ZINC	90	60	50	60	60
WATER SOLUBLES	(NG/M3)				
NITRATE	3670	4390	1470	3010	3100
SULFATE	8440	6460	6200	5440	6610
AMMONIUM	150	140	150	170	150
PH	9.1	9.5	9.5	9.5	9.4
TSP (UG/M3)	42	55	46	40	46
SAMPLE COUNT	14	14	15	15	

TABLE 9, CONTINUED

QUARTERLY CHEMICAL CHARACTERIZATION OF 1984 HI-VOL TSP

TOWN BRIDGEPORT AREA 0060

		QUARTE	RLY AVG		ANNUAL AVG
	1ST	2ND	3RD	4TH	
METALS (NG/M3)					
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	2.6	1.7	1.3	2.1	1.9
CHROMIUM	2	12	11	3	7
COPPER	20	40	60	40	40
IRON	540	1120	960	600	820
LEAD	310	320	350	320	330
MANGANESE	14	26	25	29	24
NICKEL	15	26	18	16	19
VANADIUM	40	50	30	30	40
ZINC	70	130	120	50	90
WATER SOLUBLES	(NG/M3)				
NITRATE	3490	4380	3430	1460	3210
SULFATE	6370	7150	7230	6370	6800
AMMONIUM	170	150	180	150	160
РН	9.4	9.5	9.4	9.5	9.5
TSP (UG/M3)	51	67	58	52	57
SAMPLE COUNT	13	15	15	14	

TABLE 9, CONTINUED

TOWN BRISTOL AREA 0070

		QUARTE	RLY AVG		ANNUAL AVG	
	1ST	2ND	3RD	4TH		
METALS (NG/M3)						
BERYLLIUM	<.2	<.2	<.2	<.2	<.2	
CADMIUM	0.7	2.0	1.5	0.8	1.2	
CHROMIUM	1	2	3	1	2	
COPPER	20	20	50	60	40	
IRON	280	370	390	320	340	
LEAD	130	140	200	220	170	
MANGANESE	11	11	12	12	11	
NICKEL	10	5	5	7	7	
VANADIUM	20	20	10	20	20	
ZINC	60	40	40	30	40	
WATER SOLUBLES	(NG/M3)					
NITRATE	4010	4030	1230	1630	2820	
SULFATE	5870	6000	8300	4650	6120	
AMMONIUM	150	150	80	120	130	
PH	9.5	9.4	9.0	9.5	9.4	
TSP (UG/M3)	35	43	39	34	38	
SAMPLE COUNT	16	14	12	14		

TABLE 9, CONTINUED

TOWN BURLINGTON AREA 0085

	1ST	QUARTE 2ND	RLY AVO	3 4TH	ANNUAL AVG
METALS (NG/M3)		2111	JILD		
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	0.4	0.9	0.5	0.7	0.6
CHROMIUM	. <.6	3	4	1	2*
COPPER	40	90	130	60	80
IRON	50	230	200	150	160
LEAD	40	70	130	60	80
MANGANESE	3	8	8	5	6
NICKEL	3	4	4	3	4
VANADIUM	<6	20	10	<6	9**
ZINC	30	30	20	10	20
WATER SOLUBLES	(NG/M3)		,		
NITRATE	2850	2090	650	920	1630
SULFATE	2840	5710	6370	4310	4800
AMMONIUM	60	60	60	70	60
РН	9.2	9.8	9.6	9.8	9.6
TSP (UG/M3)	17	34	28	19	24
SAMPLE COUNT	15	14	15	14	

^{*}The average was calculated using one-half the detectable limit in the lst quarter.

^{**}The average was calculated using one-half the detectable limit in the 1st and 4th quarters.

TABLE 9, CONTINUED

TOWN DANBURY AREA 0175

		OUARTE	RLY AVO	i	ANNUAL AVG
	1ST	2ND	3RD	4TH	
METALS (NG/M3)	*				
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	0.8	1.1	0.7	1.3	1.0
CHROMIUM `	1	5	5	2	3
COPPER	50	220	280	180	180
IRON	610	560	490	560	560
LEAD	240	190	200	230	220
MANGANESE	13	17	13	13	14
NICKEL	11	8	7	7	8 ·
VANADIUM	30	20	10	20	. 20
ZINC	70	40	40	40	50
WATER SOLUBLES	(NG/M3)				
NITRATE	3180	4000	1490	2240	2740
SULFATE	6840	4920	6160	5200	5800
AMMONIUM	180	160	180	150	170
PH	9.2	9.5	9.5	9.5	9.4
TSP (UG/M3)	56	54	42	37	47
SAMPLE COUNT	15	14	14	14	

TABLE 9, CONTINUED

TOWN DANBURY AREA 0175

		QUARTE	RLY AVG		ANNUAL AVG
	1ST	2ND	3RD	4TH	
METALS (NG/M3)					
BERYLLIUM	<.2	< • 2	<.2	<.2	<.2
CADMIUM	0.5	1.0	0.5	0.9	0.7
CHROMIUM	1	4	3	3	3
COPPER	60	80	120	150	100
IRON	510	530	460	760	560
LEAD	210	210	230	340	240
MANGANESE	12	13	12	16	13
NICKEL	.8	7	6	7	7
VANADIUM	20	20	10	10	20
ZINC	40	30	50	50	40
WATER SOLUBLES	(NG/M3)				
NITRATE	3950	3650	1320	2240	2870
SULFATE	5190	5940	6680	5680	5860
AMMONIUM '	180	150	190	140	170
PH	9.2	9.5	9.5	9.5	9.4
TSP (UG/M3)	47	53	43	47	48
SAMPLE COUNT	16	15	14	12	

TABLE 9, CONTINUED

TOWN EAST HARTFORD

AREA 0220

		OUARTE	RLY AVO	}	ANNUAL AVG	
	lsT	2ND	3RD	4TH		
METALS (NG/M3)						
BERYLLIUM	<.2	<.2	<.2	<.2	<.2	
CADMIUM	0.6	1.0	1.0	1.2	1.0	
CHROMIUM	3	6	3,	3	4	
COPPER	60	40	50	70	50	
IRON	460	540	620	710	590	
LEAD	290	260	280	350	300	
MANGANESE	9	12	15	16	13	
NICKEL	9	7	7	9	8	
VANADIUM	20	20	20	10	20	
ZINC	50	30	30	90	50	
WATER SOLUBLES	(NG/M3)					
			4			
NITRATE	3990	3750	1770	2900	3070	
SULFATE	5520	4430	6280	5630	5460	
AMMONIUM	120	120	150	140	130	
PH	9.3	9.5	9.5	9.4	9.4	
TSP (UG/M3)	43	51	42	42	45	
SAMPLE COUNT	12	15	15	15		

TABLE 9, CONTINUED

TOWN GREENWICH AREA 0330

, .		QUARTE	RLY AVG		ANNUAL AVG
	1ST	2ND	3RD	4TH	
METALS (NG/M3)					
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	0.7	2.1	0.5	1.0	1.1
CHROMIUM	1	6	3	2	3
COPPER	20	50	50	60	40
IRON	470	580	490	650	550
LEAD	190	170	160	280	200
MANGANESE	10	12	12	14	12
NICKEL	6	8	5	8	7
VANADIUM	10	20	10	10	10
ZINC	60	40	40	70	50
WATER SOLUBLES	(NG/M3)				
NITRATE	3500	2760	1480	4660	3110
SULFATE	6250	5050	6300	4590	5560
AMMONIUM	150	170	140	110	140
PH	9.4	9.4	9.0	9.4	9.3
TSP (UG/M3)	43	47	43	42	44
SAMPLE COUNT	16	15	15	15	

TABLE 9, CONTINUED

TOWN GROTON AREA 0350

•		_~	RLY AVG		ANNUAL AVG
	lsT	2ND	3RD	4TH	
METALS (NG/M3)					
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	0.8	0.6	0.5	0.8	0.7
CHROMIUM	2	5	3	2	3
COPPER	50	80	90	80	80
IRON	410	480	460	460	450
LEAD	210	100	90	210	150
MANGANESE	. 8	12	14	12	12
NICKEL	25	18	11	18	18
VANADIUM	60	60	30	30	40
ZINC	150	40	50	40	70
WATER SOLUBLES	(NG/M3)				
NITRATE	1460	3040	850	2010	1800
SULFATE	7990	5670	6340	5040	6270
AMMONIUM	120	160	140	120	130
PH	9.5	9.3	9.2	9.3	9.3
TSP (UG/M3)	41	51	40	36	42
SAMPLE COUNT	14	13	15	14	

TABLE 9, CONTINUED

QUARTERLY CHEMICAL CHARACTERIZATION OF 1984 HI-VOL TSP

TOWN HADDAM AREA 0380

			RLY AVG		ANNUAL AVG
•	1ST	2ND	3RD	4 TH	
METALS (NG/M3)					
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	0.6	0.8	0.5	0.7	0.6
CHROMIUM	1	3	2	1	2
COPPER	30	40	70	90	60
IRON	190	230	270	360	260
LEAD	260	80	100	150	150
MANGANESE	6	8	9	11	8
NICKEL	7	5	6	7	6
VANADIUM	20	10	10	20	10
ZINC	30	20	20	40	30
					•
WATER SOLUBLES	(NG/M3)				
NITRATE	2010	2010	750	1930	1680
SULFATE	4140	4300	4090	3980	4130
AMMONIUM	80	60	60	70	70
PH	9.5	9.7	9.6	9.2	9.5
TSP (UG/M3)	28	37	32	27	31
SAMPLE COUNT	16	15	15	14	

TABLE 9, CONTINUED

TOWN HARTFORD AREA 0420

		QUARTE	RLY AVG		ANNUAL AVG
	IST	2ND	3RD	4TH	•
METALS (NG/M3)					
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	0.4	1.2	0.7	0.9	0.8
CHROMIUM	2	5	. 4	4	4
COPPER	40	150	190	210	150
IRON	570	720	690	790	690
LEAD	300	260	240	410	300
MANGANESE	13	17	17	17	16
NICKEL	12	7	6	11	9
VANADIUM	40	20	10	30	.30
ZINC	60	50	40	110	60
WATER SOLUBLES	(NC /M2)				
WATER SOLUBLES	(MG/M2)				
NITRATE	3540	4200	1250	2500	2860
SULFATE	4030	5020	5930	5450 ×	5180
AMMONIUM	160	160	160	120	150
ΡĤ	9.3	9.5	9.5	9.4	9.4
TSP (UG/M3)	53	58	48	50	52
SAMPLE COUNT	16	14	15	15*	

^{*}For sulfate, the 4th quarter sample count is 14.

TABLE 9, CONTINUED

TOWN HARTFORD AREA 0420

			RLY AVO		ANNUAL AVG
	lsT	2ND	3RD	4TH	
METALS (NG/M3)					
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	1.0	1.9	0.7	1.1	1.2
CHROMIUM	3	7	5	7	6
COPPER	30	30	40	80	50
IRON	370	630	650	770	610
LEAD	260	190	180	390	· 26 0
MANGANESE	10	15	16	. 17	15
NICKEL	9	8	7	10	9
VANADIUM	20	20	20	20	20
ZINC	60	50	40	80	60
WATER SOLUBLES	(NG/M3)				
NITRATE	3150	3510	1020	1720	2340
SULFATE	4550	5390	6710	5720	5590
AMMONIUM	170	160	150	130	150
PH	9.2	9.5	9.5	9.2	9.3
TSP (UG/M3)	40	55	53	46	48
SAMPLE COUNT	14	14	14	15	

TABLE 9, CONTINUED

QUARTERLY CHEMICAL CHARACTERIZATION OF 1984 HI-VOL TSP

TOWN HARTFORD AREA 0420

	- 1ST	QUARTE 2ND	RLY AVG	<u>4</u> TH	ANNUAL AVG	
METALS (NG/M3)	151		0.1.2			
BERYLLIUM	<.2	<.2	<.2	<.2	<.2	
CADMIUM	0.6	0.8	0.5	1.1	0.7	
CHROMIUM	2	3	3	3	3	
COPPER	40	80	100	110	80	
IRON	950	510	490	610	650	
LEAD	270	210	200	420	280	
MANGANESE	11	13	. 13	14	13	
NICKEL	11	7	5	7	. 8	
VANADIUM	30	20	10	20	20	
ZINC	30	40	50	70	50	
ZINC	30	40	30	70	30	
WATER SOLUBLES	(NG/M3)					
NITRATE	3940	3620	1470	2460	2880	
SULFATE	4020	4730	6980	4970	5160	
AMMONIUM	160	160	150	110	140	
PH	9.4	9.5	9.5	9.4	9.4	
TSP (UG/M3)	45	50	45	41	45	
SAMPLE COUNT	16	14	15	15		

TABLE 9, CONTINUED

TOWN MANCHESTER AREA 0510

			RLY AVG		ANNUAL AVG
	1ST	2ND	3RD	4TH	
METALS (NG/M3)					
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	0.5	0.4	0.4	0.7	0.5
CHROMIUM	1	3	2	1	2
COPPER	30	50	60	80	50
IRON	220	370	270	350	300
LEAD	180	120	120	230	160
MANGANESE	9	10	9	9	9
NICKEL	8	5	5	5	6
VANADIUM	10	10	10	10	10
ZINC	50	20	20	30	30
WATER SOLUBLES	(NG/M3)				
NITRATE	3860	2230	1360	1830	2360
SULFATE	5160	5310	4860	4570	4980
AMMONIUM	110	110	150	110	120
PH	9,3	9.5	9.6	9.2	9.4
TSP (UG/M3)	31	42	34	30	34
SAMPLE COUNT	16	15	14	15	

TABLE 9, CONTINUED

TOWN MERIDEN AREA 0540

	•	QUARTE	RLY AVG		ANNUAL AVG	r
	IST	2ND	3RD	4TH		
METALS (NG/M3)						
BERYLLIUM	<.2	<.2	<.2	<.2	<,2	
CADMIUM	1.0	1.5	1.6	1.8	1.5	٠
CHROMIUM	2	3	. 3	3	3	
COPPER	70	130	100	110	100	
IRON	650	500	500	680	580	
LEAD	250	170	200	400	260	
MANGANESE	10	14	14	15	13	
NICKEL	11	9	7	12	10	
VANADIUM	20	20	20	20	20	
ZINC	170	220	360	190	230	
WATER SOLUBLES	(NG/M3)					
NITRATE	3220	3750	1380	2430	2730	
SULFATE	5750	6190	5900	6260	6020	
AMMONIUM	140	120	160	160	140	
PH	9.6	9.7	9.6	9.6	9.6	
TSP (UG/M3)	42	49	48	46	46	
SAMPLE COUNT	16	15	14	15		

TABLE 9, CONTINUED

TOWN MIDDLETOWN AREA 0570

	1.00		RLY AVO		ANNUAL AVG
•	lsT	2ND	3RD	4TH	
METALS (NG/M3)					
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	0.9	0.8	0.4	0.6	0.7
CHROMIUM	2	4	2	2	3
COPPER	120	100	100	90	100
IRON	340	530	390	540	450
LEAD	250	200	220	320	250
MANGANESE	. 9	13	11	14	12
NICKEL	8	7	5	6	7
VANADIUM	10	20	20	10	20
ZINC	60	50	40	40	50
WATER SOLUBLES	(NG/M3)				
NITRATE	3020	3760	1610	2420	2710
SULFATE	5990	5130	6140	4480	5450
AMMONIUM	150	160	170	140	160
PH	9.4	8.8	8.9	9.0	9.0
TSP (UG/M3)	41	48	43	35	42
SAMPLE COUNT	14	14	14	13	

TABLE 9, CONTINUED

TOWN MILFORD AREA 0590

		QUARTE	RLY AVO		. ANNUAL A	VG
	IST	2ND	3RD	4TH	-	
METALS (NG/M3)						
BERYLLIUM	<.2	<.2	<.2	<.2	<.2	
CADMIUM	1.1	1.5	0.5	2.2	1.3	
CHROMIUM	2	3	3	4	3	
COPPER	20	40	60	50	40	
IRON	420	500	400	590	480	
LEAD	210	220	180	320	230	
MANGANESE	9	12	10	17	12	
NICKEL	37	16	12	45	28	
VANADIUM	100	40	30	120	70	
ZINC	100	60	60	120	90	
WATER SOLUBLES	(NG/M3)					
NITRATE	2630	3050	1640	2570	2480	
SULFATE	7180	5280	5580	7240	6330	
AMMONIUM	130	140	150	120	130	
PH	9.2	9.4	9.4	9.3	9.3	
TSP (UG/M3)	44	46	43	42	44	
SAMPLE COUNT	16	15	15	15		

TABLE 9, CONTINUED

TOWN MORRIS AREA 0478

- 1 -	QUARTERLY AVG ST 2ND 3RD 4TH	ANNUAL AVG
·	21 540 240 111	
METALS (NG/M3)		
BERYLLIUM	<.2	
CADMIUM	0.5	
CHROMIUM	1	•
COPPER	80	
IRON	430	
LEAD	120	
MANGANESE	9	
NICKEL	3	
VANADIUM	10	
ZINC	10	
WATER SOLUBLES (NG/M	3)	
NITRATE	2280	
SULFATE	4290	
AMMONIUM	90	
РН	9.4	
TSP (UG/M3)	29	
SAMPLE COUNT	15	*

^{*}For sulfate, the fourth quarter sample count is 13.

TABLE 9, CONTINUED

TOWN NAUGATUCK AREA 0660

		QUARTE	ANNUAL AVG		
	1ST	2ND	3RD	4 T H	
METALS (NG/M3)					
BERYLLIUM	<.2	. <.2	<.2	<.2	<.2
CADMIUM	1.1	1.6	1.6	1.7	1.5
CHROMIUM	2	5	4	6	4
COPPER	60	110	150	90	100
IRON	610	1110	620	730	760
LEAD	200	210	210	.480	270
MANGANESE	17	24	21	21	21
NICKEL	7	10	6	7	8
VANADIUM	10	20	20	20	20
ZINC	140	80	70	100	100
MATTER COLUDIES	(NG/M3)				
WATER SOLUBLES	(NG/MS)				
NITRATE	3150	3620	1300	2800	2710
SULFATE	6140	5290	4700	6780	5720
AMMONIUM	180	160	140	130	150
PH	9.2	9.5	9.5	9.4	9.4
TSP (UG/M3)	45	52	43	42	45
SAMPLE COUNT	16	14	15	14	

TABLE 9, CONTINUED

QUARTERLY CHEMICAL CHARACTERIZATION OF 1984 HI-VOL TSP

TOWN NEW BRITAIN AREA 0680

	QUARTERLY AVG				ANNUAL AVO	3
	1ST	2ND	3RD	<u>4</u> TH		_
METALS (NG/M3)						
BERYLLIUM	<.2	<.2	<.2	<.2	<.2	
CADMIUM	0.5	1.7	0.3	0.9	0.8	
CHROMIUM	1	4	3	3	3	
COPPER	40	30	40	50	40	
IRON	340	400	330	540	400	
LEAD	170	160	160	350	210	
MANGANESE	9	10	10	. 11	10	
NICKEL	6	8	5	7	6	7
VANADIUM	20	20	20	10	20	
ZINC	30	50	30	60	40	
	(270 (272)					
WATER SOLUBLES	(NG/M3)					
NITRATE	4140	4030	1340	2660	3030	
SULFATE	4100	5610	5600	5390	5140	
AMMONIUM	180	160	160	120	160	
РН	9.4	9.5	9.4	9.5	9.4	
TSP (UG/M3)	38	43	40	38	40	
SAMPLE COUNT	16	13	15	15		

TABLE 9, CONTINUED

TOWN NEW BRITAIN AREA 0680

		QUARTE	ANNUAL AVG		
	IST	2ND	3RD	<u>4</u> TH	
METALS (NG/M3)					
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	0.4	1.2	0.4	0.8	0.7
CHROMIUM	2	3	3	2	2
COPPER	90	160	230	230	180
IRON	330	420	350	590	420
LEAD	160	200	170	390	230
MANGANESE	8	11	11	14	11
NICKEL	4	5	4	7	5
VANADIUM	10	20	20	10	10
ZINC	3.0	40	30	40	30
WATER SOLUBLES	(NG/M3)				
NITRATE	3460	4450	1310	2840	3020
SULFATE	4710	5010	5800	4910	5100
AMMONIUM	150	150	150	110	140
PH	9.6	9.5	9.4	9.5	9.5
TSP (UG/M3)	37	46	41	39	41
SAMPLE COUNT	16	15	15	15	

TABLE 9, CONTINUED

TOWN NEW BRITAIN AREA 0680

	QUARTERLY AVG				ANNUAL AVG
	lsT	2ND	3RD	4TH	
METALS (NG/M3)					
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	1.7	0.9	0.9	0.8	1.0
CHROMIUM	1	4	3	2	2
COPPER	60	130	80	70	.80
IRON	260	460	380	460	390
LEAD	140	170	150	250	180
MANGANESE	7	12	12	11	10
NICKEL	5	8	4	6	6
VANADIUM	10	20	20	20	20
ZINC	30	60	40	80	50
WATER SOLUBLES	(NG/M3)				
NITRATE	3270	3530	1240	2290	2580
SULFATE	3840	4460	5050	5070	4610
AMMONIUM	150	130	170	110	140
РН	9.6	9.5	9.5	9.5	9.5
TSP (UG/M3)	37	47	39	34	39
SAMPLE COUNT	15	15	15	15	

TABLE 9, CONTINUED

TOWN NEW HAVEN AREA 0700

	1ST	QUARTE:	RLY AVG 3RD	4TH	ANNUAL AVG
METALS (NG/M3)					
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	0.8	1.0	0.6	1.3	0.9
CHROMIUM	2	3	4	3	3
COPPER	190	180	200	250	. 210
IRON	450	610	1680	820	650
LEAD	280	230	270	510	320
MANGANESE	10	11	16	15	13
NICKEL	10	8	7	16	10
VANADIUM	20	30	20	30	20
ZINC	80	60	50	90	70
WATER SOLUBLES	(NG/M3)				
NITRATE	2770	3250	1880	3650	2870
SULFATE	6160	5230	6730	6770	6250
AMMONIUM	140	130	140	100	130
PH	9.5	9.5	9.4	9.4	9.4
TSP (UG/M3)	46	53	49	50	50
SAMPLE COUNT	12	13	15	14	

TABLE 9, CONTINUED

TOWN NEW HAVEN AREA 0700

		QUARTE	ANNUAL AVG		
	1ST	2ND	3RD	4TH	
METALS (NG/M3)					
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	0.5	1.0	0.5	1.2	0.8
CHROMIUM	2	3	3	3	3
COPPER	30	40	30	60	40
IRON	430	610	550	680	570
LEAD	230	240	220	. 360	260
MANGANESE	10	12	13	16	13
NICKEL	16	9	8	17	12
VANADIUM	30	30	20	30	30
ZINC	80	50	40	6,0	60
WATER SOLUBLES	(NG/M3)				
NITRATE	3880	4360	1500	3300	3260 ⁻
SULFATE	7540	5310	7280	6870	6750
AMMONIUM	180	160	150	130	160
PH	9.5	9.5	9.4	9.4	9.5
TSP (UG/M3)	45	53	48	46	48
SAMPLE COUNT	15	15	15	14	

TABLE 9, CONTINUED

TOWN NORWALK AREA 0820

	- IST	QUARTE 2ND	RLY AVG 3RD	4TH	ANNUAL AVG
METALS (NG/M3)					
BERYLLIUM	. <.2	<.2	<.2	<.2	<.2
CADMIUM	1.0	1.6	0.8	1.0	1.1
CHROMIUM	2	3	3	1	2
COPPER	60	110	160	140	110
IRON	480	670	390	450	500
LEAD	170	210	160	250	190
MANGANESE	12	14	10	10	12
NICKEL	18	7	8	14	12
VANADIUM	50	20	10	30	30
ZINC	220	120	60	80	120
WATER SOLUBLES	(NG/M3)				
NITRATE	3180	3400	1660	1950	2610
SULFATE	6360	5350	4060	5470	5340
AMMONIUM	160	130	160	130	150
PH	9.5	9.7	9.6	9.6	9.6
TSP (UG/M3)	45	57	42	35	45
SAMPLE COUNT	16	15	14	12	

TABLE 9, CONTINUED

TOWN NORWALK AREA 0820

		OUARTE	RLY AVG		ANNUAL	AVG
	1ST	2ND	3RD	4TH		
METALS (NG/M3)						
BERYLLIUM	<.2	<.2	<.2	<.2	<.2	
CADMIUM	0.6	1.4	0.7	1.3	1.0	
CHROMIUM	2	4	3	2	3	
COPPER	. 40	60	60	50	50	
IRON	520	580	580	680	580	a
LEAD	200	230	220	330	240	
MANGANESE	13	12	13	13	13	
NICKEL	16	7	6	12	10	
VANADIUM	50	20	10	20	30	
ZINC	90	80	60	80	80	
WATER SOLUBLES	(NG/M3)					
WATER SOLUBLES	(NG/M3)					
NITRATE	3450	3780	1380	2820	2850	
SULFATE	6540	5690	6360	5230	6010	
AMMONIUM	170	190	130	140	160	
PH	9.4	9.6	9.7	9.6	9.6	
TSP (UG/M3)	52	56	46	41	49	
SAMPLE COUNT	16	14	15	12		

TABLE 9, CONTINUED

TOWN NORWALK AREA 0820

	1ST	QUARTE 2ND	RLY AVG	4 TH	ANNUAL AVG
METALS (NG/M3)	131	214D	JKD	4111	
	. 2	. 1	. 2		. 2
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	0.8	1.4	0.8	1.3	1.1
CHROMIUM	2	4	3	2	3
COPPER .	20	80	120	70	70
IRON	580	510	510	590	550
LEAD	280	230	210	340	270
MANGANESE	13	11	12	12	12
NICKEL	10	6	6	8	8
VANADIUM	20	20	10	10	10
ZINC	150	60	40	60	80
THE COLUMN TO	(NG (N2)				
WATER SOLUBLES	(NG/M3)				
NITRATE	3350	3990	1370	2640	2830
SULFATE	5490	5240	4990	5160	5220
AMMONIUM	180	160	160	130	160
РН	9.4	9.7	9.7	9.7	9.6
TSP (UG/M3)	47	51	43	37	44
SAMPLE COUNT	16	14	15	15	

TABLE 9, CONTINUED

TOWN NORWICH AREA 0840

			ERLY AVG		<u>A1</u>	NUAL AVG
	lsT	2ND	3RD	4TH		
METALS (NG/M3)						
BERYLLIUM	<.2	<.2				
CADMIUM	0.5	1.0	·			
CHROMIUM	_ 1	2				
COPPER	50	60				
IRON	350	270				
LEAD	180	100				
MANGANESE	8	5				
NICKEL	10	9				
VANADIUM	30	20				
ZINC	80	20	•			
WATER SOLUBLES	(NG/M3)					
NITRATE	3790	4060				
SULFATE	5550	6950			•	٤
AMMONIUM	120	150				
PH	9.6	9.0				
TSP (UG/M3)	43	41				
SAMPLE COUNT	16	4				

TABLE 9, CONTINUED

TOWN NORWICH AREA 0840

		RLY AVG		ANNUAL AVG
IST	2ND	3RD	4TH	
METALS (NG/M3)				
BERYLLIUM	<.2	<.2	<.2	
CADMIUM	0.5	0.4	0.8	
CHROMIUM	2	3	2	
COPPER	110	120	150	
IRON	500	410	790	
LEAD	170	170	300	
MANGANESE	14	10	14	
NICKEL	7	7	8	
VANADIUM	20	10	10	
ZINC	30	30	50	
WATER SOLUBLES (NG/M3)				
NITRATE	3800	1590	2200	
SULFATE	6080	5400	6170	÷
AMMONIUM	120	150	110	
РН	9.0	9.1	9.2	
TSP (UG/M3)	60	40	50	
SAMPLE COUNT	12	15	14	

TABLE 9, CONTINUED

TOWN STAMFORD AREA 1080

		QUARTE	ANNUAL AVG		
	1ST	2ND	3RD	4TH	
METALS (NG/M3)					
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	0.6	1.4	0.8	0.9	0.9
CHROMIUM	2	2	3	2	2
COPPER	80	140	130	60	100
IRON	390	690	750	640	610
LEAD	200	190	180	270	210
MANGANESE	11	14	19	14	14
NICKEL	9	7	6	11	8
VANADIUM	30	10	10	30	20
ZINC	80	60	50	60	60
WATER SOLUBLES	(NG/M3)				
NITRATE	3290	3830	1470	2520	2780
SULFATE	4630	3910	5010	5590	4800
AMMONIUM	160	140	140	110	140
РН	9.2	8.8	8.8	9.0	9.0
TSP (UG/M3)	44	57	58	45	51
SAMPLE COUNT	15	14	14	15	

TABLE 9, CONTINUED

TOWN STAMFORD AREA 1080

	1ST	QUARTER 2ND	LY AVG 3RD	<u>4</u> TH	ANNUAL AVG
METALS (NG/M3)					
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	1.2	1.4	2.6	2.4	1.9
CHROMIUM	3	2	4	3	3
COPPER	20	60	130	140	80
IRON	360	430	540	750	510
LEAD	170	140	140	280	180
MANGANESE	12	11	15	15	13
NICKEL	11	7	8	14	10
VANADIUM	20	20	10	40	20
ZINC	110	70	70	150	100
WATER SOLUBLES	(NG/M3)				
NITRATE	3460	4620	1250	2850	3090
SULFATE	5600	6970	5690	5800	6020
AMMONIUM	160	170	15@	150	160
PH	9.0	8.8	8.8	8.9	8.9
TSP (UG/M3)	42	51	52	47	48
SAMPLE COUNT	16	15	14	14	

TABLE 9, CONTINUED

QUARTERLY CHEMICAL CHARACTERIZATION OF 1984 HI-VOL TSP

TOWN STAMFORD AREA 1080

	3.00		RLY AVG		ANNUAL A	<u>v</u> G
	1ST	2ND	3RD	4 T H		
METALS (NG/M3)						
BERYLLIUM	<.2	<.2	<.2	<.2	<.2	
CADMIUM	1.0	1.4	1.5	2.5	1.6	
CHROMIUM	3	4	3	2	3	
COPPER	40	80	170	160	110	
IRON	510	880	730	800	730	
LEAD	210	180	170	280	210	
MANGANESE	13	16	16	15	15	
NICKEL	14	8	8	12	11	
VANADIUM	20	20	20	30	20	
ZINC	90	60	50	60	70	
WATER SOLUBLES	(NG/M3)					
NITRATE	3850	4190	1260	3010	3140	
SULFATE	5250 ²	5950	5400	4870	5380	
AMMONIUM	170	160	150	120	150	
РН	9.2	9.0	9.8	9.0	9.2	
TSP (UG/M3)	47	63	55	47	53	
SAMPLE COUNT	. 15	15	13	14		

TABLE 9, CONTINUED

TOWN STRATFORD AREA 1110

	*	QUARTE	ANNUAL AVG		
	1ST	2ND	3RD	4TH	
METALS (NG/M3)					
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	1.2	1.7	1.0	1.7	1.4
CHROMIUM	2	3	3	3	3.
COPPER	60	150	190	160	140
IRON	500	530	410	670	530
LEAD	280	240	220	410	290
MANGANESE	13	12	11	16	13
NICKEL	12	9	7	6	11
VANADIUM	20	20	10	40	20
ZINC	90	50	30	80	60
	(
WATER SOLUBLES	(NG/M3)				
NITRATE	3610	3990	1390	3010	3000
SULFATE	5050	3320	6990	5530	5220
AMMONIUM	150	150	130	130	140
PH	9.3	8.8	8.9	8.9	9.0
TSP (UG/M3)	52	50	43	45	48
SAMPLE COUNT	15	15	15	15	

TABLE 9, CONTINUED

TOWN TORRINGTON

AREA 1160 SITE.

		QUARTE	RLY AVG		ANNUAL AVG
	1ST	2ND	3RD	4TH	
METALS (NG/M3)	•				•
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	0.5	0.7	0.6	1.4	0.8
CHROMIUM	1	3	4	. 3	3.
COPPER	40	50	60	110	60
IRON	420	550	320	620	480
LEAD	230	220	170	250	220
MANGANESE	10	12	10	12	11
NICKEL	5	4	4	6	5
VANADIUM	<6	20	10	10	11*
ZINC	50	40	30	50	40
WATER SOLUBLES	(NG/M3)				
NITRATE	2300	3640	1110	1500	2140
SULFATE	4320	5010	6930	5490	5420
AMMONIUM	140	140	120	1,20	130
РН	9.4	9.0	9.0	8.8	9.1
TSP (UG/M3)	41	50	36	43	43
SAMPLE COUNT	16	15	15	15	

 $^{{}^{\}star}\mathrm{The}$ average was calculated using one-half the detectable limit in the lst quarter.

TABLE 9, CONTINUED

TOWN VOLUNTOWN AREA 1205

		QUARTE	ANNUAL AVG		
	1ST	2ND	3RD	4TH	
METALS (NG/M3)					
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	0.4	0.6	0.4	1.1	0.6
CHROMIUM	<.6	. 2	. 2	1	1*
COPPER	20	40	70	110	60
IRON	40	190	200	180	150
LEAD	. 60	70	60	80	70
MANGANESE	- 3	6	7	4	5
NICKEL	3	4	7	4	4
VANADIUM	<6	10	10	10	8*
ZINC	50	20	10	80	40
WATER SOLUBLES	(NG/M3)			•	
NITRATE	1620	2750	1300	1610	1830
SULFATE	3270	2870	7670	3150	4110
AMMONIUM	120	90	60	60	. 80
РН	9.5	9.7	9.6	9.5	9.6
TSP (UG/M3)	20	32	32	21	26
SAMPLE COUNT	16	15	13	15	

^{*}The average was calculated using one-half the detectable limit in the lst quarter.

TABLE 9, CONTINUED

QUARTERLY CHEMICAL CHARACTERIZATION OF 1984 HI-VOL TSP

TOWN WALLINGFORD

AREA 1210

		QUARTE 2ND	RLY AVG	; 4TH	ANNUAL AVG
METALS (NG/M3)			00		
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	0.3	0.8	0.7	1.1	0.7
CHROMIUM	1	2	4	3	2
COPPER	20	30	50	40	30
IRON	450	510	410	740	520
LEAD	180	190	200	340	220
MANGANESE	1,1	10	11	16	12
NICKEL	10	7	6	11	8
VANADIUM	30	20	10	30	20
ZINC	60	40	30	100	60
WATER SOLUBLES	(NG/M3)				
NITRATE	2620	2400	1670	1610	2090
SULFATE	5550	4460	7400	5820	5800
AMMONIUM	140	160	140	130	140
РН	9.5	9.5	9.5	9.5	9.5
TSP (UG/M3)	50	49	43	46	47
SAMPLE COUNT	16	15	15	14	

TABLE 9, CONTINUED

TOWN WATERBURY AREA 1240

		QUARTE	ANNUAL AVG		
	lsT	2ND	3RD	4TH	
METALS (NG/M3)					
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	0.5	1.3	3.2	3.5	2.2
CHROMIUM	2	6	5	6	5
COPPER	30	120	220	120	120
IRON	360	530	420	640	490
LEAD	160	230	240	350	250
MANGANESE	8	11	9	15	11
NICKEL	7	7	4	10	7
VANADIUM	20	20	10	20	20
ZINC	120	180	230	260	200
WATER SOLUBLES	(NG/M3)				
NITRATE	4020	4100	1390	2100	2840
SULFATE	4700	6410	4690	5930	5410
AMMONIUM	170	160	160	120	150
PH	9.4	9.6	9.5	9.5	9.5
TSP (UG/M3)	37	55	45	45	45
SAMPLE COUNT	14	13	15	15	

TABLE 9, CONTINUED

QUARTERLY CHEMICAL CHARACTERIZATION OF 1984 HI-VOL TSP

TOWN WATERBURY AREA 1240

		QUARTE	RLY AVG		ANNUAL AVG
	1ST	2ND	3RD	4TH	,
METALS (NG/M3)					
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	0.5	1.3	1.6	1.3	1.2
CHROMIUM	2	4	2	3	3
COPPER	40	110	220	190	140
IRON	750	450	320	350	470
LEAD	100	210	180	200	170
MANGANESE	8	10	9	12	10
NICKEL	4	5	5	5	5
VANADIUM	10	20	10	10	10
ZINC	70	130	60	160	100
	(
WATER SOLUBLES	(NG/M3)				
NITRATE	4020	3910	1450	1210	2630,
SULFATE	5390	7160	7100	5180	6190
AMMONIUM	180	160	140	150	160
PH	9.4	9.4	9.5	9.5	9.5
TSP (UG/M3)	31	55	43	35	41
SAMPLE COUNT	15	14	15	15	

TABLE 9, CONTINUED

TOWN WATERBURY

AREA 1240

·		QUARTE	RLY AVO	3	ANNUAL	AVG
	1ST	2ND	3RD	<u>4 T</u> H		
METALS (NG/M3)				•		
BERYLLIUM	<.2	<.2	<.2	<.2	<.2	
CADMIUM	0.9	1.6	2.7	2.8	2.0	
CHROMIUM	4	4	8	7	6	
COPPER	30	40	70	210	90	
IRON	480	610	510	850	610	
LEAD	270	290	300	460	330	
MANGANESE	12	13	14	20	15	
NICKEL	8	7	5	11	8	
VANADIUM	30	20	20	20	20	
ZINC	130	220	150	280	200	
WATER SOLUBLES	(NG/M3)					
NITRATE	3680	4260	1320	1220	. 2680	
SULFATE	4830	5840	6210	5840	5650	
AMMONIUM	170	150	150	150	160	
РН	9.4	9.5	9.5	9.5	9.5	
TSP (UG/M3)	49	57	48	53	52	
SAMPLE COUNT	16	15	13	15		

TABLE 9, CONTINUED

TOWN WATERFORD AREA 1260

		QUARTE	RLY AVO	3	ANNUAL AVG
•	IST	2ND	3RD	4TH	
METALS (NG/M3)					
BERYLLIUM	<.2	<.2	<.2	<.2	<.2
CADMIUM	0.4	0.4	0.5	0.5	0.4
CHROMIUM	1	3	3	1	2
COPPER	90	90	80	60	80
IRON	80	340	300	280	250
LEAD	80	120	90	90	100
MANGANESE	4	8	8	7	7
NICKEL	5	4	. 5	8	6
VANADIUM	20	10	10	. 20	20
ZINC	40	20	40	70	40
WATER SOLUBLES	(NG/M3)				
WATER SOLUBLES	(NG/M3)				
NITRATE	2110	2190	1350	1180	1720
SULFATE	5010	4710	5340	4490	4870
AMMONIUM	60	100	70	60	70
PH	9.2	9.4	9.0	9.2	9.2
TSP (UG/M3)	27	39	42	28	. 34
SAMPLE COUNT	15	15	13	15	

TABLE 9, CONTINUED

TOWN WILLIMANTIC

AREA 1410

	1ST	QUARTE 2ND	RLY AVO	3 4TH	ANNUAL AVO	G
MEMALIC (NG (M2)	121	ZND	3KD	4111		
METALS (NG/M3)						
BERYLLIUM	<.2	<.2	<.2	<.2	<.2	
CADMIUM	0.4	0.5	0.5	1.0	0.6	
CHROMIUM	1	1	1	2	1	
COPPER	20	70	80	30	50	
IRON	350	340	300	440	360	
LEAD	170	130	130	270	170	
MANGANESE	7	. 8	8	9	8	
NICKEL	11	6	4	22	11	
VANADIUM	30	10	10	80	30	
ZINC	20	20	50	60	40	
HARRA GOLURI RG	(MG (M3))					
WATER SOLUBLES	(NG/M3)					
NITRATE	2180	2560	1200	1090	1760	
SULFATE	4880	5620	4740	5890	5280	
AMMONIUM	110	110	140	80	110	
PH	9.2	9.6	9.5	9.4	9.4	
TSP (UG/M3)	41	43	36	41	40	
SAMPLE COUNT	16	15	15	15		

TABLE 10

MONTHLY CHEMICAL CHARACTERIZATION OF 1984 LO-VOL TSP

TOWN AREA SITE MANSFIELD 0520 001

TABLE 10, CONTINUED

TSP	
T0-07	111
1984 L	SITE 002
10 I	
	AREA 0900
CHAR]]] [
CHEMICAL	TOWN
MONTHLY	

				. а.	PUTNAM	0060	0	005	. 2			
						MONTHLY	MONTHLY AVERAGE					
	NAU	FEB	MAR	APR	MAV	NOC	JUL	AUG	SEP	. OCT	NOV	DEC
METALS (NG/M3)												
BERYLLIUM	< 2	· 5 ·	<.2	<.2	<.2	<.2	<.2				<.2	
CADMIUM	0.5	0.5	0.3	9.0	0.3	0.3	0.2				0.5	
CHROMIUM	ო	თ,	2	2	2	4	7				4	
COPPER	9	10	10	10	9>	9	10				9>	
IRON	470	1340	430	069	440	480	250				720	
LEAD	180	120	09	06	06	100	80				160	
MANGANESE	0	12	7	16	12	=	9				10	
NICKEL	7	S	4	10	ស	2	9				വ	
VANADIUM	20	10	10	20	20	10	10				20	
ZINC	09	20	20	150	30	30	20				20	•
WATER SOLUBLES (NG/M3)	M3)											
NITRATE	2840	2500	2430	2160	1030	1030	260				1260	
SULFATE	7800	5730	2800	3170	4350	6570	5220				4750	
AMMONIUM	09	. 70	7.0	09	70	100	80				70	
Hd	8.2	8.2	8.2	9.6	9.6	9.6	4.6				9.6	
TSP (UG/M3)	58	42	40	42	47	42	17				27	

TABLE 11

1984 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA

BIC METER	10.	7	9-	230	~ O	180 7.1		5.		m .	• =	7	60	22ء		-	· • α	8.25	• &	260 5.7	56	77	300	4.6	· 70 0	1.5	3
1S PER CU	6	(SEC)	65 3/31/84	~~	93.	360 6.0	• &	33 8.	• 0	· m	• 00	The state of the s	61	10/15	; œ;	0.03	7.0	5,4.0	6. 0.84	7	0.95	\	- LC -		94	95	\sim
MICROGRAMS	8	32	1/ 7/84	30,	• 10	S ·	· 0	32 9.	• 17	3. 3.	2. 98	7	62	8/22/84 220 9.4	10.2	0.916 220 5.1	5.3	220 8.8	9.3	280 4.5	0.584			o •	• 0 &	7.1	_
UNITS:	7		69 12/20/84	260	9.3 0.597	290 4.4	6.0 0.727	280 7.3	7.8	9.50	0.958	37	975	 	.2.5	9	· • α) en •	•0	330	٠ω	67	- 01 1	~ .	• 🕸 🖈	13.7	Ω
	9	7	69 4/30/84	210	•=	0 .	1.	٥.	• 🛛	· m	۰ ۵	/	7		- 6,1			5.77		230 2.8			- 10 0	v •	しょう	1.6	Υ)
)	2	Nr.	1/ 1/8 ⁴	20	7.8 0.819	20 5.2	6.0 0.864	30 8.3	8.5 0.980	0 6.5	8.1 0.812	Caso	69	290 290 6.3		0.665 280 7.5	9.8	290	9.8 0.530	280 9.1	100.0	1 2	- N C	٠.	~	5.3	0
	7	/	71 6/5/84	220	7.9 0.849	250 1.6	4.6 0.338	240 6.4	6.6 0.961	290 8.3	8.5 0.976		•	270 270 1 9		0.881 240 25	3.3	•	5.6 0.581	290 8.1	0.969	(MA)	1/19/84	10.0	0.834	7.1	0.964
	က		~ <	270	• &	≠ •	- 12	寸 •	· ∞	ς ·	8.3 0.969	/	74	$^{\circ}$		÷ 10	~	. 24 6.	• 9	290 8.3	.	> 6	200	- 6-	.40	10.6	Ω.
	de la	MN)	80 40	330	. 10	<i>=</i> .	• 0	5	•==	\sim .	٠,	>	74	4/30/84 210 9 u	_	0.849 200 10.6	11.1	200 200 4.8	7.0 0.682	230 8.7	0.888	> 8	707		$\cdot \kappa \circ$	3.0	Υ)
		200	94 6/84		9.5 0.665	280 7.5		290 5.2	0.53	80.0	10.1	>	98	11/26/84 210 6.3		50				260 9.6	0.99	\ <u>`</u>	6/11	96.	0.84		~
	RANK		TSP DATE	DIR (DEG) VEL (MPH)	-=		~2		_		SPD (MPH) RATIO		TSP	DAIE DIR (DEG) VFI (MPH)	SPD	KALLU DIR (DEG)			-	DIR (DEG) VEL (MPH)		TCD	•	VEL (MPH)			KAI 10
	TOWN-SITE (SAMPLES)		ANSONIA-003 (60)	METEOROLOGICAL SITE NEWARK		METEOROLOGICAL SITE BRADLEY		METEOROLOGICAL SITE BRIDGEPORT		METEOROLOGICAL SITE WORCESTER	•		BRIDGEPORT-001 (58)	METEOROLOGICAL SITE		METEOROLOGICAL SITE	מאסרר	METEOROLOGICAL SITE BRIDGEPORT		METEOROLOGICAL SITE WORCESTER		Tanagara da	BALTOROLOGOLOGICAL CLTF	METEOROLOGICAL STIE NEWARK	METEOROLOGICAL SITE	BRADLEY	

1984 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA

IC METER	10	230 3.3 4.0 0.816 360 1.3 0.299	, 7, 23 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	0.909 230 8.5 8.5 0.955 280 4.7 11.2	50 6/84 140 2.1 2.1 6.9 0.302 190 3.6 3.7 3.7 0.954 190 4.6 6.2 0.73 0.73
S PER CUBIC	6	210 8.8 9.9 9.9 260 260 7.7 10.1	723 210. 10. 10. 10. 10. 10. 10.	0.220 0.990 0.990 0.285 0.285	8/28/84 200 7.3 7.3 0.913 0.913 7.1 7.2 0.983 0.983 0.957 7.6 0.957 0.957
MICROGRAMS	€	170 5.1 5.6 0.911 230 230 7.9 0.348	, 88.13.33.38 . 98.33.33.38 . 98.33	0.970 240 13.6 13.9 0.973 9.8 10.8	54 6/29/84 150 6.6 6.6 6.6 180 8.0 8.0 8.2 110 110 5.1 5.1 5.1 5.3 0.964 4.5 0.894
UNITS:	7	240 3.3 3.5 0.581 8.3 0.969	, 28 20 20 7. 20 20 7.	0.983 0.957 0.957 0.957 0.932	6/5/84 220 220 6.7 7.9 0.849 250 1.6 4.6 0.338 6.4 6.4 6.6 6.4 6.6 8.3 8.3
WIND DAIN	9	240 6.6 0.961 8.3 0.976		0.973 170 5.1 0.911 230 2.8 7.9 0.348	58 210 13.6 14.4 0.948 200 9.9 10.1 0.982 210 8.8 8.8 9.9 0.882 260 5.7
A HIIM OAK	2	220 8.8 9.3 0.937 280 4.5 7.8		0.338 240 6.4 6.6 0.961 8.3 8.3 7	4/30/84 210 210 9.4 11.1 0.849 200 10.6 11.1 0.955 200 4.8 7.0 7.0 230 8.7 8.7
46E 15P D/	17	340 10.7 11.4 0.943 320 6.9 6.9 0.846	, 922 . 925 . 926 . 926	0.967 8.8 9.9 0.937 280 4.5 7.8	64 7/11/84 230 7.6 9.6 0.791 180 7.1 7.1 7.3 0.973 170 5.6 0.911 230 2.8 7.9
HOUR AVER	က	200 4.8 7.0 0.682 230 8.7 9.8	106 4/30/84 210 9.4 11.1 0.849 200 10.6	1,000	1/ 1/84 6.4 7.8 0.819 6.0 6.0 0.864 8.3 8.3 8.3 8.5 0.980 6.5 6.5
GHES1 24-1	2	250 7.7 8.1 0.959 260 9.6 9.6 0.992	726 212 213 3.93 3.33	0.934 250 250 8.1 0.959 9.6 0.992	71 210 6.3 6.3 6.3 6.3 190 3.0 3.2 3.2 3.2 0.934 7.7 7.7 8.1 0.959 9.6
1984 IEN HI	-	240 7.5 7.5 0.977 280 7.2 8.1 0.893	127 6/11/84 260 9.8 11.6 0.840 260 6.4	0.672 240 7.3 7.5 0.977 7.2 7.2 8.1 0.893	84 260 260 9.8 11.6 0.840 260 6.4 9.5 0.672 240 7.3 7.3 7.5 0.977
<u>~</u>	RANK	DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH)	DATE DATE DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) DIR (DEG) VEL (MPH) SPD (MPH)	KALIU DIR (DEG) VEL (MPH) SPD (MPH) RATIO VEL (MPH) SPD (MPH) RATIO	TSP DATE DOTE (MPH) SPD (MPH) SATIO DIR (DEG) VEL (MPH) SATIO SATIO SATIO
	TOWN-SITE (SAMPLES)	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	BRIDGEPORT-123 (57) METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	BRISTOL-001 (56) METEOROLOGICAL SITE METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT

2

TABLE 11, CONTINUED

1984 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA UNITS : MICROGRAMS PER CUBIC METER

						1	T	demo-												1	T													
ויי יוביובוי	10	Ĺ	ω,	11/26/84 210		33	ν.	<u>س</u>	S	٠ ١	کا ۰	26	•	• 0		9	っら	•	• •	ω.	• •	13		0 5		6.5 0.811	7	91	6/ 5/84 220	•	4	250 1.6	• 60	
2 - LN 00E	6	1	37	22	10.4 10.6	~		ω;	2 6	, .	• 10	28		45		63	2/12/04 270	 0.0	0.881	240 2.5	3.3	240	3.3	0.581	8.1	8.3 0.969	SS		3/31/84	12.5	0.935	360 6.0	6.8 0.882	
	80	\	37	170		α	ν.	7:	~ ∝	•	• •	23	•	•=	7	70/	\sim	•	• =	ο.	• 0	242		vo c	٠ ۸	8.5 0.976			10/ 9/84	9.4	5	φ.	4.6 0.336	
	7	/	9	8/28/84 200	7.3 8.1	- (っ・	7	\sim	٠.	ى .	24		• (7)	V	F- >	4/30/04 210	٠. د	0.849	200 10.6	1.0	20.	4.8 7.0	0.682	8.7	9.8 0.888	\	7 '	230		6	∞ .	٠,	
	9		43	150	6.6 7.2	0.924	9°.0		110	5.1	5.3		7. V.	0.894	N. S.	72	330	12.6		340 10.4		•	9.1	496.0	11.0		/	11	8/28/84 200 200		_ <	- ·	• ∞	
	r.	>		6/ 2/84 22 <u>0</u>	6.7 7.9	0.849	1.6		0.338 240	6.4	0.6		ω. 	0.976	3		3/ 19/04 10	10.4	0.966	360 7.2	7.3		9.9 10.2	696.0	9.1	9.2 0.992			3/ 1/84 270	15.9	0.978	280 9.3	0.925	
	4	\	477	4/30/84	۲. .:	= 0) ,	= ;	\cap	•	• α	23	٠	٠ω		73	4 50	8.0 0.0	0.665	360 9.4	11.2		9.1 10.6	0.857	8.6	12.9 0.758)	80	4/30/84 210	11.1	~ .	200 10.6	0.955	
•	m	\	52	230		90	۰ ب	7.	- -		٠.	23	• '	• 4	Ż	8	30/		.00	φ.	٠,٢	17	5.0	7 ~	•	• 4		81	340	8.6 12.9	0.665	360 9.4	11.2 0.840	
	2	7	N)	210		0.948	6.6 9.8	10.1	210	80	9.9	•	7.51	0.562	(MM)	37, 1781	270	15.9	0.978	280 9.3	10.1 0.025		14.6 14.7	0.997	13.7	0.991	1	96	11/26/84 210		3	٠ ر د	• 60	
		/	86	0/11/04 260	11.6	0.840	007 9.4	9.5	240	7.3	7.5	280	7 5 7	0.893	\	92	260	9.8	0.840	700 700 700 700 700	9.5	240	7.3	0.977	7.2	8.1 0.893	\	96	0/11/64 260 260	19.8	0.840	7.90 6.4	9.5 0.672	
	RANK		TSP	DIR	VEL (MPH) SPD (MPH)	RATIO		SPD (MPH)	DIR (DEG)		SPD (MPH) RATIO	DIR (VEL (MPH)			TSP	DIR (VEL (MPH)	-0		SPD (MPH)		VEL (MPH) SPD (MPH)	RATIO DIR (DEG)		SPD (MPH) RATIO		TSP	DIR (SPD (MPH)			SPD (MPH) RATIO	
	TOWN-SITE (SAMPLES)		BURLINGTON-001 (58)	METEOROLOGICAL SITE	NEWAKK	ATTO IVOTOO TO TO THE	METEONOLOGICAL STIE BRADLEY		METEOROLOGICAL SITE	BRIDGEPORT		METEOROLOGICAL SITE	WORCESTER			DANBURY-002 (57)	METEOROLOGICAL SITE	NEWARK		METEUROLOGICAL STIE BRADLEY		METEOROLOGICAL SITE	BRIDGEPORT	METEOROLOGICAL SITE	WORCESTER			DANBURY-123 (57)	METEOROLOGICAL SITE	NEWAKK		METEUKOLUGICAL STIE BRADLEY		

TABLE 11, CONTINUED

1984 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA UNITS : MICROGRAMS PER CUBIC METER

SIC METE	10	000	0.961 290 8.3	0.976	60	270	0.881	1 01 W	0.759 240 3.3	5.6	W 60	8.3 0.969		57	1 60 00	12.9 0.665	9.4 11.2	0.840	10.6	. m O	12.9 0.758
S PEK CUBIC	6	. 8 8	0.905 330 7.8	,•∞ <i>></i>	61	, 210 13.6	0.948		0.982 210 8.8	9.9		10.1 0.562	(SEE	5	330	. 10	.	0.800		32.	•
MICKOGRAMS	œ	23.	0.816 360 1.3	۰ ک	62		0.975		0.909 230 8.5	8.9 0.955	280	11.2 0.420	Z	58	1	7.8 0.819	5.2 6.0	0.864 30 8.3	8.5 0.980		8.1 0.812
: SIINO	7	5.	0.911 230 2.8	•==	, o-	230	• O a		~~	• • —	eo .	• #	>	61 8/22/8h	220	10.2 0.916	5.1 5.3	0.967 220 8.8	9.3 0.937	N ₃	7.8 0.584
	9	21.	0.957 240 7.50 0.50	• က	90	3.3	• KO F	Si m	##	· • N	9	4.6 0.757	7	62 4/30/84	210	11.1 0.849	10.6	0.955 200 11.8	7.0		9.8 0.888
	5	27 14. 14.	0.997 280 13.7 13.8	. 6 . 5	65 1725/8h	10.8	0.975	اري. ا	250	10.5	11.	2. 96		64 2/12/84	.25	2.2 0.881	3.3	0.759 240 3.3	5.6	290 8.1	8.3 0.969
	#	04/	0.682 230 8.7 9.8	0.888	68 11/30/811	210 210 9.4	8 <u>4</u> .	10. 11.	0.955 200 4.8	\cdot \cdot ∞	∾ .	٠ 🗴	>	9	30.	• Q a	\cdots	0.973 170 5.1	–	\sim .	• =
	m _.	35 9.	0.857 360 9.8 12.9	• K) 1	79 77 78 5 78 11	, 220 6.7	•===	- =	0.338 240 6.4	. • •	6 .	٠,١	>	69 67 2/84	220	• = 4	· · ·	0.338 240 6 4	• • •	0 +	. ~
	2	25.	0.959 260 9.6 9.6	و. ن	96 11/26/84	210 6.3	0.939	· (C) (C)	0.934 250 7.7	8.1 0.959	260 9.6	9.6 0.992	B	9 4	260	・サく	\cdots	0.672 240 7 3	Ի	28	• 6
	_	24 7.	0.977 280 7.2 8.1	0.893	, 102 6/11/8μ	260	0.840	9.5	0.672 240 7.3	0.977	280 7.2	8.1	>	97	210	6.8 0.939 190	- m m	0.934 250 7	8.1 0.959	260 9.6	9.6 0.992
	RANK	DIR (DEG) VEL (MPH) SPD (MPH)	KALIO DIR (DEG) VEL (MPH)		TSP	DIR (DEG) VEL (MPH)			RATIO DIR (DEG) VEL (MPH)			SPD (MPH) RATIO		TSP DATF		SPD (MPH) RATIO		RATIO DIR (DEG)			SPD (MPH) RATIO
	TOWN-SITE (SAMPLES)	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER		EAST HARTFORD-004 (57)	METEOROLOGICAL SITE NEWARK	MFTEOROLOGICAL SITE	BRADLEY	METEOROLOGICAL SITE BRIDGEPORT		METEOROLOGICAL SITE WORCESTER			GREENWICH-008 (61)	METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE	BRADLEY	METEOROLOGICAL SITE		METEOROLOGICAL SITE WORCESTER	

TABLE 11, CONTINUED

1984 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA UNITS : MICROGRAMS PER CUBIC METER

CUBIC METER	2	09	8/16/84 330 7.1 8.3	0.853 340 3.8	0.800 250 6.0	0.1 0.748 320 5.9 6.8	0.879 (UV)	42	o∾ •	・らす・	· 0 iv ·	0.748 320 5.9 6.8 0.879	<u>/</u> 67	7/ 5/84 210 13.6	0.948 200 9.9	10.1 0.982
PER	6	62	۰ 0	. 60	$\cdot \omega \omega$	0.959 260 260 9.6	Q >		− m ·	$\cdot \circ \circ \circ$		0.9111 230 2.8 7.9 0.348	. 89	12/20/84 260 5.6	0.597 0.590 4.4	0.727
MICROGRAMS	8	62	7,11/64 230 7.6 9.6	0.791 180 7.1	0.973 170 5.1	0.911 230 2.8 7.9	0.348 (Alb.)	93	8/ 4/84 350 1.0 7.0	0.147 340 2.5	0.597 140 2.7 5.9	0.451 310 3.4 4.9 0.687	<i>→</i>	- 83 .	0.791 180 7.1	. ~
: STINO	~ \		12, 8,84 250 10.1 12.7	L 0 L 0	0.829 260 12.3	0.950 240 9.2	0.958	48	7/23/84 240 10.4	0.975	0.909 230 8.5	0.955 280 4.7 11.2 0.420	SEP PER	2/ 6/84 290 6.3	0.665 280 7.5	. ~
	9 3		6.3 9.5	0.665 280 7.5	0.772		0.904	51	6/ 2/0 220 6.7 7 9	0.849 250 1.6	0.338 0.338 240 6.4	0.961 290 8.3 8.5 0.976	3/2	∞ \sim \sim	0.592 0.592 350 5.3	• 10
	2	69	$\sigma \sim \sigma$	7	. 010	0.971 270 11.8 12.2	د ہ	53	7/ 2/04 210 13.6 14. 4	0.948 200 9.9	0.982 0.982 210 8.8	0.882 260 5.7 10.1	NE 74	1/ 1/84 20 6.4 7.8	0.819 20 5.2	6.0 0.864
	43		1122	0.952 330 6.4	0.731 300 5.4	0.732 300 10.3	0.930	- 10 A	o	• 60 00 •	· 12 · ·	0.959 260 9.6 9.6 9.6	> 78	r∪ < 0 ·	0.849 250 1.6	• 60
	4 35	64	, 4/° 350 1.0 7.0	## •	· 60 ·	0.451 310 3.4 4.9	∞	56	0,5±0	.00	· 10 00 · ·	0.741 310 6.3 7.3 0.854	7 8	4/30/84 210 9.4 11.1	0.849 200 10.6	0.955
	n)	90	6.7 220 6.7 7.9	0.849 250 1.6	0.338 0.338 240 6.4	0.961 290 8.3 8.5	0.916 UW	1710/81	330 10.0 11.9	0.834 340 7.1	0.964 340 10.7 11.4	0.943 320 6.9 8.2 8.2	7 5	9 - •	0.939 190 3.0	• 60
	->	109		0.84			0.893	79					/ 61	6/11/ 26 9.	0.840 0.840 6.4	0.67
	RANK	TSP		RATIO DIR (DEG) VEL (MPH)	RATIO DIR (RATIO DIR VEL SPD	KA110	TSP		RATIO DIR (RATIO DIR (RATIO DIR VEL SPD RATIO	TSP	DATE DIR (DEG) VEL (MPH)	RAT IC	SPD (MPH) RATIO
	TOWN-SITE (SAMPLES)	GROTON-006 (56)	METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER		HADDAM-002 (60)	METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER	HARTFORD-003 (60)	METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY	

	1984	4 TEN HIC	2 4 -	HOUR AVERA	GE TSP D	AYS WITH	√IND DATA	UNITS:	MICROGRAMS	PE	IC METER
TOWN-SITE (SAMPLES)	RANK	-	N	m	.	٠	9	-	∞	5 1	0.
METEOROLOGICAL SITE BRIDGEPORT	DIR (DEG) VEL (MPH) SPD (MPH) RATIO	240 7.3 7.5 0.977	$\sigma \cdot \cdot \sigma$	$\circ \cdot \circ \infty$	4 · · · •	30 8.3 8.5 0.980	90	290 5.2 9.8 0.530	~	280 7.3 7.8 0.944	210 8.8 9.9 0.882
METEORCLOGICAL SITE WORCESTER	7EG) 4PH) 4PH)	280 7.2 8.1 0.893	9.6	230 8.7 9.8 0.888	290 8.3 8.5 0.976	, 000	330 7.4 8.1 0.923	80.58	War.	260 9.5 9.9 0.958	260 5.7 10.1 0.562
HARTFORD-013 (57) METEOROLOGICAL SITE NEWARK	TSP DATE DIR (DEG) VEL (MPH) SPD (MPH)	7 110 6/11/84 260 9.8	·	88 4/30/84 210 9.4 11.1	82 7/11/84 230 7.6 9.6	81 7/5/84 210 13.6	76 6/ 6/84 230 6.8 7.9	1/ 1/84 20 6.4 6.4 7.8	VO (VI (VI + +	0000	6000
METEOROLOGICAL SITE BRADLEY	(MPH) (MPH) (MPH)	+ 10		0.849 200 10.6 11.1	•	. —	0.856 200 3.3	യ സരം	\dot{o} on v v	•	60.00
METEOROLOGICAL SITE BRIDGEPORT	DEG) MPH) MPH)	0.672 240 7.3 7.5	$\omega w \cdot \cdot v$	384.	د د د د د د د د د د د د د د د د د د د	<u> </u>	50000	გ. ლადა	828.69	•	iano
METEOROLOGICAL SITE WORCESTER	KATTO DIR (DEG) VEL (MPH) SPD (MPH) RATTO	0.893	0.939 260 9.6 9.6 0.992	0.002 230 8.7 9.8 0.888	230 2.8 7.9 0.348	0.862 260 5.7 10.1 0.562	280 2.7 4.9 0.553	o	0.580 4.5 7.8 0.584	0.93 5.5 0.93 0.93 0.93 0.93 0.93	o ⇒ • • ∞
HARTFORD-014 (60) METEOROLOGICAL SITE NEWARK	E (DEG) (MPH) (MPH)	> 0v — vo · · ·	/26/2016 121/2016 16/20 16/2	85 4/30/84 210 9.4	7.00.1	712 27 27 1.		, 952.7	7 23 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	∠ \ ''`	3.55
METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE	10 (DEG) (MPH) (MPH) 10 (DEG)	0.840 260 6.4 9.5 0.672	$\omega \varphi \cdot \cdot \omega \varphi$	0.849 200 10.6 11.1 200	0.819 20 5.2 6.0 0.864	0.881 240 2.5 3.3 0.759	3t 3D	0.849 250 1.6 4.6 0.338 240	0.791 180 7.1 7.3 0.973	0.665 280 7.5 9.8 0.772 290	
BRIDGEPORI METEOROLOGICAL SITE WORCESTER	VEL (MPH) SPD (MPH) RATIO DIR (DEC) VEL (MPH) SPD (MPH) RATIO	7.5 0.977 280 7.2 8.1 0.893	6.1 0.959 260 9.6 9.6	7.0 0.682 230 8.7 9.8	8.3 8.5 0.980 10 6.5 8.1	5.5 5.6 0.581 290 8.1 8.3	7.9 8.6 0.911 310 6.0 6.3	6.6 0.961 290 8.3 8.5 0.976	5.6 0.911 230 2.8 7.9 0.348	9.8 9.8 0.530 280 9.1 10.1	

0

TABLE 11, CONTINUED

1984 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA UNITS : MICROGRAMS PER CUBIC METER

TOWN-SITE (SAMPLES)	RANK	-7	ر"	m)	۵)	5	9	-7	®	6	10
MANCHESTER-001 (60) METEOROLOGICAL SITE	TSP DATE	91 6/11/84 260	99+	62 6/5/84	200-	ຸທຸລະ	1/ 1/84	52 7/11/84	50 7/ 5/84	404	49 6/23/84
_	VEL SPD RATH	9.8 11.6 0.840	- • • • • • • • • • • • • • • • • • • •	6.7 7.9 0.849	- • • 7	, o	6.4 7.8 0.819	7.6 9.6 791	13.6 14.4 14.4	† · · C	4000
, METEOROLOGICAL SITE BRADLEY	-	260 4.6 9.5	$\circ \circ \cdot \cdot$	25-	2001	;‰~.	20 5.2 6.0	•	2000	9	inna
METEOROLOGICAL SITE BRIDGEPORT	RATIO DIR (DEG) VEL (MPH) SPD (MPH)	0.672 240 7.3 7.5	G	0.338 240 6.4 6.6	95 20 4.	$\omega \circ \cdot \cdot$	0.864 30 8.3 8.5	0.973 170 5.1 5.6	92286	.voo. ⋅	0.579 220 6.1 6.2
METEOROLOGICAL SITE WORCESTER	RATIO DIR (DEG) VEL (MPH) SPD (MPH)	0.977 280 7.2 8.1	0.959 260 9.6 9.6	0.961 290 8.3 8.5	0.682 230 8.7 9.8	0.709 330 7.4 8.1	•	•	0.882 260 5.7 10.1	1-w0-	0.990 340 2.1 7.5
	2	3 /	· ~			u -	19 S	CMN CMN	2005	\sim	0.285
MERIDEN-002 (60)	TSP NATE	116	92	.72	72	72	67	- 1	٠/:	9 5	ς
METEOROLOGICAL SITE NEWARK		96.67	, 260 9.8 11.6	270	210 210 9.4	220 6.7 7.9	20 6.4 7.8	350 1.0 7.0	`	. 23 . 7.	767 19.
METEOROLOGICAL SITE BRADLEY	KALIO DIR (DEG) VEL (MPH) SPD (MPH)	0.939 190 3.0 3.2	, o o o	37.7.E	#.~2=	•	0.819 20 5.2 6.0	•	0.853 340 3.8 4.7	.79 18 .7.	
METEOROLOGICAL SITE BRIDGEPORT	KALIO DIR (DEG) VEL (MPH) SPD (MPH)	0.934 250 7.7 8.1	60rr	5.4%.	o'uz-	•	•	0.597 140 2.7 5.9	0.800 250 6.0 8.1	\sim \sim \sim	$\circ \circ \circ \circ$
METEOROLOGICAL SITE WORCESTER	KALIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	0.950 9.6 9.6 0.992	0.977 280 7.2 8.1 0.893	0.581 290 8.1 8.3 0.969	0.682 230 8.7 9.8 0.888		0.980 10 6.5 8.1	0.451 310 3.4 4.9 0.687	0.748 320 5.9 6.8 0.879	0.911 230 2.8 7.9 0.348	0.937 280 4.5 7.8 0.584
MIDDLETOWN-003 (55)	TSP	, , 6	83	/ w	₹ 5	% € €	m 8	2	NE 58	7 10) %
METEOROLOGICAL SITE NEWARK	DATE DIR (DEG) VEL (MPH) SPD (MPH)	6/11/84 260 9.8 11.6	22 6.5	251 13. 14.	/11 23 .6.)16 33 7. 8.	6.2	727.	35 1.:	/23 24 10.	/22 22 9.
METEOROLOGICAL SITE BRADLEY	KALLO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	0.840 260 6.4 9.5 0.672	0.849 250 1.6 4.6 0.338	0.948 200 9.9 10.1 0.982	0.791 180 7.1 7.3 0.973	0.853 340 3.8 4.7 0.800	0.819 20 5.2 6.0 0.864	0.881 240 2.5 3.3 0.759	0.14/ 340 2.5 4.2 0.597	0.975 210 7.6 8.3 0.909	0.916 220 5.1 5.3 0.967

TABLE 11, CONTINUED

1984 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA UNITS : MICROGRAMS PER CUBIC METER

							C	eranana.							1,2					
CUBIC METER	10	220 8.8 9.3	ကထား .	• œ.	59 5711/8h	. u o :	0.840	9.5 0.672	240 7.3 7.5	0.977	7.2 8.1 0.893	1.74	12/26/84		0.672	3.3	0.458	7.9 11.5 0.687	_	14.7 0.891
PER	6	230 8.5 8.9	282	• N	€ 60 1/25/8h	250 10.8		7.6 7.6 0.667	250 10.2 10.5	$\sigma \sigma$	11.8 12.2 0.966		27 12/20/84	260 5.6	0.597	4.5 4.0	0.727 280	7.8 7.8 0.944	26 9.	9.9
MICROGRAMS	80	140 2.7 5.9	0.451 310 3.4	0.687	61 8722/8h	9.4	0.916 220	5.3 0.967	220 8.8 9.3	0.937	4.5 7.8 0.584	I good and	27 12/14/84	30 10.8	0.903		0.872 50	10.4 0.936	7.	9.5
UNITS:	7	240 3.3 5.6	\cdot \circ	• •	49/9/18/16/8/h	330	0.853 340	3.8 4.7 0.800	250 6.0 8.1	0.748	5.9 6.8 0.879	grand the same	30 10/15/84	30.5	8.6 0.636	7.1	0.934	6.8 0.847		7.8 0.958
	9	30 8 30	∞ •	0.812	65 67 57841	, 220 6.7	0.849		<i>_</i>	$\cdot \circ \circ$		_	32 127 8784	250 10.1	• 0 1	` · ·	0.829	٠.٠	24.6	• 17
	2	250 6.0 8.1	0.748 320 5.9	6.8 0.879	66 7/11/8h	230	0.791	7.3 0.973	170 5.1 5.6	0.911	2.8 7.9 0.348	S. Carrier	32 11/ 8/84	30	6.9 0.617	ນ ພ. ທີ່ພະຍຸ	0.604 40	8.2 0.609		5.6 0.701
	4	- nn	- ~ .	· 4	67 27127814	270	0.881 240	3.3 0.759	240 3.3 5.6	0.581	8.1 8.3 0.969	1	38	5.1	7.0 0.720	. w.v.	0.612	6.0 6.0 0.658	240	7.2 0.392
	ന	210 8.8 9.9	260	0.562	67/1/8/1		20m	12.5 0.954	320 14.0 16.1	သထားက	12.1 13.2 0.913		41 10/3/84	30.	3. 98.	,	0.970	• • [~	25.	٠,
	α	0000	• 00	. ~	71 1/30/8h	210 210 4.5	0.849 200	10.6 11.1 0.955	200 4.8 7.0	0.682	8.7 9.8 0.888		46 10/ 9/84	0.0	• 17 A		0.336		36	• 6
	-	240 7.3 7.5	0.977 280 7.2	0.893	79 79 11/26/81	210 6.3	0.939 190	3.2 0.934	250 7.7 8.1	0.959	9.6 9.6 0.992		48 11/26/84	210 6.3	6.8 0.939	3.0	0.	6.1 8.1 0.959	260 9.6	9.6 0.992
	RANK	DIR (DEG) VEL (MPH) SPD (MPH)	-	SPD (MPH) RATIO	TSP	(DEG)		_	DIR (DEG) VEL (MPH) SPD (MPH)		VEL (MPH) SPD (MPH) RATIO		TSP		SPD (MPH) RATIO		RATIO DIR (DEG)		DIR VEL	
	TOWN-SITE (SAMPLES)	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER		MILFORD-002 (61)	METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE	BKADLEY	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE	WORCESTER		MORRIS-001 (15)	METEOROLOGICAL SITE NEWARK	ATTO IACTOO IOGOTTA	BRADLEY	METEOROLOGICAL SITE	BRIDGEROKI	METEOROLOGICAL SITE WORCESTER	•
							٠											-		

TABLE 11, CONTINUED

					6	Carrier.								\bigcirc							Same	KO	
	IC METER	10	3 73	8/22/84 220 9.4	10.2 0.916	5.10	0.967 220 8.8	9.3 0.937	ンサトロ	0.284	3	$\sim \sim \sim$		525.	0.967 220 8.8		ω.	٠٠) ±C	6/23/84 210 10 0	10.4	22.	4.9 0.579
	S PER CUBIC	6	\$ 3	7/ 5/84 210 13.6	37 OV C	9.9 10.1	0.982 210 8.8	9.9 0.882	7 rv 5 r	0.502	55	γ) —	• • •	22:-	4.9 0.579 220 6.1	6	寸 ·	• 🛛 🗀	7 56	8/22/84 220 9_b	10.2	(0) (0)	5.3 0.967
	MICROGRAMS	&) R;	6/ 5/84 220 6.7	7.9 0.849	1.6 4.6	0.338 240 6.4	$\frac{6.6}{961}$	N & & C	0.976	56	7/ 5/84 210 13.6	14.4 0.948		0.982 210 8 8	9.9 0.882	260 5.7	0.562		5/24/84 290 11.0	11.5	33	8.8 0.731
	UNITS: A	7	ے د !	4/30/84 210 9.4	11.1 0.849	10.6	0.955 200 4.8	7.0 0.682	N 00 00 0	0.000	56	2/12/84 270 1.9	2.2 0.881	240 2.5	0.759 0.759 240 3.3	5.6 0.581	290 8.1	0.969) 55°	210 210 13.6	75	(40)	10.1 0.982
	WIND DATA		3/2	- 83 -	· 67 V	\circ .	0.882 330 8.1	•0	2	0.903	58	6/ 2/84 220 6.7	7.9	250	4.0 0.338 240 6.4	6.6 0.961	290 8.3	0.976	09	3/25/84 50 3.0		18.5	. —
	DAYS WITH W	2	71	2/12/84 270 1.9	2.2 0.881	2.5 3.3	0.759 240 3.3	$\frac{5.6}{0.581}$		0.308 (13)	. g	2/ 6/84 290 6.3	9.5	280 7.5	0.772 0.772 290 5.2	9.8 0.530	280 9.1	0.904	67	6/ 5/84 220 6.7	7.9		4.6 0.338
CONTINUED	TSP	4	777	1/ 1/84 20 6.4	7.8 0.819	5.2	0.864 30 8.3	$\frac{8.5}{0.980}$	w w 0	0.016	, 88	– ო .	• • •	ω .	0.973 170 5.1		· m	• =	68	2/12/84 270 1.9	2.2	•	3.3 0.759
ABLE 11, CC	24-HOUR AVERAGE	3.	92	- m	• 00 0	0	0.973 170 5.1	0	v) · · :	±°.	68	4/30/84 210 9.4	11.1 0.849		0.955 200 1.8	7.0	230 8.7	0.888	\ F;	230 230 7.6	0	18	. ~
IAE	HIGHEST 24-H	8	98	6/11/84 260 9.8	11.6 0.840 260	6.4 9.5	0.672 240 7.3	7.5 0.977	M 1 - 80 0	7	87	6/11/84 260 9.8	11.6 0.840	26.	0.672 0.672 240 7.3	7.5	280 7.2	0.893	> 0/	1/26/84 210 6.3	• • 67	3.	• 60
	TEN	-	100	11/26/84 210 6.3	6.8 0.939 100	3.0 3.2	0.934 250 7.7	0.959	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	266.0	90	1/26/84 210 6.3	6.8 0.939	3.0	3.2 0.934 250 7.7	8.1 0.959	260 9.6 9.6	0.992	101	6/11/84 1 260 9.8	11.6 0.840	260	9.5 0.672
	1984	RANK		~~	SPD (MPH) RATIO		(DEG) (MPH)		(MPH)	5	TSP	DATE DIR (DEG) VEL (MPH)		DIR (DEG) VEL (MPH)	_		DIR (DEG) VEL (MPH) SPD (MPH)	-0	TSP	DATE DIR (DEG) VFI: (MPH)			SPD (MPH) RATIO
		TOWN-SITE (SAMPLES)	NAUGATUCK-001 (59)	METEOROLOGICAL SITE		SIIE RADĽEY			METEUKULUGICAL SITE WORCESTER '		NEW BRITAIN-007 (59)	METEOROLOGICAL SITE		METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE RRINGEPORT		METEOROLOGICAL SITE WORCESTER		NEW BRITAIN-008 (61)	METEOROLOGICAL SITE		METEOROLOGICAL SITE BRADLEY	
		Η.	z								Z								z				

TABLE 11, CONTINUED

1984 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA UNITS : MICROGRAMS PER CUBIC METER

				1	<u>_</u>
SIC MEIER	10	220 6.2 0.990 340 2.1 7.5	6/23/84 6/23/84 10.0 10.0 10.4 0.966 220 220 4.9	23.999.25.	0.758 0.758 0.758 0.758 0.758 0.336 0.816 3.3 0.816 3.3 0.816 1.3
S PER CUI	6	220 8.8 9.3 0.937 7.80 0.584	8/22/84 222/84 220 9.4 10.2 0.916 220 5.1 5.3	0.937 0.937 280 7.88 7.58 0.586 4.55	5/24/84 2290 11.5 0.952 0.952 330 6.4 8.8 0.731 300 7.3 300 10.3
יין איזטטאט ויי	œ	300 7.3 0.732 300 10.3 11.1	, υυ- · · · το · · α		67 1,30/84 210 210 210 11.1 0.849 10.6 11.1 0.955 200 4.8 4.8 4.8 7.0 0.682 200 8.7 8.7
e lino	7	210 8.8 9.9 0.882 260 5.7 10.1	$\omega \omega \omega \cdot \cdot - \omega \cdot \cdot -$		68 260 260 9.3 0.597 2290 4.4 4.4 6.0 7.2 7.3 7.3 7.3 0.944 9.9
	9	0.608 0.608 0.608 0.612 0.613 0.813	7.84 6.4 7.8 0.819 5.2 6.0		8/4/84 350 1.0 7.0 0.147 340 340 140 140 2.7 2.7 2.7 2.7 2.7 3.0 4.9 0.451 3.4
	72	240 6.6 0.961 290 8.3 0.976	6/ 5/84 220 6.7 6.7 7.9 0.849 250 1.6 4.6	0.961 0.961 0.961 0.976	76 8/22/84 5.20 10.2 0.916 220 5.1 5.1 5.1 5.3 0.967 8.8 8.8 8.8 8.8 9.3 0.937 7.8
	#	240 3.3 3.5 5.6 0.581 8.1 8.1 0.969	66 4/30/84 210 9.4 11.1 0.849 200 10.6 11.6	;03~0000°	79 1/12/84 1/90 3.3 7.6 0.438 110 5.2 0.445 140 140 5.3 60 8.5 0.623 3.5 0.757
	ဗ	170 5.1 5.6 0.911 230 230 7.9 0.348	68 7/11/84 230 7.6 9.6 0.791 180 7.1 7.1 7.3		80 6/11/84 260 260 11.6 0.840 260 6.4 9.5 0.672 240 7.3 7.3 7.3 7.2 8.1
	2	250 7.7 8.1 0.959 260 9.6 9.6 0.992	81 81 210 6.3 6.8 0.939 190 3.0 3.0	iuræeineeei	87 6/5/84 220 220 6.7 7.9 0.849 250 1.6 0.338 6.4 6.4 6.4 6.4 6.4 6.4 6.5 0.961 8.3
	-	240 7.3 7.5 0.977 280 280 8.1 0.893	94 6/11/84 260 9.8 11.6 0.840 260 6.4 9.5	2.40 7.5 0.977 2.80 2.80 8.1	11/26/84 210 210 6.3 6.3 6.3 0.939 1.2 0.934 7.7 7.7 8.1 0.959 9.6 0.992
	RANK	DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	TSP DATE DOIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH)	DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) DIR (DEG) VEL (MPH) SPD (MPH)	TSP DATE DATE CEL (MPH) SPD (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH)
-	TOWN-SITE (SAMPLES)	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	NEW BRITAIN-009 (60) METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	NEW HAVEN-002 (54) METEOROLOGICAL SITE METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE MOTEOROLOGICAL SITE

TABLE 11, CONTINUED

1984 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA

01	. 927 627 637	5.62	998896		~ \				
6	 784 0 0 84	2.5 80 7.0 0.0 0.0	777 10 . 1 64	9.0.4	60 /22/84 220 9.4 9.4	9820 380 380		and the second	
&	980	. 87	· 60 · · 61	3.8 6.0 6.0 0.625	277		and the second	5/24/84 290 11.0 11.5 0.952 330 6.4 8.8	
-	. 400-		$\omega \sim \omega \sim$	$n \cdot \cdot \infty$,	22.00	233.4.1.55	.96 .93 .97	8/22/84 220 9.4 10.2 0.916 5.1 5.1 0.967	
9	70 3/25/84 50 3.0	0.519 180 2.5 3.0	0.812 130 2.9 4.7 0.608	0.00.0	/ \	55.5564.9	5.8. .92. ≥	65 7/11/84 230 7.6 9.6 0.791 7.1 7.3	
2	~-6	1. 84 86. 6.	ト キ ・ ト つ	$\infty \cdot \cdot \infty$	712 27 27 1.	33.653.65	80° 80° 9° 9° 9° 9° 9° 9° 9° 9° 9° 9° 9° 9° 9°	79 4/30/84 210 9.4 11.1 0.849 200 10.6 11.1	
#	-ar.	• \$ \$ \$	$\omega \rightarrow \cdot \cdot \omega$	· • • •	, 8 11 23 7. 9.			87 6/5/84 220 6.7 7.9 0.849 1.6 1.6	
m	9/15/84 10.2	• • • • • • • • • • • • • • • • • • •	20 00	20 9.0 9.6 0.932	A A		ALLA	89 2/12/84 270 1.9 2.2 0.881 2.40 2.40 2.5 3.3	
~ \	<i>~ w o ·</i>	.40	66 • • 43	<i>y</i> ⋅ ⋅ <i>i</i> − ⋅				2/ 6/84 2/ 6/84 290 6.3 9.5 0.665 7.5 9.8	
-/	102 11/26/84 210 6.3	6.8 0.939 190 3.0	0.934 250 7.7 8.1 0.959	9.6 9.6 0.992	108 4/30/84 210 9.4 11.1	200 10.6 11.1 0.955 200 4.8	0.682 230 8.7 9.8 0.888	100 6/11/84 260 9.8 11.6 0.840 6.4 6.4 9.5	
RANK	(DEG) (MPH)	(MPH) 10 (DEG) (MPH) (MPH)	(DEG) (MPH) (MPH) (DEG)	(MPH) (MPH)	TSP DATE DIR (DEG) VEL (MPH) SPD (MPH) RATIO	DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	DATE DATE DIR (DEG) VEL (MPH) SPD (MPH) RATIO RATIO	
TOWN-SITE (SAMPLES)	HAVEN-013 (59) METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY	SITE GEPORT	CESTER	(57) OLOGICAL SITE NEWARK	SITE RADLEY SITE GEPORT	METEOROLOGICAL SITE WORCESTER	(57) DLOGICAL SITE NEWARK DLOGICAL SITE: BRADLEY	
	RANK 1 2 3 4 5 6 7 8	(SAMPLES) RANK 1 2 3 4 4 5 6 7 8 9 10 -013 (59) TSP 102 78 77 76 71 70 67 65 65 6 DATE 11/26/84 6/ 5/84 9/15/84 6/11/84 3/25/84 4/18/84 6/29/84 8/22 DROLOGICAL SITE DIR (DEG) 220 10 270 260 9.8 3.0 9.4 2.2 6.6 9.2	HAVEN-013 (59) TSP 102 78 9/15/84 6/11/84 3/25/84 4/18/84 6/29/84 8/22 ABTEOROLOGICAL SITE DIR (DEC) 190 250 240 260 180 260 180 220 11.1 7.6 7.2 10.2 1.9 9.8 3.0 9.4 2.2 6.6 9.1 7.2 10.2 190 280 0.881 0.881 0.881 0.849 0.883 0.924 0.91 180 220 240 250 240 260 180 220 240 250 240 260 180 220 240 260 180 220 240 260 240 240 260 240 2	HAVEN-013 (59) TSP 102 77 76 71 70 67 65 65 65 65 65 65 65	HAVEN-013 (59) TSP TSP TSP TSP TSP TSP TSP TS	HAVEN-013 (59) TSP 177 76 771 70 67 65 65 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	13 (59) 1SP	13 (59) 15P	13 (53) SAME SAME

TABLE 11, CONTINUED

1984 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA UNITS : MICROGRAMS PER CUBIC METER

				. //	
10	250 8.1 0.748 320 5.9 0.879	1/1/84 20 6.4 7.8 0.819 5.2 5.2 6.0	0.864 30 8.3 0.980 0.980 1.0 0.5 1.0	42 47 6/84 230 11.3 12.2 0.923 6.4	0.902 190 10.9 0.427 220 6.1 6.9
6	320 14.0 16.1 0.867 330 12.1 13.2 0.913	8/22/84 220 220 9.4 10.2 0.916 5.3	0.967 220 220 8.8 9.3 0.937 280 4.5 7.8	46 4/18/84 300 2.2 7.6 0.283 1.3 4.7	0.268 90 7.3 7.6 0.694 8.3 6.0 0.625
8	300 5.4 7.3 0.732 300 10.3 11.1	64 2/24/84 340 8.6 12.9 0.665 9.4	0.840 350 9.1 10.6 0.857 360 9.8 12.9	⇒ 1000 · • − 100 · •	0.812 130 130 4.7 0.608 310 5.2 6.5
7	220 8.8 9.3 0.937 7.8 7.8	70 70 70 210 6.8 0.939 190 3.2	0.934 7.77 0.959 2.60 0.998	17/84 310 13.3 13.9 0.954 8.4 9.1	0.929 320 320 9.5 0.953 12.4 12.4 12.5 0.989
9	170 5.1 5.1 0.911 230 2.8 7.9 7.9	7 70 70 220 6.7 7.9 0.849 250 1.6	0.338 240 6.4 6.6 0.961 290 8.3 8.3 0.976	· · + 8 · · · · · · · · · · ·	0.759 240 3.3 3.3 0.581 2290 8.1 8.3 0.969
ī.	200 4.8 7.0 0.682 230 8.7 9.8	2/ 6/84 290 6.3 9.5 0.665 7.5 9.8	0.520 290 2.29 0.530 280 9.1 10.1	2/6/84 290 6.3 9.5 0.665 7.5 9.8	0.772 290 290 9.8 0.530 280 9.1 10.1
4	240 6.4 6.6 0.961 290 8.3 8.5	7/11/84 230 7.6 9.6 0.791 180 7.3	0.973 1.70 0.911 0.930 0.318 0.318	1/19/84 330 10.0 11.9 0.834 7.1	0.964 340 10.7 11.4 0.943 320 6.9 8.2
က	240 3.3 5.6 0.581 8.1 8.3 0.969	\ m ·	0.955 7.00 0.682 0.682 0.682 0.888 0.888	3/31/84 3/31/84 330 11.7 12.5 0.935 5.0 6.8	0.882 330 8.1 8.1 0.905 7.8 7.8 7.9
8	290 5.2 9.8 0.530 280 9.1 10.1	89 2/12/84 270 1.9 2.2 0.881 240 240 3.3	0.759 240 240 3.3 3.3 5.6 6.581 0.980 0.969	61 25/84 250 10.8 11.1 0.975 240 5.1	0.667 250 10.2 10.5 0.971 270 11.8 12.2
-	240 7.3 7.5 0.977 280 7.2 8.1	6/11/84 260 9.8 11.6 0.840 5.60 6.4	0.672 240 7.3 7.5 0.977 7.2 8.1	1/ 70 20 6.4 7.8 0.819 20 5.2 6.0	0.864 30 8.3 8.3 0.980 10 6.5 8.1
RANK	DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	TSP DATE DIR (DEG) VEL (MPH) SPD (MPH) RATIO (MPH) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO VEL (MPH) SPD (MPH) RATIO	TSP DATE DIR (DEG) VEL (MPH) SPD (MPH) RATIO VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEI (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO
TOWN-SITE (SAMPLES)	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	NORWALK-012 (60) METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	NORWICH-001 (20) METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER

TABLE 11, CONTINUED

1984 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA UNITS : MICROGRAMS PER CUBIC METER

			_	$\int_{-\infty}^{\infty}$			4				Č	6					7	Salari and American State of the State of th	
IC METER	ر ع	59	$\alpha \alpha \cdot \cdot$	-0.	90	0.937 280 4.5 7.8 0.584	•	· (\sim - \sim	• 9	∾ •	0.579	0	12.4	• &	9	2/12/84 270 1.9	• 60 =	• • •
s PER CUBI	E THE	(m)	11/ 8/84 30 4.3 6.9	0.617 350 3.5 5.8	0.604 40 5.0 8.2	0.609 50 3.9 5.6 0.701	•	•	2/24/84 340 8.6	12.9 0.665	360 9.4	0.840 350	10.6 0.857		0.758		8/28/84 200 7.3	8.1 0.913 200	7.1 7.2 0.983
MICROGRAMS	8	9	⊅ ₽ · ·	44	04.	0.451 310 3.4 4.9 0.687) <u>-</u>	, 2	10/ 3/84 230 13.4	200	8.0 8.0	0.970 240 13.6	13.9	,00E	90	ω ε.	7/11/84 230 7.6	$\cdot \circ \infty$	
. SIINO	7	74	12/20/84 260 5.6 9.3	0.597 290 4.4 6.0	· 0.727 280 7.3 7.8	0.944 260 9.5 9.9 0.958	`	83	720	10.6 0.975	210 7.6 3.	0.909 230 8.5	8.9 0.955	74-2		7 0	8/22/84 220 9.4	· 0	• • •
	(MY	7	5/24/84 290 11.0 11.5	0.952 330 6.4 8.8	0.731 300 5.4 7.3	0.732 300 10.3 11.1	\	84	6/ 2/84 220 6.7	7.9 0.849	1.50	0.338 240 6.40	6.6	, (v) eo e	976.0	16	50 CM	• # 0	• • • •
	5	77			0.955 200 4.8 7.0	0.682 230 8.7 9.8	•		270 270 1.9	2.2 0.881	240 3.5	0.759	5.6 0.581		0.969	Seaton Comment	8/76/84 330 7.1	8.3 0.853 340	3.8 4.7 0.800
	#	79		0.730 10 4.8 5.9	0.820 250 5.8 8.3	0.697 60 7.1 7.9 0.895	1	93	7,11764 230 7.6	9.6 0.791	180 7.1 7.3	0.973	5.6	230 2.8 7.9	0.348	(MM)	8/ 4/84 350 1.0	7.0 0.147 340	2.5 4.2 0.597
	m)	85	82.0.0	$\omega \circ \cdot \cdot$	$\omega \sigma \cdot \cdot \sigma$	0.959 260 9.6 9.6 0.992		106	6/22/04 220 9.4	$\frac{10.2}{0.916}$	220 5.1	0.967 220 8.8	9.3	•	0.584	91	6/ 5/84 220 6.7	7.9 0.849 250	$\frac{1.6}{4.6}$
	60		7000	0.849 250 1.6 4.6	0.338 240 6.4 6.6	0.961 290 8.3 8.5 0.976		111	0/20/04 200 7.3	8.1 0.913	200 7.1 7.2	0.983 210 7.6	7.9	•	0.932	98	6/11/84 260 9.8	11.6 0.840 260	6.4 9.5 0.672
	- >	96	6/11/84 260 9.8 11.6	0.840 260 6.4 9.5	0.672 240 7.3 7.5	0.977 280 7.2 8.1 0.893	1	117	4/30/04 210 9.4	$\frac{11.1}{0.849}$	200 10.6	0.955 200 4.8	7.0		0.888	116	71/26/84 210 6.3	6.8 0.939 190	3.0 3.2 0.934
	RANK	TSP	DAIE DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO		TSP		-2	DIK (DEG) VEL (MPH) SPD (MPH)			DIR (DEG) VEL (MPH) SPD (MPH)	_	TSP			VEL (MPH) SPD (MPH) RATIO
	TOWN-SITE (SAMPLES)	NORWICH-002 (41)	METEOROLOGICAL SITE I NEWARK V	METEOROLOGICAL SITE I BRADLEY Y	METEOROLOGICAL SITE I BRIDGEPORT	METEOROLOGICAL SITE D WORCESTER N		STAMFORD-001 (58)	METEOROLOGICAL SITE I NEWARK V		MELEUKOLOGICAL SITE I BRADLEY V	METEOROLOGICAL SITE I		METEOROLOGICAL SITE I WORCESTER V	_	STAMFORD-007 (59)	METEOROLOGICAL SITE I	METEOROLOGICAL SITE	

TABLE 11, CONTINUED

1984 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA UNITS : MICROGRAMS PER CUBIC METER

								1								_	7				
CUBIC METER	10		8.3 8.3 8.3	0.969	72 2/24/84	340	0.665		0.840 350	10.6	•	12.9 0.758	L.	64 107 3784	230 13.4	3. 98	€ 33	· ~ =	13.	5	9.8 10.8 0.914
S PER CUE	6	21.7.	0.50 0.50 5.50 5.50	0.932	5/24/84	290	0.952		0.731 300		300	11.1		64 1/25/84	250 0.8	$\frac{11.1}{0.975}$	240 5.1	0.667	10	$\varphi \circ G :$	12.2 0.966
MICROGRAMS PER	&	7.5.5	yaar-	.) ~ ~	230	• 0 0 00	7.	~~~		289	•	7	65 6/11/84	,560 9.8	11.6 0.840	260 6.4 9.5	0.672	-	0.977 280	8.1 8.1 0.893
: SIINO	7	0,000	0.337 280 4.5 7.8	0.584	8/16/84	330	0.853 340		0.800 250	8.10	•	6.8	7	70 6/ 5/84	, 220 6.7	7.9 0.849	250 1.6	0.338		0.961 290	8.3 8.5 0.976
	9		0.002 230 8.7 9.8	0.888	77.4/18/84	300	0.283		0.268 90	7.6	•	6.0		71 2/24/84	340	12.9 0.665	360 9.4	0.840 350	_	0.857 360	9.8 12.9 0.758
	5	6.9	5.9 5.9 6.8	r 3	78	210	0.849	-	0.955 200		230 230 8.7	9.8	/	76 11/30/81	210 9.4	0.849	200 10.6	0.955		0.682	8.7 9.8 0.888
	#	-00	0.45 3.10 4.9	0.687	81 2/12/84	270	0.881 240		0.759 240		290 290 8.1	8.3		80	290 11.0	11.5 0.952	330 6.4	0.731	5.4 7.3	0.732 300	10.3 11.1 0.930
	က		0.90 290 8.3 8.5	976.0	, 94 784 784	220 6.7	0.849 250	1.6 4.6	0.338 240		290 290 8.3	8.5 0.976	3	97,6/84	290	9.5 0.665	280 7.5 9.8	0.772 290	5.2 9.8	0.530 280	9.1 10.1 0.904
	2		0.977 280 7.2 8.1	0.893	5/18/84	320	0.592	5.3	0.755 290		330 330 7.4	8.1 0.923		92	, 270 270 1.9	• &	≠ .	・らす		ω Ο	8.1 8.3 0.969
	-		9.60 9.60 9.6	0.992	110	260	0.840 260	9.5	0.672 240	7.5	280 7.2	8.1 0.893	>	103	210 6.3	6.8 0.939	190 3.0	3.2 0.934 250	7.7	0.959 260	9.6 9.6 0.992
	RANK	DIR (DEG) VEL (MPH) SPD (MPH)	KALLO DIR (DEG) VEL (MPH) SPD (MPH)	RATIO	TSP DATE	DIR (DEG) VEL (MPH)				VEL (MPH) SPD (MPH)	DIR (DEG)			TSP		SPD RATII	DIR (DEG) VEL (MPH)	RATIO DIR (VEL SPD	RATIO DIR (VEL (MPH) SPD (MPH) RATIO
	TOWN-SITE (SAMPLES)	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER		STAMFORD-021 (57)	METEOROLOGICAL SITE	METFOROLOGICAL SITE	BRADLEY	METEOROLOGICAL SITE	BRIDGEPORT	METEOROLOGICAL SITE WORDFSTER			STRATFORD-005 (60)	METEOROLOGICAL SITE NEWARK		METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE	BRIDGEPORT	METEOROLOGICAL SITE	WOKCESTEK
											•										

TABLE 11, CONTINUED

1984 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA UNITS : MICROGRAMS PER CUBIC METER

SIC METER	(<u>}</u>	3	09/2/2	13,	• 60	34		32	• • •	29 11.	• ~	7	•	8/22/84 220 6 1	, ₀	0.916 220 5.1	5.3	.22.	9.3 0.937	280 4.5	0.584	>	9-0	χ) ·	.00	7.1 7.3 0.973
IS PER CUBIC	6	The same of the sa	61	30	. 0	20,	7.0	19	• N	22 6.	• 🛭	7.	42	210	0.40	0.948 200 0.0	10.1	.22	9.9 0.882	26 5.	0.562)	90,	 •	84 20	$\frac{10.6}{11.1}$
MICROGRAMS	80	/	62	210	14.4 0.948	20 9.	10.1	22.8	9.9	26 5.	10.1 0.562	7	42	22	500	0.966 220 2.8	4.9 0.579	22.	6.2 0.990	340	0.285	\	920	N •	• → 5	1.6 4.6 0.338
: STINO	7		62	150	7.2	18.	8.2		5.3	220 4.5	5.0 0.894	7	_	8/28/84 200 7_3		0.913 200 7	7.2		7.9 0.957	25.0	0.932		~ ∞ r	ς	25	7.2 8.6 0.829
	9		64	260 5.6	9.3	i CV =	6.0	. ~ ~	7.8	260 9.5	9.9 0.958	1	43	230	9.6	0.791 180 7	7.3	170	5.6 0.911	230 2.8	0.348	<u>3</u>	77 2/ 6/84	6.3 6.3	0.665	7.5 9.8 0.772
	₹.	>	7/11/8/	230	9.6		7.3		5.6	230 2.8	7.9 0.348	E	43	290		0.952 330 330	8.8		7.3	300 10.3	0.930	;	∞ \circ $^{\circ}$	ο.	. 60	4.4 6.0 0.727
	4	7	82 127 87811	, 25 10.	• 6	25.	• •	260 12.3	• 10	寸 .	. 10	- 7	ξ	570	50.5	0.975 210 7.5		833	• 10	∞ .	• (1)		100	<u> </u>	• ∞ ≄	2.5 3.3 0.759
	m	Ś	84	210 9.4	11.1 0.849	20	11.1		7.0	230 8.7	9.8 0.888	7	47	$\sim \sim 1$	٠ <u>٠</u> ٠	0.849 250 1.6	~	24 6.	• 00	O +		\	91 1/25/84	. 10.8 11.1	0.975	. 5.1 7.6 0.667
	2		93	260	0.840		9.5		7.5	280 7.2	8.1 0.893	SS	7	350		340 340 2 5	4.2		5.9 0.451	310 3.4	0.687	\	92 6/11/84	260 9.8 11.6	0.840	6.4 9.5 0.672
	-	/	98	210	6.8 0.939	190	0 3	27	0.9	90	9.6 0.992	\	69	260 260 9.8	11.	0.840 260 6.4	6,6,6	24.7	7.	280 7.2	0.893		95 11/26/84		0.93	3.0 3.2 0.934
	RANK		TSP	DIR (DEG) VEL (MPH)	SPD (MPH) RATIO	DIR (DEG) VEL (MPH)	, O C		SPD RATI	D1R VEL	SPD (MPH) RATIO		TSP	DIR (DEG)		DIR (DEG)			_=		SPD (MPH) RATIO	!	1.1	VEL (MPH)	\simeq	VEL (MPH) SPD (MPH) RATIO
	TOWN-SITE (SAMPLES)		TORRINGTON-001 (61)	METEOROLOGICAL SITE NEWARK		METEOROLOGICAL SITE BRADLEY		METEOROLOGICAL SITE BRIDGEPORT		METEOROLOGICAL SITE WORCESTER			VOLUNTOWN-001 (59)	METEOROLOGICAL SITE	NEWALK	METEOROLOGICAL SITE	מואסברי	METEOROLOGICAL SITE BRIDGEPORT		METEOROLOGICAL SITE WORCESTER			WALLINGFORD-001 (60)	METEUROLUGICAL STIE NEWARK	METEOROLOGICAL SITE	BRADLEY

TABLE 11, CONTINUED

1984 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA
UNITS : MICROGRAMS PER CUBIC METER

								<u>-</u>								1	-			
IIC METER	10	7.5.	230 230 2.8 7.9 0.348	7	60 12/ 8/84	250 10.1	0.797		260 260 12.3	12.9 0.950		9.6 0.958		62	_	0.913 200 7.1	0.983		0.957 240 5.5	5.9 0.932
S PER CUBI	6	440	0.082 230 8.7 9.8 0.888		96	150 6.6 7.2	$\cdot \sim \infty$	œ. φ. ζ	~ ~ .	• 9	(C) •	• 0		63	150 150 6.6	0.924 180 8.0	8.2 0.977	- 2.2.	0.964 220 4.5	5.0 0.894
MICROGRAMS	€0	0000	8.3 8.5 0.976	7	6/ 5/84	220 6.7	0.849		0.338 240 6.4	6.6 0.961		8.5 0.976		63 57 678h	25,7	0.302 190 3.6	• KA C	, ÷.		• • •
. STINO	7	255	0.920 9.2 9.6 9.6 9.95		9/27/84	20 9.4	0.934	6.2	0.876 20 5.2	6.2	340	5.5 0.720	ME	64	20 20 9.4 10.1	0.934 360 6.2	0.876	5.2	0.837 340 3.9	5.5
	9	מתטטת	0.530 280 9.1 10.1 0.904		\sim	270	· co =	33.2	O = T +	• 00	• 10	• 🕠)	64	210 13.6	0.948 200 9.9	10.1		0.882 260 5.7	10.1 0.562
	z,	28	0.944 260 9.5 9.9 0.958	/	73	230	0.791	1- 1- C	0.973 170 5.1	5.6 0.911	i cu cu	7.9	7	. 66	210 210 9.4	0.849 200 10.6	0.955	4.8 7.0	0.682 230 8.7	9.8 0.888
	#		8.3 0.969 0.969		77	260 5.6	0.597		0.121 280 7.3	7.8 0.944		9.9	\	72 11/26/8/I	210 6.3	0.939 190 3.0	3.2	7.7 8.1	0.959 260 9.6	9.6 0.992
	က	25 0.	12.2 0.966	\	82 4/30/84	210	0.849		0.955 200 4.8	7.0	,	9.8 0.888		74	,00 e. c	0.923 200 6.4	0.902	190 10.9	0.427 220 6:1	6.9 0.887
	2		0.977 7.2 7.2 8.1 0.893	>	94	210 6.3 6.8	0.939		0.934 250 7.7	8.1 0.959	•	9.6	\	თ	.6 3	0.791 180 7.1		~	~ ~	=
	-	250 7.7 8.1	9.6 9.6 9.6 9.8		99	260 9.8 11.6	0.840	6.4	0.672 240 7.3	7.5	280	0.893	\	98	260 9.8 11.6	0.840 260 6.4	9.5	7.3	0.977 280 7	8.1 0.893
	RANK	DIR (DEG) VEL (MPH) SPD (MPH)	KATTO DIR (DEG) VEL (MPH) SPD (MPH) RATTO		TSP DATE	DIR (DEG) VEL (MPH)	-0-	-		SPD (MPH) RATIO		SPD (MPH) RATIO		TSP	DIR (DEG) VEL (MPH)			DIK (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEI (MPH)	
	TOWN-SITE (SAMPLES)	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER		WATERBURY-005 (57)	METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE	BRADLEY	METEOROLOGICAL SITE BRIDGEPORT		METEOROLOGICAL SITE WORCESTER	• -		WATERBURY-006 (59)	METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY	THE STANDARD STANDARD STANDARD	METEUKULUSTUAL STIE. BRIDGEPORT	METEOROLOGICAL SITE	

___9

TABLE 11, CONTINUED

1984 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA
UNITS : MICROGRAMS PER CUBIC METER

TOWN-SITE (SAMPLES)	RANK	-	2	m	#	2	9			6	10
WATERBURY-007 (59) METEOROLOGICAL SITE NEWARK	TSP DATE DIR (, -0	· 0~0	86 12/ 8/84 250 10.1	85 7/11/84 230 7.6	80 12/20/84 260 5.6	78 2/12/84 270 1.9	7 LWW .	· 12-14 6	7/ 5/84 210 13.6	69 4/30/84 210 9.4
METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE	(MPH) (DEG) (MPH) (MPH)	0.939 190 3.0 3.2 0.934 250	44.	0.797 250 7.2 7.2 8.6 0.829 260	0.791 180 7.1 7.3 0.973	9.3 0.597 290 4.4 6.0 0.727	2.2 0.881 240 2.5 3.3 0.759	· 40 · · 64	7.8 0.819 20 5.2 6.0 0.864	780.082	11.1 0.849 200 10.6 11.1 0.955
(1)	VEL SPD RATIC DIR VEL SPD	0.959 260 9.6 9.6	7.3 7.5 0.977 280 7.2 7.2 8.1	12.3 12.9 0.950 240 9.2 9.6	5.1 0.911 230 2.7 0.7.9	7.3 7.8 7.944 2.60 9.5 9.9	0.581 2290 8.1 8.3 0.969	0.961 2.90 2.90 8.3 8.5	0.980 0.980 100 100 100 100 100 100 100 100 100 1	0.882 2882 2882 5.77 0.562	0.682 0.682 0.830 8.7 9.8
WATERFORD-001 (58) METEOROLOGICAL SITE NEWARK	TSP DATE DIR (DEG) VEL (MPH)	8/ 4/84 350 1.0	, 00 M ·	¥ / - -	64 5/24/84 290 11.0	6/11/84 260 9.8	6/23/84 210 10.0	2 0 2 2 0	26.55	7 22 25	8/16/84 330 7.1
METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT	RATIC DIR VEL SPD RATIC DIR	0.147 340 2.5 4.2 0.597 140	0.916 220 5.21 5.3 0.967 8.8	0.978 280 9.3 10.1 270 270	0.952 330 6.4 6.4 0.731 300	0.840 260 260 6.4 9.5 0.672 240 7.3	0.966 220 220 2.8 4.9 0.579 220	0.849 250 250 1.6 4.6 0.338 240 6.4	0.939 190 3.2 0.934 7.7	0.948 0.200 9.9 10.1 210 8.8	8.3 340 3.8 4.7 0.800 6.0
METEOROLOGICAL SITE WORCESTER	SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	0.451 0.451 3.10 3.4 4.9 0.687	$\cdot \sim \infty$	14.7 0.997 280 13.7 13.8 0.994	7.3 0.732 300 10.3 11.1 0.930	7.5 0.977 280 7.2 7.2 8.1 0.893	6.2 0.990 340 2.1 7.5 0.285	. 9 6 7	$\cdot \circ \circ \circ \circ$	$\cdot \omega \cdot \cdot \cdot \omega$	8.1 320 5.9 6.8 0.879
WILLIMANTIC-002 (61) METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY	TSP DATE DATE DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) RATIO	6/11/84 260 9.8 11.6 0.840 260 6.4 6.4	72 72 72 210 5.3 6.8 0.939 190 3.0 3.2	27 658 290 6.3 9.5 0.665 280 7.5 9.8	62 2/12/84 270 1.9 2.2 0.881 2.40 2.5 2.5 3.3	6/5/84 220 6.7 6.7 7.9 0.849 250 1.6 4.6	12/26/84 280 7.9 11.8 0.672 290 3.3 7.2	58 4/30/84 210 9.4 11.1 0.849 200 10.6 11.1	58 260 260 5.6 9.3 0.597 4.4 6.0	7/ 5/84 210 13.6 14.4 0.948 9.9 10.1	55 5/24/84 290 11.0 11.5 0.952 0.952 0.731 0.731

TABLE 11, CONTINUED

1984 TEN HIGHEST 24-HOUR AVERAGE TSP DAYS WITH WIND DATA

		1987	1984 IEN HI	IGHEST 24	-HOUK AVE	KAGE 1SP	HIGHESI 24-HOUK AVERAGE ISP DAYS WIIH WIND DAIA	WIND DAI	UNITS	: MICROGRAMS	MS PER CU	PER CUBIC METER
TOWN-SITE	TOWN-SITE (SAMPLES)	RANK	-	8	က	4	ت	9	7	80	6	10
METE.	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	DIR (DEG) VEL (MPH) SPD (MPH) RAT10 DIR (DEG) VEL (MPH) SPD (MPH) RAT10	240 7.3 7.5 0.977 7.2 7.2 8.1	250 7.7 8.1 0.959 260 9.6 9.6	290 5.2 9.8 0.530 280 9.1 10.1	240 3.3 3.3 0.581 0.581 0.969	240 6.4 6.6 0.961 2290 8.3 8.3	290 7.9 11.5 0.687 270 13.1 14.7	200 4.8 7.0 0.682 230 8.7 9.8	280 7.3 7.8 0.944 260 9.5 9.5 9.9	210 8.8 8.8 0.882 260 5.7 7.7	300 5.4 7.3 0.732 300 10.3 11.1
	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 62.3										
	May 1 67	2.00						·				
	NR 1 23	· 1)			• .							
	W W W	D.										

III. SULFUR DIOXIDE

Health Effects

Sulfur oxides are gases that come from the burning of sulfur-containing fuel, mainly coal and oil, and also from the smelting of metals and from certain industrial processes. They have a distinctive odor. Sulfur dioxide (SO₂) comprises about 95 percent of these gases, so scientists use a test for SO₂ alone as a measure of all sulfur oxides.

Exposure to high levels of sulfur oxides can cause an obstruction of breathing that doctors call "pulmonary flow resistance." The amount of breathing obstruction has a direct relation to the amount of sulfur compounds in the air. The effect of sulfur pollution is enhanced by the presence of other pollutants, especially particulates and oxidants. Moreover, the harm that results from two or more pollutants is more than additive. Each augments the other, and the combined effect is greater than the sum of the effects that each alone would have.

Many types of respiratory disease are associated with sulfur oxides: coughs and colds, asthma, bronchitis, and emphysema. Some researchers believe that the harm is not only due to the sulfur oxide gases but also other sulfur compounds that accompany the oxides.

Conclusions

Sulfur dioxide concentrations in 1984 did not exceed any federal primary or secondary standards. Measured concentrations were substantially below the 365 ug/m primary 24-hour standard and well below both the 80 ug/m primary annual standard and the 1300 ug/m secondary 3-hour standard.

Method of Measurement

The DEP Air Monitoring Unit used the pulsed fluorescence method (Teco instruments) to continuously measure sulfur dioxide levels at all 19 sites in 1984.

Discussion of Data

Monitoring Network - Nineteen continuous SO₂ monitors were used to record data in fifteen towns during 1984 (see Figure 5):

New Britain 011
New Haven 017
New Haven 123
Norwalk 013
Preston 002
Stamford 025
Stamford 123
Waterbury 007
Waterbury 123

All of these sites telemetered the data to the central computer in Hartford on a real-time basis. Bridgeport 012, New Haven 017, Stamford 025 and the sites in East Hartford, East Haven, New Britain and Norwalk are new sites and did not exist in 1983.

Precision and Accuracy - 530 precision checks were made on SO₂ monitors in 1984, yielding 95% probability limits ranging from -15% to +11%. Accuracy is determined by introducing a known amount of SO₂ into each of the monitors. Three different concentration levels are tested: low, medium, and high. The 95% probability limits for accuracy based on 22 audits were: low, -13% to +11%; medium, -9% to +8%; and high, -9% to +7%.

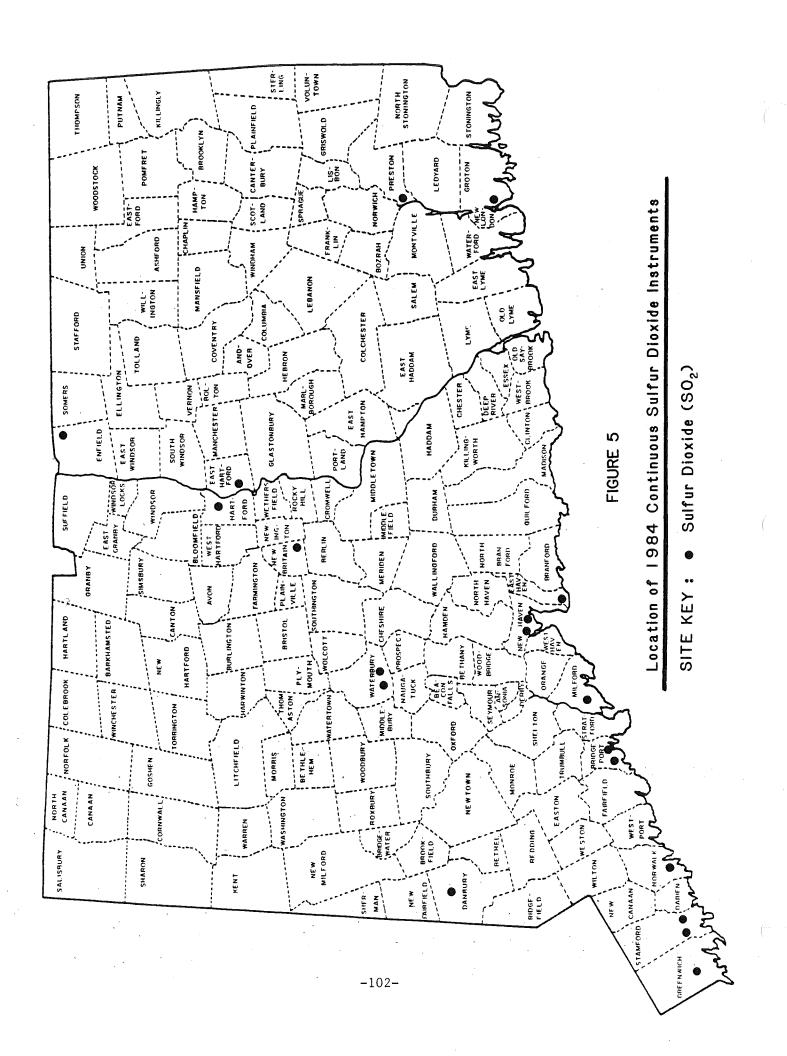
Annual Averages - SO₂ levels were below the primary annual standard of 80 ug/m at all sites in 1984 (see Table 12). The annual average SO₂ levels increased at six of the eight monitoring sites that both operated during 1983 and 1984 and had adequate data in those years to calculate valid annual averages. Stamford 123 experienced the highest increase of 5 ug/m. Hartford 123 showed an annual average decrease of 1 ug/m and Milford 002 remained unchanged.

Statistical Projections - A statistical analysis of the sulfur dioxide data is presented in Table 13. This analysis provides information to compensate for any loss of data caused by instrumentation problems. The format of Table 13 is the same as that used to present the total suspended particulate annual averages (see Table 6). However, Table 13 gives the annual arithmetic mean of the valid 24-hour SO₂ averages to allow direct comparison to the annual SO₂ standards. The 95% limits and standard deviations are also arithmetic calculations. Since the distribution of the SO₂ data tends to be lognormal, the geometric means and standard deviations were used to predict the number of days the 24-hour standard of 365 ug/m would be exceeded at each site if sampling had been conducted every day.

It is important to note that these statistical tests require that the data be random for the test to be valid. This means that an equal number of samples must be collected in each season of the year and on each day of the week. For the 19 sites that operated in 1984, the distribution and quantity of SO₂ data were adequate — except for the New Britain, Norwalk and Stamford sites. The data for these sites indicate that there were no violations of the primary SO₂ standard in Connecticut. For example, a statistical prediction of one day exceeding the primary 24-hour standard (365 ug/m³) at Bridgeport 012 indicates that an increase in SO₂ emissions there might jeopardize the attainment of this standard. Two days over the standard are required for the standard to be violated.

24-Hour Averages - Table 14 presents the 1st and 2nd high running 24-hour concentrations recorded at each monitoring site. In 1984 no sites recorded SO₂ levels in excess of the 24-hour primary standard of 365 ug/m. Second high running 24-hour average concentrations increased at the eight SO₂ monitoring sites that operated during 1983 and 1984 and had a sufficient distribution and quantity of data. The increases ranged from 7 ug/m at Milford 002 to 72 ug/m at Hartford 123.

Current EPA policy bases compliance with the primary 24-hour SO₂ standard on non-overlapping running averages. Running averages are averages computed for the 24-hour periods ending at every hour. Assessment of compliance is based on the value of the 2nd highest of the two highest non-overlapping 24-hour periods in the year. Thus, the basis for compliance is the magnitude of the exposure encountered within any two distinct 24-hour periods, not calendar days. However, there is some contention that compliance assessment for 24-hour SO₂ standards should be based on calendar day averages only. Table 15 contains the maximum 24-hour SO₂ readings from both the running averages and the calendar day averages for comparison. Except for Stamford 123, the maximum calendar day readings are all lower than the maximum readings from the running averages, and the differences range up to 37 ug/m 3at Milford 002.


3-Hour Averages - Table 16 presents the 1st and 2nd high 3-hour concentrations recorded at each monitoring site. Measured SO₂ concentrations were far below the federal secondary 3-hour standard of 1300 ug/m³ at all DEP monitoring sites in 1984. Of the sites that had a sufficient distribution and quantity of data in both 1983 and 1984, all but Milford 002 had a higher 2nd high concentration in 1984.

10-High Days with Wind Data - Table 17 lists the ten highest 24-hour calendar day SO 2 averages and the dates of occurrence for each SO 2 site in Connecticut during 1984. The table also shows the average wind conditions that occurred on each of these dates. (The origin and use of these wind data are described in the discussion of Table 11 in the TSP section of this Air Quality Summary.)

Once again, as with TSP, most (i.e., 65.8%) of the highest SO₂ days occur during periods of persistent winds out of the southwest quadrant. This relationship is caused, at least in part, by SO₂ transport, but any transport is limited by the chemical instability of SO₂. In the atmosphere, SO₂ reacts with other gases to produce, among other things, sulfate particulates. Therefore, SO₂ is not likely to be transported very long distances. Previous studies conducted by the DEP have shown that, during periods of southwest winds, levels of SO₂ in Connecticut decrease with distance from the New York City metropolitan area. This relationship tends to support the transport hypothesis. On the other hand, these studies also revealed that certain meteorological parameters, most notably mixing height and wind speed, are more conducive to high SO₂ levels on days when there are southwesterly winds than on other days.

The data in Table 17 were used to make a tally, by date, of the frequency of occurrence of high SO 2 levels. Only those eight sites were used which operated in both 1983 and 1984. If a given date recurred at four or more sites in this tally, the SO 2 levels and meteorological conditions were investigated further (there were nine such days). A close look at these nine days revealed three important points. First, eight of the nine days occurred during the winter months. This can be attributed to more fuel being burned during the cold weather. Second, seven of the nine days had persistent southwest winds for that calendar day. Third, the other two days had persistent southwest winds for the previous 24 hours.

In summary, high levels of SO₂ in Connecticut seem to be caused by a number of related factors. First, Connecticut experiences its highest SO₂ levels during the winter months, when there is an increased amount of fuel combustion. Second, the New York City metropolitan area, a large emission source, is located to the southwest of Connecticut and, in this region, southwest winds occur relatively often in comparison to other wind directions. Also, adverse meteorological conditions are often associated with southwest winds. The net effect is that during the winter months when a persistent southwesterly wind occurs, an air mass picks up increased amounts of SO₂ over the New York City metropolitan area and transports this SO₂ into Connecticut. Here, the SO₂ levels remain high because the relatively low mixing heights associated with the southwest wind will not allow much vertical mixing. The levels of transported SO₂ eventually decline with increasing distance from New York City, as the SO₂ is dispersed and as it slowly reacts to produce sulfate particulates. These sulfate particulates may fall to the ground in either a dry state (dry deposition) or in a wet state after combination with water droplets (wet deposition or "acid rain").

TABLE 12

1984 ANNUAL ARITHMETIC AVERAGES* OF SULFUR DIOXIDE

AT SITES WITH CONTINUOUS MONITORS

(PRIMARY STANDARD: 80 ug/m3)

TOMN	SITE NAME	ANNUAL AVG (ug/m³)
Bridgeport-012	Edison School	34
Bridgeport-123	Hallett Street	32
Danbury-123	Western CT State College	18
East Hartford-005	Fire House - Engine Co. #5	28
East Haven-003	Animal Shelter	20
Enfield-005	Department of Corrections	15
Greenwich-017	Greenwich Point Park	17
Groton-007	Fire Headquarters	21
Hartford-123	State Office Building	31
Milford-002	Devon Community Center	35
New Britain-011	Armory	15**
New Haven-017	Lombard St. Fire House	26
New Haven-123	State Street	35
Norwalk-013	Ludlow School	18**
Preston-002	Norwich State Hospital	. 13
Stamford-025	Recreation Center	23**
Stamford-123	Health Department	32
Waterbury-007	Fire House	29
Waterbury-123	Bank Street	23

^{*} The annual averages are expressed in terms of the arithmetic mean because the primary ambient air quality standard for SO₂ is defined as the annual arithmetic mean concentration. This differs from the trend analysis presented earlier in section I.B. of this Air Quality Summary which made use of the annual geometric mean.

^{**} A valid annual average cannot be calculated because the number of observations is insufficient or is poorly distributed.

TABLE 13

1982-1984 SOZ ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

LOGNORMAL DISTRIBUTION

PREDICTED DAYS OVER 365 UG/M3		٠		т												•							•		
STD DEVIATION		23.788	17.066	33.836	26.000	22.834	26.948	16.074	13.031	18.635	24.298	19.700	20.895	16.871	16.017	11.659	17.251	13.835	16.210	26.747	22.793	31.425	29.540	27.169	34.191
		31	59	34	37	34	32	20	17	18	28	21	28	14	21	16	17	27	21	36	33	32	37	35	35
95-PCT-LIMITS		30	56	32	37	33	31	20	17	21	26	20	18	14	20	15	16	21	20	35	32	31	36	34	33
ARITHMETIC MEAN		30.6	27.6	32.9	37.0	33.3	31.8	19.8	16.9	17.5	4.72	20.1	23.1	13.9	20.5	15.5	16.9	24.2	20.6	35.1	32.4	31.4	36.9	34.8	33.9
SAMPLES		361	*09 2	333	361	359	358	361	356	358	309	341	61*	349	360	333	345	*62	334	352	360	360	358	345	341
YFAR		1982	1983	1984	1982	1983	1984	.1982	1983	1984	1984	1984	1983	1984	1982	1983	1984	1983	1984	1982	1983	1984	1982	1983	1984
STIF	1	100	001	012	123	123	123	123	123	123	005	003	005	900	017	017	017	200	007	123	123	123	005	005	005
NAM NAME OF THE PROPERTY OF TH		BRIDGEPORT	BRIDGEPORT	BRIDGEPORT	BRIDGEPORT	BRIDGEPORT	BRIDGEPORT	DANBURY	DANBURY	DANBURY	EAST HARTFORD	EAST HAVEN	ENFIELD	ENFIELD	GREENWICH	GREENWICH	GREENWICH	GROTON	GROTON	HARTFORD	HARTFORD	HARTFORD	MILFORD	MILFORD	MILFORD

SAMPLING NOT RANDOM OR OF INSUFFICIENT SIZE FOR REPRESENTATIVE ANNUAL STATISTICS.

THE ARITHMETIC MEAN AND STANDARD DEVIATION HAVE UNITS OF MICROGRAMS PER CUBIC METER.

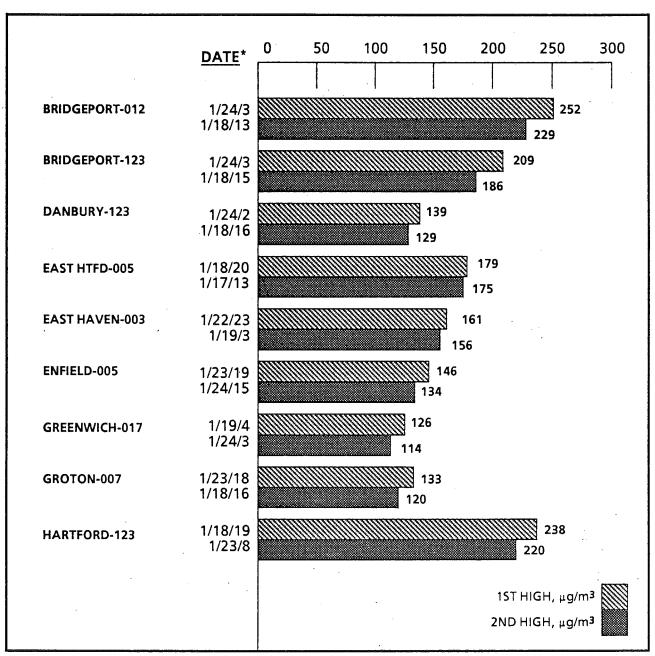
N.B. THE ANNUAL AVERAGES IN TABLE 13 VARY SLIGHTLY FROM THOSE IN TABLE 12 BECAUSE OF THE MANNER IN WHICH THEY WERE DERIVED. THE AVERAGES IN TABLE 12 ARE BASED ON THE AVAILABLE HOURLY READINGS, WHILE THOSE IN TABLE 13 ARE BASED ON VALID 24-HOUR AVERAGES. (AT LEAST 18 HOURLY READINGS ARE REQUIRED TO PRODUCE A VALID 24-HOUR AVERAGE.)

TABLE 13, CONTINUED

1982-1984 SO2 ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

LOGNORMAL DISTRIBUTION

PREDICTED DAYS OVER 365 UG/N3							H												
STD DEVIATION	12.809	22.161	24.665	24.284	32.585	21.556	14.621	7.016	9.527	15.948	16.563	26.872	18.916	21.563	29.103	28.810	14.999	14.291	20.813
LIMITS	15	25	34	31	35	54	18	16	11	33	54	31	27	32	41	53	21	19	23
95-PCT-LIMITS LOWER UPPER	13	54	33	31	34	12	16	12	11	23	22	31	27	31	27	28	20	19	22
ARITHMETIC MEAN	14.2	24.6	33.4	30.7	34.6	22.6	17.1	13.9	10.9	28.0	23.0	31.0	26.7	31.9	34.0	28.8	20.5	18.9	22.7
SAMPLES	227*	330	359	263	346	226*	5 992	*19	345	34*	297*	358	362	343	*09	350	362	351	334
YEAR	1984	1984	1982	1983	1984	1983	1984	1983	1984	1983	1984	1982	1983	1984	1983	1984	1982	1983	1984
SITE	011	017	123	123	123	005	. 013	002	005	024	025	123	123	123	200	200	123	123	123
TOWN NAME	NEW BRITAIN	NEW HAVEN	NEW HAVEN	NEW HAVEN	NEW HAVEN	NORMALK	NORWALK	PRESTON	PRESTON	STAMFORD	STAMFORD	STAMFORD	STANFORD	STAMFORD	MATERBURY	MATERBURY	MATERBURY	MATERBURY	MATERBURY


SAMPLING NOT RANDOM OR OF INSUFFICIENT SIZE FOR REPRESENTATIVE ANNUAL STATISTICS.

THE ARITHMETIC MEAN AND STANDARD DEVIATION HAVE UNITS OF MICROGRAMS PER CUBIC METER.

THE ANNUAL AVERAGES IN TABLE 13 VARY SLIGHTLY FROM THOSE IN TABLE 12 BECAUSE OF THE MANNER IN WHICH THEY WERE DERIVED. THE AVERAGES IN TABLE 12 ARE BASED ON THE AVAILABLE HOURLY READINGS, WHILE THOSE IN TABLE 13 ARE BASED ON VALID 24-HOUR AVERAGES. (AT LEAST 18 HOURLY READINGS ARE REQUIRED TO PRODUCE A VALID 24-HOUR AVERAGE.) N.B.

TABLE 14

1984 MAXIMUM 24-HOUR RUNNING AVERAGE
SULFUR DIOXIDE CONCENTRATIONS

^{*} Date is month/day/ending hour of occurrence.

Primary standard = 365 µg/m³.

^{**} Database for the site is deficient in number or distribution of observations.

N.B. When a listed concentration occurs more than once at a site, the earliest date of occurrence is given.

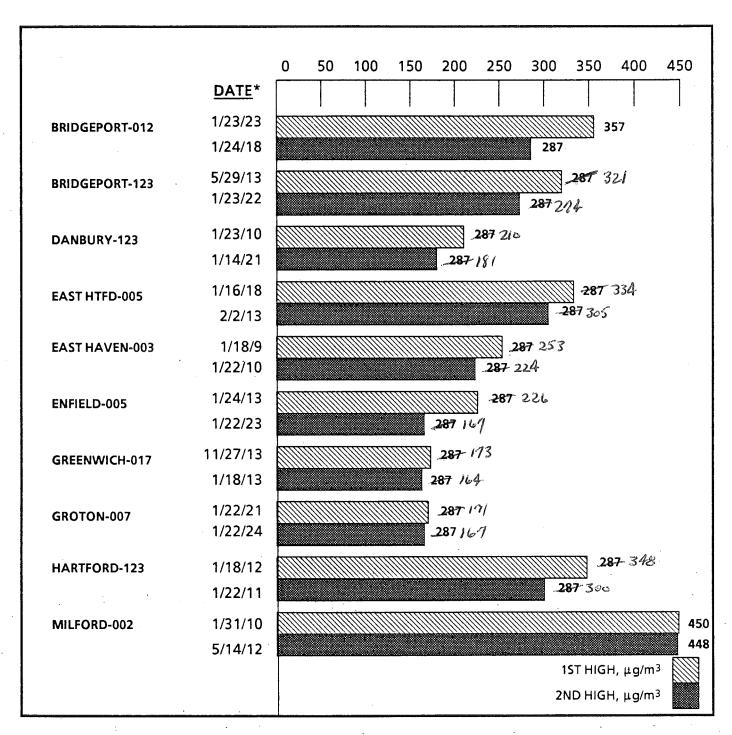
TABLE 14, CONTINUED

Date is month/day/ending hour of occurrence.

Primary standard = $365 \mu g/m^3$.

^{**} Database for the site is deficient in number or distribution of observations.

N.B. When a listed concentration occurs more than once at a site, the earliest date of occurrence is given.

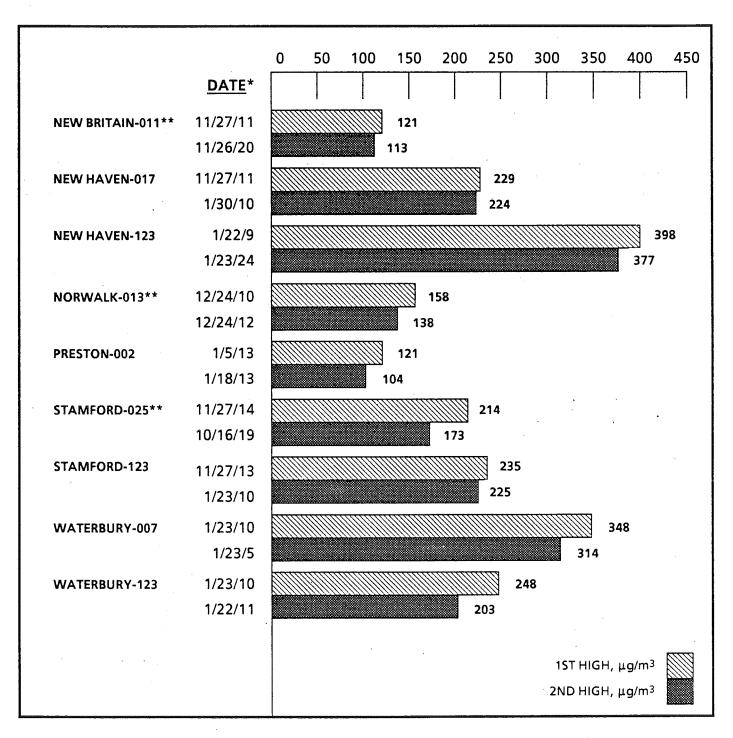

TABLE 15 COMPARISONS OF 1984 FIRST AND SECOND HIGH RUNNING AND CALENDAR DAY 24-HOUR SO2 AVERAGES*

Site	1st High Running Avg.	1st High <u>Calendar Day</u>	2nd High Running Avg.	2nd High Calendar Day
Bridgeport-012	252	251	229	211
Bridgeport-123	209	204	186	176
Danbury-123	139	136	129	124
E. Hartford-005	179	174	175	154
E. Haven-003	161	159	156	153
Enfield-005	146	133	134	109
Greenwich-017	126	125	114	109
Groton-007	133	120	120	114 (
Hartford-123	238	229	220	211
Milford-002	232	195	200	191
New Britain-011*	** 90	76	75	74
New Haven-017	132	123	122	120
New Haven-123	249	242	248	242
Norwalk-013**	104	95	84	83
Preston-002	83	75	81	62
Stamford-025**	122	115	106	104
Stamford-123	166	166	151	147
Waterbury-007	231	228	208	201
Waterbury-123	159	153	150	136

^{*} Units are ug/m^3 ** Database for the site is deficient in number or distribution of observations.

TABLE 16

1984 MAXIMUM RUNNING 3-HOUR SULFUR DIOXIDE CONCENTRATIONS



Date is month/day/ending hour of occurrence.

^{**} Database for the site is deficient in number or distribution of observations.

N.B. When a listed concentration occurs more than once at a site, the earliest date of occurrence is given.

TABLE 16, CONTINUED

^{*} Date is month/day/ending hour of occurrence.

date of occurrence is given.

Secondary Standard = $1300 \mu g/m3$

^{**} Database for the site is deficient in number or distribution of observations.N.B. When a listed concentration occurs more than once at a site, the earliest

TABLE 17

1984 TEN HIGHEST 24-HOUR AVERAGE SOZ DAYS WITH WIND DATA

							-1)											`								_	5)		
IC METER	10		115 1/16/84	20	6.3	, ~	. m	3 C	6.6 6.6	∞ N	3.3	0	\	98	25		97	† •	• 9	ın •	0.	270 11.8	2. 96		90	6	6.	3.0	• 60
AMS / CUB	6		120 1/21/84	ကဆ	• 0	N	900	30		70		_		98	-0		94	 	· ∞	· 33	• 9	250 3.3	- 4		68 1/19/84	330 10.0	11.9	340	7.3 0.964
: MICROGRAMS	&	\	20	210 6.3	• က	6	. m	SIG		0		0	\		o —		ကျင	<i>•</i>	· 67	s o	• 10	260 9.6	• 6	\	69 11/26/84		• 67	190	• 60
A UNITS	7	\	3	210	• 0	50		0,0		- N		6	\	113) —		00	٠ ٥	٠ .	⊅ ∙	• 0	250 2.8	٠ 🗴		73 1/24/84	α .	5.3		3.6
WIND DATA	9	\	4	3.3	. 5	8	, m	DΩ	w ru	75		5	\	120	207		9	~ .	٠9.	寸·	• &	240 9.1	9.5 0.961		75 11/27/84	6 .	. ا	180	• ∞
DAYS WITH	5		177 1/24/84	3.3	5.3 0.612	3	· w -	~ 0	. o	∞	4.9	33	1	120 11/27/8h	6		50	o •	• \$2 (∾ •		250 7.8	. 7		83 2/ 2/84	m .	• ~		• •
RAGE SO2	.	\	193 1/22/84	230 5.7	0.929	200	. m	270	٥.	0.858 260	6.7 7.2	0.934	1	40	J 60		α	•	. 001	\ .	. 5	260 6.7	• 60		0	δ.	٠ ا	130	٠.
-Hour Avei	က		6	250	• 10	3	- 1	LΩ	٠.	4 ア	6.5	3		149 1724/84	rα	ນຕ	7	•	• [- (\circ .	• &	200 4.8	• 677	\	111 1/22/84	230 5.7	6.2	200	3.4 0.837
IGHEST 24-	7		211 1/18/84	20 2.9	4.7 0.618	Ω .	4.2	3 ~		25	1.3	****		176 1718/81	202	4.7	0	١.	0.877	· m	$\cdot \circ$	350 1.3	• —		124 1/18/84	\sim .	4.7 0.618	3.7	4.2 0.877
1984 TEN HI	-	\	251 1/23/84		0.932		c	•		0		096.0	\	204 1/23/84		4.4	0		0.812		7.2 0.608		5.8 0.960	\	-	210 4.4	Ö		2.4 0.812
. 19	RANK		لنا	OIR (DEG) (VEL (MPH)			SPD (0 R C	VEL SPD		VEL SPD	RATIO		SO2 DATE	DIR	•	RATIO	VEL	RATIO	VEL	SPD (DIR (VEL (SPD (MPH) RATIO		List.	DIR (DEG) (VEL (MPH)	_		SPD (MPH) RATIO
	TOWN-SITE (SAMPLES)			METEOROLOGICAL SITE NEWARK		METEOROLOGICAL SITE		METEOROLOGICAL SITE	BRIDGEFOR	METEOROLOGICAL SITE	WORCESTEF			BRIDGEPORT-123 (358)	METEOROLOGICAL SITE	NEWAK	METEOROLOGICAL SITE	BRADLEY	T+10	METEUKULUGICAL SITE BRIDGEPORT		METEOROLOGICAL SITE WORCESTER				METEOROLOGICAL SITE NEWARK		METEOROLOGICAL SITE BRADLEY	٠.
	•		_											_											_				

TABLE 17, CONTINUED

1984 TEN HIGHEST 24-HOUR AVERAGE SOZ DAYS WITH WIND DATA

					1 3					~{ s		
IC METER	10	130 1.6 5.9 0.276 120 3.2 3.9		/	6.6.5	y.∞5E	രസസര	1	64 12/28/84 210 2.0 5.3	.64.00	64.	270 270 10.8 12.2 0.883
AMS / CUBIC	6	340 10.7 11.4 0.943 6.9 8.2 0.846		90 1/14/84 360 6.0 6.9	ങ് ചെസ⊲	∞ ω Ω ≄ ι	0.544 30 4.3 5.6 0.767		67 11/14/84 310 17.8 18.1		. 34 16.	.31 20. 20. .98
: MICROGRAMS	∞	250 7.7 8.1 0.959 9.6 9.6		7	8,877	7.E.	0.943 320 6.9 8.2 0.846		67 1/16/84 20 6.3 6.3	<u>, </u>	,	.59.
UNITS	7	200 2.0 6.9 0.288 200 4.8 6.6		128 1/24/84 20 3.3 5.3	. - ω-	1000	0.288 200 4.8 6.6 0.733	\	70 1/ 4/84 220 9.0 9.3	;~~~~	, מ <i>ס</i> יסי	inoooi
	9	220 3.4 5.9 0.576 7.8 8.2 0.952	>		.67 18 1. 2.	98	0.921 290 7.8 8.3 0.931		71 1/19/84 330 10.0 11.9	•		
	2	230 5.2 5.2 0.921 7.8 7.8 0.931		148 1/17/84 250 4.4	$\sigma \sim \sigma$	-82.	3 4	/	98 2/ 2/84 230 2.8 4.2		ianno	,01~00;
	#	250 5.9 7.0 0.842 270 5.9 6.3	7	150 1/22/84 230 5.7 6.2	0.929 200 2.9 3.4	9400	0.938 260 6.7 7.2 0.934		113 1/17/84 250 4.4 4.6	,-0-,	. ∪ rv ∟ α	innoe
	က	270 6.8 7.9 0.858 6.7 6.7 0.934	>	153 1/23/84 210 4.4 4.7	.93 .93	.45.6	$\phi \cdot \cdot \phi$	/	135 1/23/84 210 4.4 4.7	5.62.5	24.6	30,000
	2	30 6.1 6.6 0.926 1.3 1.3		154 1/16/84 20 6.3 6.3	0.997 10 3.1 3.3	•	0.889 20 2.0 3.3 0.597		153 1/18/84 20 2.9 4.7	. m.===	. 666	·
	-	260 4.4 7.2 0.608 5.5 5.5 0.960		174 1/18/84 20 2.9 4.7	0.618 20 3.7 4.2	6.6 6.6 6.6	0.926 350 1.3 4.2 0.318	\	159 1/22/84 230 5.7 6.2	200 200 3.4	6.8 7.9 7.9	•
	RANK	DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH)		SO2 DATE DIR VEL SPD	RAIIO DIR (DEG) VEL (MPH) SPD (MPH)		KAIIO DIR (DEG) VEL (MPH) SPD (MPH) RAIIO		SO2 DATE DIR (DEG) VEL (MPH) SPD (MPH)	DIR (DEG) VEL (MPH) SPD (MPH)		DIR VEL SPD RATI
	TOWN-SITE (SAMPLES)	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER		EAST HARTFORD-005 (309) METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER		EAST HAVEN-003 (341) METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER
	_	•	•	,								

TABLE 17, CONTINUED

1984 TEN HIGHEST 24-HOUR AVERAGE SO2 DAYS WITH WIND DATA

						44.50	J										1										×1		
IC METER	10		62 2/ 2/84	20.	٠.	ω ⋅	• 🗸	.83		20		3	\	65	t O		9 -		• 9	寸 · ·	• &	7	9.5	•	55	SC	900	0.997 10 3.1	3.3 0.930
AMS / CUBIC	6		65 1/ 5/84	0-1	•0	ω.	۰α	77.		05		ω	\	9	96		r) a	• •	· 00	N·	•	5	8.2	, ,	5	-	9.00	0.939 190 3.0	3.2 0.934
: MICROGRAMS	80		66 11/27/84	190	5.0 0.658	180 2.7	3.0	.22	ب	0.576 250	7.8	0.952	\	79	,8,		75	٠ ١	٠.	⇒ .	• 9	6	8.5		57	35	3.20	0.966 340 7.3	0.971
UNITS	7		90	340	•0	\sim .	• 1		۰.6	20	3.3	#		81	tα	υ τ. 	- ~	•	-	\circ .	• &	0 .	6.6	. `	61	, ₂ , 230	<u>.</u>	0.672 180 1 1	2.0 0.564
WIND DATA	9	/	69 1/ 4/84	220	9.3	210 7.9	8.2		עסע	0.981 240	9.1 9.5	0.961	\	82	,23	20.0	0.856		0.665	5.4	6.0 0.900	280 2.7	4.9	!	70	·		0.374 190 10.1	0
DAYS WITH	5		73 1/16/84	6.30	0.997	 •	3.3	. ~ .	٥٠,	$\omega \sim$	3.3	9	\	89	230	5.5 6.2	0.929	20.0	0.837	2/0 6.8	7.9 0.858	260 6.7	7.2	,	71	- ო ⊂	? ; ; ;	340 340 7 1	7.3
2 05	4		86 1/17/84	250	0.958	130 0.7	1.0	•		0.842 270		0.935	\	91	240	· &	0.907	7.0	0.593	6.4	6.5	280 3.3	5.8		93 1/17/8h	250 1 h	4.	0.928 130 0.7	1.0 0.714
-HOUR AVERAGE	က	\	94 1/22/84	230	0.929	200 2.9	3.4	. ~ ~	0 ~	0.858 260	9	0.934		6	50.		50 60	• •	1	\circ	• 4		6.3		111	20	, t	20	
IGHEST 24-	2		109 1/24/84	3.3	0.612	30 1.7	3.6	. ~ ~	9	0.288	49	0.733	\	0 8	20:		8	•	\	۰ ۵	• 0	ς,	5.8		1114	302	0	200	$\frac{3.4}{0.837}$
1984 TEN HI	-	\	133 1/23/84		0		2.4	260	7.2	0	v.v. v.si	096.0		125 1718/84	20	4.7	0.618	3.7		30 6.1	0	350 1.3	4.2		120 1/23/84	210 10 10 10			2.4 0.812
. 19	RANK		SO2 DATE	DIR (DEG) VEL (MPH)			SPD (MPH)	DIR (DEG)		RATIO DIR (RATIO		SO2 DATE		SPD (RATIO DIR (DFG)				_	DIR (DEG) VEL (MPH)	SPD (MPH) RATIO		SO2 DATE	DIR (DEG)		DIR (DEG)	
	TOWN-SITE (SAMPLES)			METEOROLOGICAL SITE NEWARK		METEOROLO®ICAL SITE BRADLEY		METEOROLOGICAL SITE	DALDGETON	METEOROLOGICAL SITE	WORCESTER			GREENW.ICH-017 (345)	METEOROLOGICAL SITE	NEWAKK	METEOROLOGICAL SITE	BRADLEY		METEOROLOGICAL STIE BRIDGEPORT		METEOROLOGICAL SITE WORCESTER		-	GROTON-007 (334)	METEOROLOGICAL SITE NFWARK		METEOROLOGICAL SITE BRADIEY	

1984 TEN HIGHEST 24-HOUR AVERAGE SO2 DAYS WITH WIND DATA

6 8 6	230 340 250 5.2 9.7 7.7 0.921 0.977 0.959 290 330 260 7.8 10.7 9.6 8.3 10.9 9.6 0.931 0.982 0.992	8 122 /84 1/16/84 1, 20 20 3 6.3 8 0.997 0 10 10 5 3.1 9 0.930 0 5 20 5 6.6	20 32 32 32 84 30 6.94 6.94 6.94 6.94 6.94 6.94 6.94 6.94	
9 4	230 5.2 5.6 921 290 7.8 8.3 10 931	8 122 /84 1/16/ 20 7 6.3 3 6.3 8 0.997 10 10 20 20 20 20 20 20 20 20 20 2	889 200 200 200 200 200 200 200 20	
2 9	98-1922	∞ ✓ ○ ▷ ⋈ ⋈ ○ ⋈ ⊙ ⋈ ⊙ ⋈ ⊙ ⋈ ⊙ ⋈ ⊙ ⋈ ⊙ ⋈ ⊙ ⋈ ⊙ ⋈	-	
9			0.866 250 3.3 3.3 0.546 17.2 17.2 17.2 17.2 17.3 9.1 9.1 10.3 10.3 0.975 9.5 0.945 0.945 0.945 0.945 0.945 0.979 0.979	
	260 4.9 6.6 0.739 10.8 12.2 0.883	2/ 2/84 230 230 230 2.8 4.2 0.672 180 1.1 1.1 2.0 0.564 5.2 5.6	1. 25. 34. 51.	
r.	340 10.7 11.4 0.943 320 6.9 8.2 0.846	2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1. 36. 25. 34. 614	
†	250 5.9 7.0 0.842 5.70 5.9 6.3	722 722 723 723 723 733 743 753	8	
m	30 6.1 6.6 0.926 1.3 1.3 4.2	612346	4 w	
~	270 6.8 6.8 0.858 260 6.7 7.2 0.934	7.4.66.9.4.4.6.3.4.4.6.3.4.4.6.3.4.4.6.3.4.4.6.3.4.4.6.3.4.4.6.3.4.4.6.3.4.4.6.3.4.4.6.3.4.4.6.3.4.4.4.4	9 9	
-	260 4.4 7.2 0.608 5.5 5.8 0.960			
RANK	DIR (DEG) VEL (MPH) SPD (MPH) RATIO VEL (MPH) SPD (MPH) RATIO	SOZ DATE DIR VEL SPD SPD SPD SPD SPD SPD SPD		
4PLES)	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	DROLOGICAL SITE NEWARK DROLOGICAL SITE BRADLEY BRADLEY BRIDGEPORT	ROLOGICAL SITE WORCESTER 2 (341) ROLOGICAL SITE ROLOGICAL SITE BRADLEY ROLOGICAL SITE BRIDGEPORT ROLOGICAL SITE WORCESTER	
	_	SAMPLES MANN 1	OGICAL SITE DIR (DEG) 260 270 30 250 340 BRIDGEPORT VEL (MPH) 4.4 6.8 6.1 5.9 10.7 BRIDGEPORT VEL (MPH) 7.2 7.9 6.6 7.0 11.4 RATIO 0.608 0.858 0.926 0.842 0.942 BRIDGEPORT VEL (MPH) 5.5 6.7 1.3 5.9 6.9 WORCESTER VEL (MPH) 5.5 6.7 1.3 5.9 6.9 RATIO 0.960 0.934 0.318 0.935 0.846 1/18/84 1/23/84 1/17/84 1/22/84 1/24/ CGICAL SITE DIR (DEG) 20 211 199 182 180 CGICAL SITE DIR (DEG) 20 4.4 4.4 5.7 2.9 1.7 BRADLEY VEL (MPH) 2.9 4.4 4.4 5.7 2.9 1.7 BRADLEY VEL (MPH) 3.7 2.0 0.958 0.929 0.612 CGICAL SITE DIR (DEG) 20 160 0.3 3.4 3.6 BRADLEY VEL (MPH) 3.7 2.0 1.0 3.4 3.6 BRIDGEPORT VEL (MPH) 6.1 4.2 2.4 1.0 3.4 3.6 BRIDGEPORT VEL (MPH) 6.1 4.2 2.4 1.0 3.4 3.6 SPD (MPH) 4.2 2.4 1.0 5.9 6.9 SPD (MPH) 6.1 4.2 2.4 1.0 5.9 6.9 SPD (MPH) 6.1 4.2 2.4 1.0 7.9 6.9	ROLOGICAL SITE DIR (DEC)

TABLE 17, CONTINUED

1984 TEN HIGHEST 24-HOUR AVERAGE SO2 DAYS WITH WIND DATA

0

		1984	34 IEN HIG	3HES1 24-	-HOUR AVER	EKAGE SOZ D	DAYS WITH	WIND DAIA	UNITS	: MICROGRAMS	AMS / CUBIC	IC METER
TOWN-SITE	SITE (SAMPLES)	RANK	-	2	က	#	5	9	7	&	6	10
					\		\		1	\	\	
NEW BF	BRITAIN-011 (227)	SO2	76 11/26/84	74 11/27/84	62 12/24/84	57 12/ 9/8h	_ 17 0 ℃	50 11/25/84	47 12/8/8h	47 11/15/84	46 12/28/81	43 12/12/8h
_	METEOROLOGICAL SITE NEWARK	DIR	210 6.3	190 3.3	210 5.4	, ₀ ,-	240 8.7	\∞ ·	$\frac{25}{10}$	205	20.0	24.
		SPD RATI	6.8 0.939	$\frac{5.0}{0.658}$	5.9 0.922	• ~	• ∾	3.6	35	• 9	5.3 0.374	• 0
_	METEOROLOGICAL SITE BRADLEY	DIR (DEG) VEL (MPH)	190 3.0	180 2.7	200 6.8		€ .	~ •	S .	⇔ •	190 4.1	
			3.2 0.934	3.0 0.883	7.3 0.934	• 6	• +	· 0	• 0	•0	6.8 0.608	$\cdot \infty$
-	METEOROLOGICAL SITE BRIDGEPORT	DIR (DEG) VEL (MPH)	250 7.7	220 3.4	190 2.3	ω.	· •	S.	26	α .	260 4.9	0 .
			8.1 0.959	5.9	3.7	• •	• 0	• -	• 10	• -	6.6	• (1)
-	METEOROLOGICAL SITE WORCESTER	DIR (DEG)	260	250 7.8	220 7 8	~	S.	S	-	=	101	0
		SPD (MPH)	9.6 0.992	8.2 0.952	7.9	0.938 138	• • •	5.0 0.593	9.6 0.958	· • N	12.2 0.883	4.2 0.454
			\					•	.	,	, <u>,</u>	
NEW H,	NEW HAVEN-017 (330)	\$05 84.5	123	120	- C	Ε,	104	100	97	- 0/1	7	∞ ∨
-	METEOROLOGICAL SITE	DIR	220	1/ 2/84 210 511	23,	VΩ	7 ~	1/ 3/84 280	1/30/84	~ 6	12/13/84 240	٠-
	NEWAKK		, 99,0 1,3,0	טיטי	<u> </u>	, . .	. 60	0 00 1	v 0.	٠. د د د د د د د د د د د د د د د د د د د	0 ~ 0	96.
-	METEOROLOGICAL SITE	KALIO DIR (DEG) VEL (MPH)	0.96 <i>/</i> 210 7.9	0.906 180 3.7	0.9 <i>f</i> 2 220 8.8	0.6/2 180 1 1	0.865 310 3.8	0.768 280 11.14	0.454 150 3.0	0.658 180 2 7	0.84/ 210 2.2	0.939 190 3.0
		SPD (MPH)	8.2	3.7	• • • •	• • •	• • •	7.5	3.00	• • ¤	5.6	c
_	METEOROLOGICAL SITE BRIDGFPORT	DIR (DEG)	240 240	, – v	. 78 11	28.5	282	jav	•	88.6	i ur	າເດ
			9.8 0.981	2.6 0.804	• • •	· • N	• • ⇒	7.9 0.818	5.9	• • ~	6.9 0.834	٠.،
_	METEOROLOGICAL SITE WORCESTER	DIR VEL	240 9.1	250	27 18.	29	∞ .	280 4.9	190 3.2	25.	00	96
		SPD (MPH) RATIO	0.961	4.2 0.681	• 6	• 60	• &	6.0 0.811	$\begin{array}{c} 3.9 \\ 0.830 \end{array}$	• 17	7.3	• 6
. [0.0	\ :		1		/ (, ;	•	, J. 4	\ ;
NEW T	NEW HAVEN-ICS (346) METEOPOLOCICAL SITE	SUZ DATE	1/22/84	+ co +	1/18/84	- r- u	1/24/84	ი ~ ი	ィラ・	-	ーゴに	2/ 2/84
		VEL SPU	5.70		2.9 4.7	\cdot .	3.3	\cdot			.	2002
_	METEOROLOGICAL_SITE	RAT I	0.929 200	9	7	30	3	8	0	50	1	0.672
	BRADLEY	VEL (MPH) SPD (MPH) RATIO	2.9 3.4 0.837	2.0 2.4 0.812	3.1 4.2 0.877	0.7 1.0 0.714	3.6 0.473	3.0	3.7 3.7 0.985	3.9 3.9 0.389	8.2 0.960	1.1 2.0 0.564
				•	•)	•))	`	

TABLE 17, CONTINUED

1984 TEN HIGHEST 24-HOUR AVERAGE SOZ DAYS WITH WIND DATA

UNITS : MICROGRAMS / CUBIC METER

			~ /		-1	
10	230 5.2 5.6 0.921 290 7.8 7.8	57 12/20/84 260 5.6 9.3 0.597	290 4.4 6.0 6.0 727 7.3 7.3	0.944 9.5 0.958	$>$ word \cdot \cdot ord \cdot	0.829 0.829 17.23 12.3 0.950 0.950 9.2 9.2
6	240 9.6 9.8 0.981 240 9.1	7. www.	330 4.0 5.6 0.722 330 5.7	0 - • • • • •	> wvv · ·レヰ ·	0.667 250 10.5 10.5 0.971 11.8 12.2 0.966
80	30 4.2 4.9 6.9 3.3 0.546	57 12/10/84 20 4.7 7.9 0.595	•	マ・・ キャ	37 1/16/84 20 6.3 6.3 0.997	0.930 0.930 5.9 0.889 20 20 20 20 3.3
7	140 2.1 2.6 0.804 2.50 2.8 4.2 0.681	3.00	190 3.0 3.2 0.934 7.7	$\sim \sim \sim$	·	0.350 260 260 5.8 0.834 7.3 0.902
9	220 3.4 5.9 0.576 7.8 8.2 0.952	N· • 1200	230 4.3 6.0 0.710 270 9.6	$\sigma \cdot \cdot \sigma$	· 20· · · · · · · · · · · · ·	0.934 250 250 7.7 0.959 9.6 0.992
3	200 2.0 6.9 0.288 200 4.8 6.6	966 • • •	210 3.15 1.80 1.80 2.8	or · · -	· 84· · 35 t	0.564 0.564 230 5.2 0.921 7.8 8.3
77	250 5.9 7.0 0.842 270 5.9 0.935	65 12/21/84 40 8.4 10.4 0.807	30 3.2 5.2 0.610 50 10.1	$a \cdot a \cdot a$	51 1/24/84 20 3.3 5.3 0.612 30	0.473 0.473 2.00 0.28 0.288 4.8 6.6
т	30 6.1 6.6 0.926 1.3 1.3 0.318	t tm - / /	0.22 0.0 0.32 0.0 0.00 0.0 0.00 0.0 0.00 0.00	n ω · · ο	54 1/19/84 330 10.0 11.9 0.834 340 7.1	7.3 0.964 10.7 11.4 0.943 320 6.9 8.2 0.846
2	260 4.4 7.2 0.608 5.5 0.960	83 12/28/84 210 2.0 5.3 0.374	190 4.1 6.8 0.608 4.9 6.6	10.73 10.8 12.2 0.883	$\cdot \circ \circ$	0.714 250 5.90 7.0 842 842 870 870 6.3
-	270 6.8 7.9 0.858 6.7 6.7 7.2	95 95 12/24/84 210 5.4 5.9 0.922	200 6.8 6.8 7.3 190 2.3	7.9 0.991	75 1/18/84 2.9 2.9 4.7 0.618	0.877 0.877 6.1 6.6 0.926 350 1.3 1.3
RANK	DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	1	DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH)	NATIO	",000500	SFU (MPH) DIR (DEG) VEL (MPH) SPD (MPH) RATIO VEL (MPH) YEL (MPH) RATIO
TOWN-SITE (SAMPLES)	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	NORWALK-013 (266) METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER	PRESTON-002 (345) METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER

TABLE 17, CONTINUED

1984 TEN HIGHEST 24-HOUR AVERAGE SOZ DAYS WITH WIND DATA

UNITS : MICROGRAMS / CUBIC METER

5

			_						_					~)
,	01	7.79	• 22	252. a	• • • •	0.950 240 9.2 9.6	\cup	9,	\cdot . t	#- • .	. 6.0	0.834 250 6.6 7.3 0.902	106 1/27/84 300	1.7 6.3 0.268 350 1.5 3.9
. (9	/ 99	98.	97. 82. 18.	78 25 1.	0.994 270 18.6 18.7	7	97	5270	0 8 .	• 8 4 •	0.804 250 250 2.8 4.2 0.681	, - rv -	5.1 5.6 0.906 180 3.7 3.7 0.985
d	×	72	$\sigma \sigma$.	. ~ -	$\cdot \circ \circ \cdot \cdot$	n'unu c	- \	. 0 ^	3.3 3.3 5.0	LΩ 60 +	• 00 01 •	0.576 250 7.8 8.2 0.952	100	9.7 10.4 0.935 230 3.2 5.2 0.624
٢	•	73	· # 3	· 01 m · ·		0.995 250 7.4 7.6	, 0	103	5.3.	- 83 -	· - 0	0.288 200 4.8 6.6 0.733	,-1-0	3:3 5:0 0.658 180 2:7 3:0 0.883
V	۰ ﴿	792	0 ε	. ~ 8		0.921 290 7.8 8.3		106	iann	0.922 200 6.8 7.3	0.934 190 2.3	0.613 220 7.8 7.9 0.991	1000	2.8 4.2 0.672 180 1.1 2.0 0.564
Ľ	U	87	∞ •	. 6	.60 26 4.	0.739 270 10.8 12.2)	108	, 220 9.0 9.3	0.967 210 7.9 8.2	0.960 240 9.6	0.981 240 9.1 9.5 0.961	138 1/24/84 20	3.3 5.3 0.612 30 1.7 1.7 3.6
	a	89	72/24/84 210 5.4 5.0	0.922 200 6.8 7.3	. e. − si w	0.613 220 7.8 7.9	,	$\alpha \sim$	25.4.4	ω .	12	0.842 270 5.9 6.3 0.935	988	2.9 4.7 0.618 20 3.7 4.2 0.877
6	o,	\ <u>8</u>	\sim \pm		.39	0.834 250 6.6 7.3		136 1722/8th	, 230 5.7 6.2	0.929 200 2.9	0.837 270 6.8 7.9	0.858 260 6.7 7.2 0.934	√ 0 0 w	5.7 6.2 0.929 200 2.9 3.4
c	u	7 42	11/26/84 210 6.3 6.8	0.939 190 3.0 3.2	0,01~00	0.959 260 9.6 9.6	•	147 1/18/8b	, 20 20 2.9 4.7	N	8	0.926 350 1.3 4.2 0.318	0 7 2	4.4 4.6 0.958 130 0.7 0.7 0.714
-	<u>-</u>	7 12	1/2//84 190 3.3 5.0	0.658 180 2.7 3.0	0.883 220 3.4 5.9	0.576 250 7.8 8.2		166 1723784	210 210 4.4 4.7	0.932 160 2.0 2.4	0.812 260 4.4	0.608 250 5.5 5.8 0.960	228 1/23/84 210	4.4 4.7 0.932 160 2.0 2.4 0.812
PANK	Y NAME OF THE PERSON OF THE PE	S02	DATE DIR (DEG) VEL (MPH) SPD (MPH)		RATIO DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH)	2	SO2 DATE	DIR (DEG) VEL (MPH) SPD (MPH)	RATIO DIR (DEG) VEL (MPH) SPD (MPH)		RATIC DIR VEL SPD RATIC	1.1	VEL (MPH) SPD (MPH.) RATIO DIR (DEG) VEL (MPH.) SPD (MPH.)
TOWN-SITE (SAMPLES)		STAMFORD-025 (297)	METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER		STAMFORD-123 (343)	METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY	METEOROLOGICAL SITE : BRIDGEPORT	METEOROLOGICAL SITE WORGESTER	WATERBURY-007 (350) METEOROLOGICAL SITE	NEWARK METEOROLOGICAL SITE BRADLEY

TABLE 17, CONTINUED

1984 TEN HIGHEST 24-HOUR AVERAGE SOZ DAYS WITH WIND DATA

	•	(r	-	Ŀ	•	,	¢	ć	,
SITE DIR GEPORT VEL SPD RATI SITE DIR CESTER VEL SPD RATI SOZ SOZ SOZ SITE DIR SITE DIR SITE DIR SITE SIR SPD	-	8	m	#	2	9	,	∞	6	10
GEPORT VEL SPD RATI SITE DIR SPD RATI SATI SOZ DATE SITE DIR SITE DIR SITE DIR SITE SIR	(DEG) 260) 250	270	30	200	230	220	270	140	30
SPD STTE DIR CESTER VEL SPD RATI SOZ SOZ DATE SITE DIR SEMARK VEL SPD			6.8	6.1	2.0	5.2	3.4	11,5	2.1	4.2
SITE DIR CESTER VEL SPD RATI			7.9	9.9	6,9	5.6	5.9	11.6	5.6	4.9
SITE DIR CESTER VEL SPD RATI SOZ DATE SITE DIR NEWARK VEL		0	0.858	0.926	0.288	0.921	0.576	0.987	0.804	0.866
CESTER VEL SPD SPD RATI SOZ DATE SITE DIR NEWARK VEL	(DEG) 250		260	350	200	290	250	270	250	250
SPD RATI SOZ DATE SITE DIR NEWARK VEL SPD			6.7	1.3	4.8	7.8	7.8	7.7	2.8	3.3
RATI SOZ DATE SITE DIR NEWARK VEL SPD			7.2	4.2	9.9	8.3	8.2	8.1	4.2	0.9
SOZ DATE SITE DIR NEWARK VEL SPD		0	0.934	0.318	0.733	0.931	0.952	0.959	0.681	0.546
SOZ DATE SITE DIR NEWARK VEL SPD	`	\		\		\	`\)))
DATE SITE DIR NEWARK VEL SPD	153		131	120	90	85	82	78	11	74
GICAL SITE DIR (NEWARK VEL (SPD (1/23/8	34	1/18/84	1/22/84	1/24/84	1/ 5/84	11/27/84	2/ 2/84	1/ 6/84	12/28/84
NEWARK VEL (SPD ((DEG) 21(50	230	20	210	190	230	220	210
$\overline{}$	MPH) 4.1	ή·ή t	2.9	5.7	3.3	5.1	3.3	2.8	5.7	2.0
	MPH) 4.		4.7	6.2	5.3	5.6	5.0	4.2	7.5	5.3
RATI	0		0.618	0.929	0,612	906.0	0.658	0.672	0.757	0.374
			20	200	30	180	180	180	190	190
VEL (MPH) 2.(3.7	2.9	1.7	3.7	2.7	-	2.5	4.1
SPD (MPH) 2.1		4.2	3.4	3.6	3.7	3.0	2.0	0.4	6.8
_	0.812		0.877	0.837	0.473	0.985	0.883	0.564	0.628	0.608
METEOROLOGICAL SITE DIR ((DEG) 26(30	270	200	140	220	230	260	260
_	MPH) 4.1		6.1	6.8	2.0	2.1	3.4	5.2	2.1	4.9
_			9.9	7.9	6.9	5.6	5.9	5.6	4.9	9.9
RATIÒ	•		0.926	0.858	0.288	0.804	0.576	0.921	0.437	0.739
GICAL SITE DIR ((DEG) 25(350	260	200	250	250	290	230	270
WORCESTER VEL ((MPH) 5.5		1,3	6.7	4.8	2.8	7.8	7.8	4.3	10.8
			4.2	7.2	9.9	4.2	8.2	8,3	5.6	12.2
		0.935	0.318	0.934	0.733	0.681	0.952	0.931	0.767	0.883

IV. OZONE

Health Effects

Ozone is a poisonous form of oxygen and the principal component of modern smog. Until recently, EPA called this type of pollution "photochemical oxidants." The name has been changed to ozone because ozone is the only oxidant actually measured and is the most plentiful.

Ozone and other oxidants -- including peroxyacetal nitrates (PAN), formaldehyde and peroxides -- are not usually emitted into the air directly. They are formed by chemical reactions in the air from two other pollutants: hydrocarbons and nitrogen oxides. Energy from sunlight is needed for these chemical reactions. This accounts for the term photochemical smog and the daily variation in ozone levels, which increase during the day and decrease at night.

Ozone is a pungent gas with a faintly bluish color. It irritates the mucous membranes of the respiratory system, causing coughing, choking and impaired lung function. It aggravates chronic respiratory diseases like asthma and bronchitis and is believed capable of hastening the death, by pneumonia, of persons in already weakened health. PAN and the other oxidants that accompany ozone are powerful eye irritants.

Conclusions

As in past years, Connecticut experienced very high concentrations of ozone in the summer months of 1984. Levels in excess of the one-hour NAAQS of 0.12 ppm were frequently recorded at each of the ten monitored sites. As a result, the one-hour standard for ozone was violated at every site. Five sites experienced levels greater than 0.20 ppm in 1984, as opposed to nine sites in 1983. Both the highest and the second highest one-hour concentrations decreased at all but one of the ten sites in 1984.

The incidence of ozone levels in excess of the 1-hour 0.12 ppm standard was less in 1984 compared to 1983 (see Table 19). There was a total of 959 exceedances in 1983 and 400 in 1984 at those monitored sites that operated in both years. This represents a drop in the frequency of such exceedances from 24.2 in 1983 to 9.9 per 1000 sampling hours in 1984: a 59% decrease. If one eliminates the duplication that results when two or more sites experience an exceedance in the same hour, then the number of exceedances decreased from 351 to 165. On this basis, the state experienced a 54% decrease in the frequency of hourly exceedances of the standard.

The number of days on which the ozone monitors experienced ozone levels in excess of the 1-hour standard decreased from 267 in 1983 to 150 in 1984 (see Table 18). This represents a decrease in the frequency of such occurrences from 16.2 in 1983 to 8.9 per 100 sampling days in 1984: a 45% decrease. If the duplication that results when two or more sites experience an exceedance on the same day is eliminated, then the number of exceedances decreased from 60 to 37. On this basis, the state experienced a 39% drop in the frequency of daily exceedances of the standard.

The yearly changes in ozone concentrations can be attributed to year-to-year variations in regional weather conditions, especially wind direction, temperature and the amount of sunlight. A large portion of the peak ozone concentrations in Connecticut is caused by the transport of ozone and/or precursors (i.e., hydrocarbons and nitrogen oxides) from the New York City area and other points to the west and southwest. The percentage of southwest winds during the "ozone season" remained about the same from 1983 to 1984, as is shown by the wind roses from Newark (Figures 9 and 10). The wind roses from Bradley (Figures 7 and 8) are believed to be not as representative, since the airport is located in the Connecticut River Valley and the wind gets channeled up or down the valley. The magnitude of the high ozone levels can be partly associated with yearly variations in temperature. Ozone production is greatest at high temperatures and in strong sunlight. The summer season's daily high temperatures were lower in 1984 than in 1983. This is demonstrated by the number of days exceeding 90°F which

decreased from eleven in 1983 to nine in 1984 at Sikorsky Airport in Bridgeport. At Bradley International Airport, the number of days exceeding 90°F decreased from thirty in 1983 to twelve in 1984. The percentage of possible sunshine at Bradley averaged 63% in 1984 and 74% in 1983 for the months June through September. The average for the summer months at Bradley is normally about 62%. This large decrease in the percentage of possible sunshine and the resulting decrease in high temperature days are believed to be major factors in the decrease in the number of high ozone days in Connecticut in 1984.

Method of Measurement

The DEP Air Monitoring Unit uses chemiluminescent instruments to measure and record instantaneous concentrations of ozone continuously by means of a fluorescent technique. Properly calibrated, these instruments are shown to be remarkably reliable and stable.

Discussion of Data

Monitoring Network - In order to gather information which will further the understanding of ozone production and transport, and to provide real-time data for the daily Pollutant Standards Index, DEP operated a state-wide ozone monitoring network consisting of four types of sites in 1984 (see Figure 6):

Urban Advection from Southwest Suburban Rural

- Bridgeport, East Hartford, Middletown, New Haven
- Danbury, Greenwich
- Groton, Madison, Stratford
- Stafford

Precision and Accuracy - The ozone monitors had a total of 94 precision checks during 1984. The resulting 95% probability limits were -10% to +6%. Accuracy is determined by introducing a known amount of ozone into each of the monitors. Three different concentration levels are tested: low, medium, and high. The 95% probability limits, based on 6 audits conducted on the monitoring system, were: low, -1% to +7%; medium, -3% to +5%; and high, -3% to +3%.

NAAQS - On February 8, 1979 the EPA established a national ambient air quality standard (NAAQS) for ozone of 0.12 ppm for a one-hour average. Compliance with this standard is determined by summing the number of days at each monitoring site over a consecutive three-year period when the 1-hour standard is exceeded and then computing the average number of exceedances over this interval. If the resulting average value is less than or equal to 1.0 (that is, if the fourth highest daily value in a consecutive three-year period is less than or equal to 0.12 ppm) the ozone standard is considered attained at the site. This standard replaces the old photochemical oxidant standard of 0.08 ppm. The definition of the pollutant was changed along with the numerical value of the standard, partly because the instruments used to measure photochemical oxidants in the air really measure only ozone. Ozone is one of a group of chemicals which are formed photochemically in the air and are called photochemical oxidants. In the past, the two terms have often been used interchangeably. This 1984 Air Quality Summary uses the term "ozone" in conjunction with the NAAQS to reflect the change in both the numerical value of the NAAQS and the definition of the pollutant.

The EPA defines the ozone standard to two decimal places. Therefore, the standard is considered exceeded when a level of 0.13 pm is reached. However, since the DEP still measures ozone levels to three decimal places, any one-hour average ozone reading which equals or is greater than 0.125 ppm is considered an exceedance of the 0.12 ppm standard in Connecticut. This interpretation of the ozone standard differs from the one used by the DEP before 1982, when a one-hour ozone concentration of 0.121 ppm was considered an exceedance of the standard.

1-Hour Average - The 1-hour ozone standard was exceeded at all ten DEP monitoring sites in 1984. Moreover, the highest 1-hour average ozone concentrations were lower in 1984 than in 1983 at all the sites except New Haven 123. Greenwich 017 had the largest decrease of 0.073 ppm.

The number of days on which the 1-hour standard was exceeded at each site during the summertime "ozone season" is presented in Table 18. The number of times the ozone standard was exceeded is presented in Table 19 for each site. Table 20 shows the year's high and second high concentrations at each site.

10 High Days with Wind Data - Table 21 lists the ten highest 1-hour ozone averages and their dates of occurrence for each ozone site in 1984. The wind data associated with these high readings are also presented. (See the discussion of Table 11 in the TSP section for a description of the origin and use of these wind data.)

Nearly all (i.e., 97%) of the high ozone levels occurred on days with southwesterly winds. This is due to the special features of a southwest wind blowing over Connecticut. The first aspect of a southwest wind is that, during the summer, it usually accompanies high temperatures and bright sunshine, which are important to the production of ozone. The second is that it will transport precursor emissions from New York City and other urban areas to the southwest of Connecticut. It is the combination of these factors that often produces unhealthful ozone levels in Connecticut.

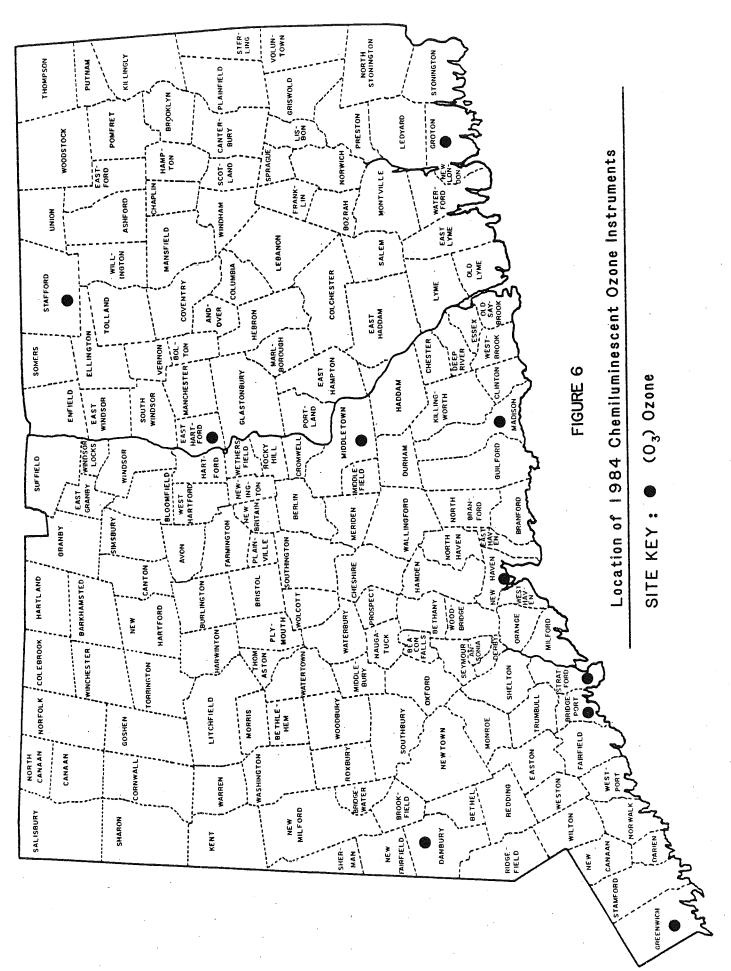


TABLE 18

NUMBER OF DAYS ON WHICH THE 1-HOUR OZONE STANDARD WAS EXCEEDED IN 1984

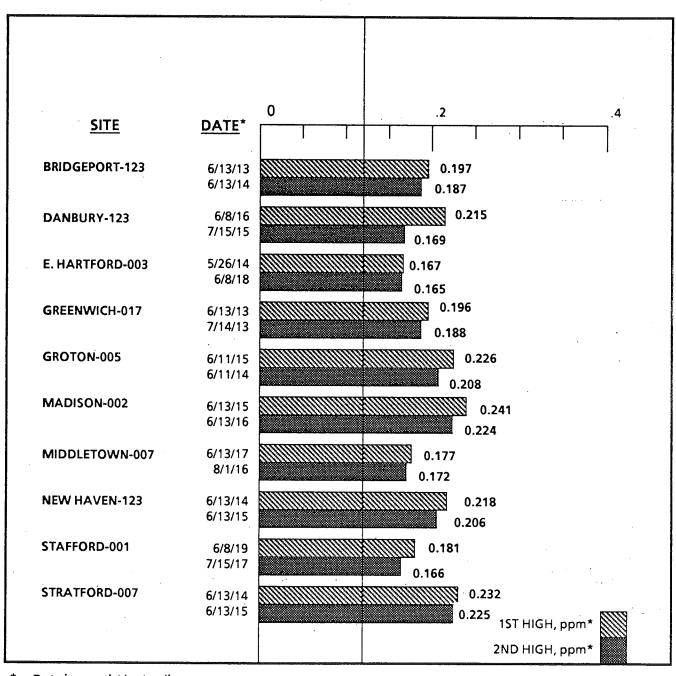

SITE	APRIL	MAY	JUNE	JULY	AUG.	SEPT.	TOTAL	TOTAL FOR LAST YEAR
Bridgeport-123	0	0	6	3	3	0	12	24
Danbury-123	0	0	7	4	2	0	13	25
East Hartford-003	3 0	1	3	2	1	0	7	15
Greenwich-017	0	0	6	6	5	0	17	32
Groton-005	0	2	8	6	6	0	. 22	36
Madison-002	0	0	7	6	5	0	18	23
Middletown-007	0	0.	8	4	2	0	14	20
New Haven-123	0	0	3	6	3	0	12	27
Stafford-001	0	0	2	4	. 1	0	. 7	20
Stratford-007	0	0	10	10	8	0	_28	45
·		•		TOTAL	SITE	DAYS	150	267
			TOTAL	INDIV	IDUAL	DAYS	37	6 0

TABLE 19

NUMBER OF EXCEEDANCES OF THE 1-HOUR OZONE STANDARD IN 1984

SITE	APRIL	_MAY_	JUNE	JULY	AUG.	SEPT.	TOTAL	TOTAL FOR LAST YEAR
Bridgeport-123	0	0	20	7	6	0	33	67
Danbury-123	0	0.	14	9	3	0	26	94
East Hartford-003	3 0	1	4	2	2	0	9	35
Greenwich-017	0	0	23	16	10	0	49	116
Groton-005	0	3	34	18	13	Ò	68	187
Madison-002	0	0	23	17	13	0	53	81
Middletown-007	0	0	16	5	8	0	29	69
New Haven-123	0	0	6	16	7	0	29	82
Stafford-001	0	0	4	9	2	0 .	15	60
Stratford-007	0	0	34	32	23	0 ·	89	<u>168</u>
				TOTA	L SITE	HOURS	4 00	959
			TOTAI	L INDI	VIDUAL	HOURS	165	351

TABLE 20
1984 MAXIMUM 1-HOUR OZONE CONCENTRATIONS

^{*} Date is month/day/ending hour of occurrence

0.120 PRIMARY AND SECONDARY STANDARD

TABLE 21

1984 TEN HIGHEST 1-HOUR AVERAGE OZONE DAYS WITH WIND DATA

MILLION	10	0.133 6/10/84 230 230 6.3 0.670 250 4.9 0.827 6.3 6.9 0.914 280 6.7 7.6	0.132 8/22/84 220 9.4 10.2 0.916 220 5.3 0.957 0.937 0.937 0.937 0.937	0.111 6/23/84 210 10.0 10.4 0.966 220 220 228 4.9
PARTS PER	6	0.134 8/22/84 220 220 9.4 10.2 0.220 5.3 0.967 0.937 0.937 7.8 0.584	0.135 6/10/84 230 230 6.73 0.670 250 6.9 0.827 6.3 6.9 0.914 6.7 7.6	0.115 6/6/84 230 6.8 7.9 0.856 200 3.3 3.3
. STINO	∞	0.140 7/4/84 220 9.6 10.2 0.936 0.936 8.3 8.5 0.976 6.0 6.0 0.952 7.8 7.8 7.8	0.136 6/13/84 230 7.6 0.770 0.770 0.716 7.0 7.0 7.0 7.16 7.16 9.4 9.4 9.4	0.123 7/10/84 210 6.8 8.2 0.828 190 4.0 6.2
	7	0.145 220 220 8.9 0.967 0.866 0.866 0.366 0.996 6.3 0.996 6.3	0.137 240 240 7.7 7.7 0.907 0.593 0.593 6.5 0.989 0.989 0.579	0.130 7/ 4/84 220 10.2 0.936 200 8.3 8.3
	9	0.149 6/6/84 230 6.8 0.856 0.856 0.856 5.0 0.665 0.900 0.900 0.900 0.53 0.53	0.139 7/31/84 210 7.2 7.2 0.907 220 8.2 8.2 8.3 0.978 5.8 0.953	0.132 6/28/84 220 8.8 10.1 0.870 200 7.6 8.9
	2	0.155 7/14/84 240 7.6 7.6 0.958 0.954 4.7 4.9 0.954 7.4 7.8 0.953 6.3 0.690	0.141 220 220 9.6 10.2 0.936 0.936 8.3 8.3 0.976 0.976 5.8 5.8 5.8 7.8 0.952	0.132 8/22/84 220 9.4 10.2 0.916 5.1 5.1
	4	0.160 6/11/84 260 9.8 11.6 0.840 6.4 6.4 6.4 7.3 7.5 0.977 0.977 0.977	0.144 7/10/84 210 6.8 6.8 8.2 0.828 190 4.0 6.2 0.650 0.650 0.940 3.10 3.5 0.528	0.133 6/27/84 230 10.7 11.4 0.943 220 4.9 6.8
	က	0.168 8/1/84 230 8.7 8.7 0.946 6.2 0.765 6.2 0.765 0.910 280 280 280 0.910 0.805	0.152 230 230 6.8 0.856 0.856 0.665 0.665 0.900 0.900 0.900 0.900 0.553	0.148 7/15/84 200 9.9 10.5 0.941 7.4 7.9
	8	0.177 7/15/84 200 9.9 10.5 0.941 7.4 7.9 0.941 8.3 8.3 8.6 0.968 0.968	0.169 7/15/84 200 9.9 0.941 7.9 0.941 8.5 0.948 0.968 0.968 0.968	0.165 6/8/84 220 8.9 9.2 0.967 190 5.9 6.8
	-	0.197 6/13/84 230 7.6 0.770 0.770 7.0 7.0 7.0 7.16 7.7 7.8 0.988 9.4 9.4	0.215 6/8/84 220 8.9 0.967 0.967 0.866 6.3 0.996 0.996 0.996 0.926 0.926	0.167 5/26/84 230 10.5 13.9 0.756 200 7.1
	RANK	OZONE DATE DIR (DEG) VEL (MPH) SPD (MPH) RATIO VEL (MPH) SPD (MPH)	OZONE DATE DATE DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO NEL (MPH) SPD (MPH)	OZONE DATE DIR (DEC) VEL (MPH) SATO (MPH) RATO VEL (MPH) SADO (MPH) SADO (MPH) SADO (MPH)
	TOWN-SITE (SAMPLES)	BRIDGEPORT-123 (4205) METEOROLOGICAL SITE METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT WETEOROLOGICAL SITE	DANBURY-123 (3990) METEOROLOGICAL SITE METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WETEOROLOGICAL SITE WORCESTER	EAST HARTFORD-003 (4045) METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY

TABLE 21, CONTINUED

TOWN-SITE (SAMPLES)	1984 RANK	TEN HI	GHEST 1-HO	-HOUR AVERAGE	OZONE	DAYS WITH	WIND DATA	7	UNITS:	PARTS PER o	MILLION
7	V IIV	-	V	o 	43 †	n'	o	~	o	y.	2
METEOROLOGICAL SITE BRIDGEPORT	DIR (DEG) VEL (MPH)	210 6.0	230 6.3	220 8.3	220 4.4	220 8.8	210	5.8	210 6.5	220 5.4	220
TITIO INCIDO TODO TEM	0	0.736	.01	. 9	0.843	* W)		• RJ :		0.900	• 00 •
MORGESTER	VEL (MPH)	13.5	٥.	۰ ۵	7.0 5.8	· 0	.	→ •		2.7	* •
		0.961	٠0	• 9	0.833	٠ ۵	• 60	• œ		4.9 0.553	• ∞
GREENWICH-017 (4172)	ليا	0.196	0.188	0.185	Ω,		61	ο.	51	0	0.147
METEOROLOGICAL SITE	DAIE DIR (DEG)	6/13/84 230	`	70	22	_~	/16 33	_2	758 25	23	ω
NEWARK	VEL (MPH)	9.6	7.6	5.3	•	7.7		9.8	•		7.2
	(o	0.770	0.958	0.670	٠,0	0.907	• 10	-∞	٠,	• =	0.907
METEOROLOGICAL SITE BRADLEY	DIR (DEG) VEL (MPH)	220 5.0	260 4.7	250 4.9	190 5.9	250 2.4	340	260 6.4		230	2
	(MPH)			. rU c		1 = 1	3	00,	. & ?	9	יעי
METEOROLOGICAL SITE	(DEC).	0.716 240	220	220	30	0.593 220	\sim	0.672 240	シー	oα	0.852 220
BRIDGEPORT	VEL (MPH) SPD (MPH)	7.7	7.4	6.9 6.9		6.4 5.5		7.3			8.2
METEOROLOGICAL SITE	RATIO	0.988	0.953	0.914	64	0.989	40	0.977		0	0.978
WORCESTER	VEL	9.4	6.3	6.7	• •	0 e :	١.	7.2	† •	٥.	5.8
	SPD (MPH) RATIO	9.6 0.973	0.690	6.879 0.879	· 0	5.8 0.579	٠,	8.1 0.893	8.5 0.937	• 0	$6.0 \\ 0.953$
GROTON-005 (4077)	OZONE	0.226 6/11/84	0.192 6/ 9/8h	0.183	0.183	7	_	0.160	0.159	0.154	0.150
METEOROLOGICAL SITE	(DEG)	260	250	220	240	230	210	240	200	260	230
NEWARK	SPD (MPH)	17.8	2=		0.7 9.7				9.9 9.5	9.5 4.4	7.3
METEOROLOGICAL SITE	RATIO DIR (DEG)	0.840	0.943	96	0.958	~ <	00	\circ	0.941	0.765	0.670
BRADLEY	(MPH)	6.4	6.2	٠ ،	4.7			• (7.7	9.0	14 m
THIS INCIDE IORGANIA	(0.672	0.765	۰ 9	0.954	. — .	.10	(0.941	0.69.0	0.827
METEURULUGICAL SITE BRIDGEPORT		7.3	230 8.1	?	7.4	寸 ⋅	\cdot	· m	220 8.3	250 5.9	220 6.3
	SPD (MPH) RATIO	6.7 0.977	8.2	• 6	7.8 0.953	-∞	.	• 67	8.6 0.968	6.6	6.9 0.914
METEOROLOGICAL SITE WORCESTER	DIR (DEG) VEL (MPH)	280	260 8.6	260	290	260		. W	280	290	280
	SPD (MPH) RATIO	8.1	8.9	• ^	9.1	• • •	ى .	0	9.6	9.6	7.6
)	•		•	`	`	:	•	•	•

TABLE 21, CONTINUED

1984 TEN HIGHEST 1-HOUR AVERAGE OZONE DAYS WITH WIND DATA

									UNITS:	PARTS PER	MILLION
TOWN-SITE (SAMPLES)	RANK	-	2	m	4	2	9	7	80	6	10
MADISON-002 (3701) METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE BRIDGEPORT	OZONE DATE DIR (DEG) VEL (MPH) SPD (MPH)	0.241 6/13/84 230 7.6 9.9 0.770 5.0 7.0 7.16 7.16 7.8 0.988 9.6 9.6	0.204 6/11/84 260 9.8 11.6 0.840 260 6.4 6.4 7.5 0.672 7.5 0.977 7.5 0.977 0.893	8/22/84 220 220 9.4 10.2 0.916 5.1 5.1 5.3 0.967 8.8 8.8 9.3 0.937 7.8	0.166 8/7/84 240 8.6 9.5 0.906 180 3.4 5.5 0.617 6.0 7.2 6.0 837 260 3.9 4.9	0.158 7/14/84 240 7.6 7.9 0.958 260 4.7 4.7 4.7 7.4 7.8 0.953 6.3 9.1	0.150 6/8/84 220 8.9 9.2 0.967 5.9 6.8 6.3 0.996 6.3 0.926	0.149 7/15/84 200 9.9 10.5 0.941 7.9 0.941 8.6 0.968 6.4 6.4 6.4	0.147 8/1/84 230 8.7 9.2 0.946 230 4.7 4.7 6.2 0.765 9.2 0.910 280 8.4 9.2 0.910 7.0	0.145 6/9/84 250 10.6 11.2 0.943 250 6.2 6.2 6.2 8.1 8.1 8.2 0.994 8.2 0.994 8.2 0.994 8.2 0.994 0.994 0.994	0.143 7/20/84 220 7.6 7.6 7.9 0.956 0.820 7.9 0.950 8.3 0.950 8.3 0.950 0.950
MIDDLETOWN-007 (4173) METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT WETEOROLOGICAL SITE WORCESTER	0ZONE DATE DIR (DEG) VEL (MPH) SPD (MPH) RAT10 DIR (DEG) VEL (MPH) SPD (MPH)	6/13/84 230 7.6 7.6 9.9 0.770 5.0 7.16 7.16 7.18 0.988 9.60 9.60	0.172 8/ 1/84 230 8.7 8.7 9.2 0.946 6.2 6.2 0.765 8.4 9.2 0.910 0.910 0.805	0.157 8/22/84 220 10.2 10.2 0.916 5.1 5.3 0.967 5.3 0.967 9.3 0.937 7.8	0.157 7/15/84 200 9.9 10.5 0.941 7.9 7.9 0.941 220 8.6 0.968 6.4 9.6	0.157 6/8/84 220 8.9 8.9 9.2 0.967 190 5.9 6.3 0.866 6.3 6.3 0.996 6.3 0.996 6.3	0.150 6/7/84 240 240 7.7 8.5 0.907 250 250 6.5 0.593 6.5 0.989 3.3 3.3 0.579	0.144 6/27/84 230 10.7 11.4 0.943 220 4.9 6.848 0.848 6.20 7.20 7.20 7.20 7.20 7.20 6.9	0.141 7/14/84 240 7.6 7.6 7.9 0.958 0.954 4.7 4.7 4.7 4.7 4.7 7.4 7.4 7.8 0.953 0.953 9.1	0.141 6/6/84 230 6.8 7.9 0.856 220 3.3 3.3 3.3 5.0 0.665 6.0 6.0 0.900 2.7 4.9	6/28/84 220 8.8 10.1 0.870 200 7.6 8.9 0.857 6.1 6.1 6.1 6.5 0.918 7.9 7.9
NEW HAVEN-123 (3837) METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY	OZONE DATE DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH)	0.218 6/13/84 230 7.6 9.9 0.770 5.0 5.0 7.0	0.162 7/15/84 200 9.9 10.5 0.941 7.4 7.9	0.156 8/1/84 230 8.7 8.7 9.2 0.946 4.7 6.2	0.156 7/ 4/84 220 9.6 10.2 0.936 200 8.3 8.3 0.976	0.150 7/14/84 240 7.6 7.9 0.958 260 4.7 4.9 0.954	0.142 6/27/84 230 10.7 11.4 0.943 220 4.9 5.8	0.141 8/22/84 220 9.4 10.2 0.916 5.1 5.3	0.134 7/2/84 250 3.6 7.2 0.507 2.2 3.9 0.557	0.133 7/31/84 210 7.2 7.9 0.907 220 4.9 5.8	0.126 6/23/84 210 10.0 10.4 0.966 220 220 2.8 4.9

TABLE 21, CONTINUED

1984 TEN HIGHEST 1-HOUR AVERAGE OZONE DAYS WITH WIND DATA

MILLION	01	2220 66.1 990 340 2.1 285	121 20/84 230 1.7 1.9 220 220 8.5 8.5 8.5 8.5 8.8 8.8 8.4	162 17.84 17.92 17.92 17.93 17.83 18.23 18.23 18.33 19.33 19.33 19.33
PER MII	•	0 0	0. 0. 0. 0. 0.	0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
PARTS PE	6	220 8.2 8.3 0.978 270 5.8 6.0	0.123 6/6/84 230 6.8 6.8 0.856 3.3 3.3 3.3 0.665 0.665 0.900 0.900 2.0 0.900 0.900	0.165 8/16/84 7.30 7.30 8.3 0.853 3.40 3.40 3.40 6.0 6.0 8.1 0.748 3.20 8.1 0.748 3.20 6.9
. STINO	∞	230 5.4 5.6 0.967 280 3.7 6.0	0.129 7/31/84 210 7.2 7.9 0.907 6.907 6.852 8.2 8.2 8.2 8.2 0.978 6.0 6.0	0.170 7/15/84 200 9.9 10.5 0.941 7.4 7.4 7.4 7.4 7.4 7.9 0.941 8.3 8.3 8.3 8.3 6.4 6.4
	7	220 8.8 8.8 9.3 0.937 280 4.5 4.5 7.8	0.134 6/28/84 220 8.8 10.1 0.870 7.6 8.9 0.857 6.1 6.1 6.1 6.1 6.1 6.3 7.9 8.5	0.178 6/7/84 240 7.40 7.40 8.5 0.907 2.4 4.0 0.593 6.4 6.5 0.989 3.3 3.3
WIND DATA	9	220 4.4 5.2 0.843 240 5.8 6.9	0.136 7/ 4/84 7/ 4/84 200 9.6 0.936 8.3 8.5 0.976 5.8 6.0 6.0 6.0 7.8 7.8	0.188 8/7/84 240 8.6 9.5 0.906 180 3.4 5.5 0.617 6.0 7.2 0.837 2.60 3.9 4.9
DAYS WITH	īυ	220 7.4 7.8 0.953 2290 6.3 9.1	0.139 7/10/84 210 6.8 6.8 0.828 1.90 4.0 6.2 0.650 210 6.5 0.940 3.5 3.5 6.6	0.193 6/8/84 220 8.29 0.967 0.866 0.866 0.866 0.966 6.3
OZONE	, 4	220 5.8 6.0 0.952 240 7.8 0.686	0.142 8/22/84 220 9.4 10.2 0.916 5.3 5.3 0.967 8.8 9.3 0.937 220 8.8 7.8 0.937 7.8	0.202 6/11/84 260 9.8 11.6 0.840 6.4 6.4 6.4 6.4 6.4 7.5 0.672 7.3 7.3 7.5 0.977 0.977
-HOUR AVERAGE	ŵ	220 8.4 9.2 0.910 280 5.7 7.0 0.805	0.162 6/27/84 230 10.7 11.4 0.943 5.8 0.848 0.843 0.843 0.843	0.207 7/14/84 240 7.9 0.958 0.958 4.7 4.7 4.7 4.9 0.954 0.953 0.953 0.953
GHEST 1-HO	8	220 8.3 8.6 0.968 0.966 0.664	0.166 7/15/84 200 9.9 10.5 0.941 7.9 7.9 0.941 8.3 8.6 8.3 8.6 0.968 0.968	0.224 8/1/84 230 8.3 9.2 0.946 6.2 6.2 6.2 0.765 8.4 9.2 0.910 280 5.7 7.0
1984 IEN HIG	-	240 7.7 7.8 0.988 0.988 9.4 9.4 9.6	0.181 6/8/84 220 8.9 8.9 0.967 5.8 0.866 6.3 6.3 0.996 6.3 0.996	0.232 6/13/84 7.6 7.0 9.9 0.770 5.0 7.0 7.16 7.7 7.7 7.7 7.8 9.4 9.4
1986	RANK	DIR (DEG) VEL (MPH) SPD (MPH) RATIO VEL (MPH) SPD (MPH) RATIO	OZONE DATE DIR (DEG) VEL (MPH) SPD (MPH)	0ZONE DATE DATE DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH)
	TOWN-SITE (SAMPLES)	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	STAFFORD-001 (4091) METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT WETEOROLOGICAL SITE BRIDGEPORT	STRATFORD-007 (3978) METEOROLOGICAL SITE METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT WETEOROLOGICAL SITE WORCESTER
•	•			

FIGURE 7
WIND ROSE FOR APRIL - SEPTEMBER 1983

BRADLEY INTERNATIONAL AIRPORT WINDSOR LOCKS, CONNECTICUT

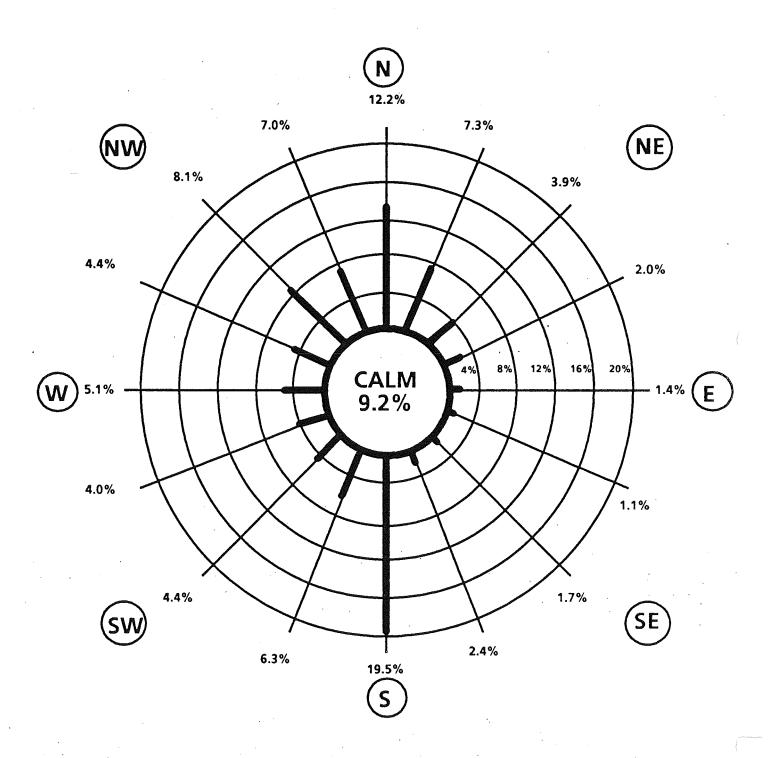


FIGURE 8
WIND ROSE FOR APRIL - SEPTEMBER 1984
BRADLEY INTERNATIONAL AIRPORT
WINDSOR LOCKS, CONNECTICUT

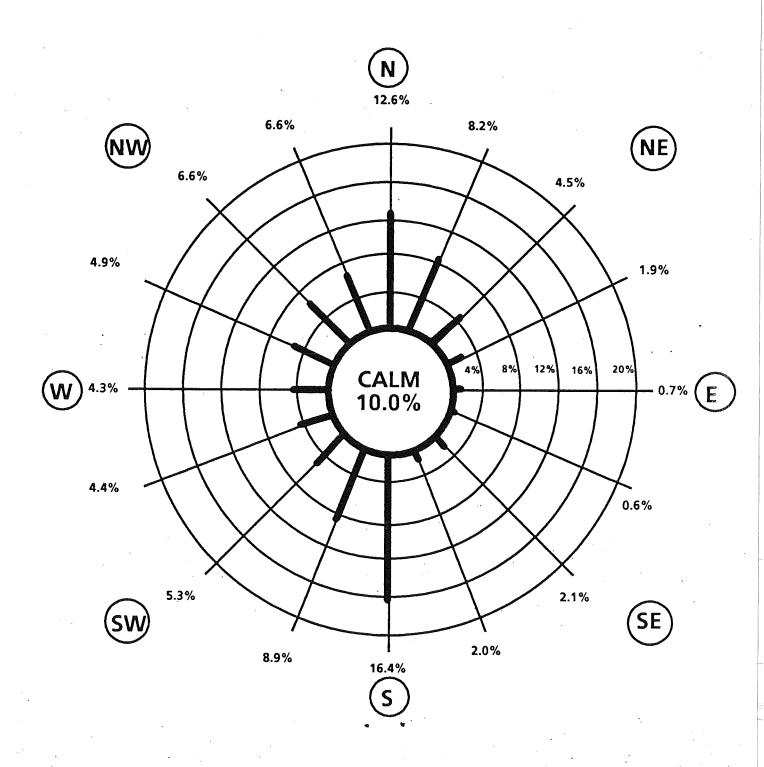


FIGURE 9

WIND ROSE FOR APRIL - SEPTEMBER 1983 NEWARK INTERNATIONAL AIRPORT NEWARK, NEW JERSEY

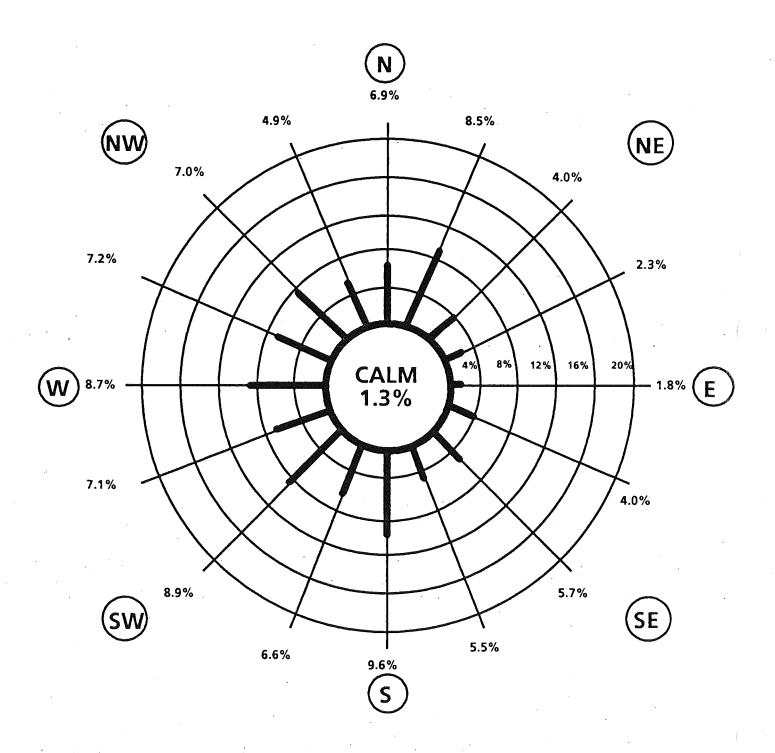
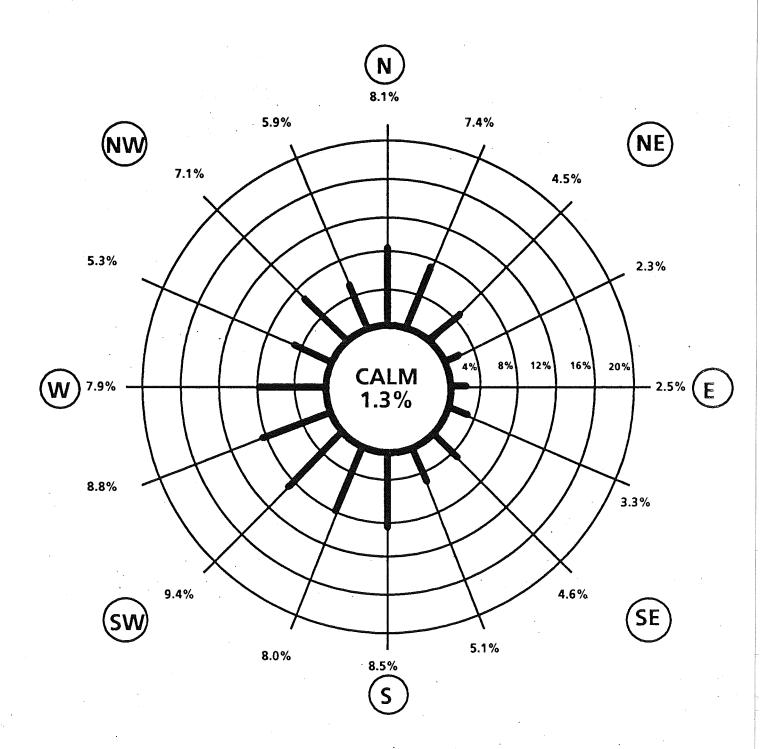



FIGURE 10
WIND ROSE FOR APRIL - SEPTEMBER 1984
NEWARK INTERNATIONAL AIRPORT
NEWARK, NEW JERSEY

V. NITROGEN DIOXIDE

Health Effects

Nitrogen dioxide (NO₂) is a toxic gas with a characteristic pungent odor and a red-dish-orange-brown color. It is highly oxidizing and extremely corrosive.

Nitrogen dioxide is not emitted into the atmosphere to any great extent by man-made sources. However, its presence in the atmosphere is accounted for by the photochemical oxidation of nitric oxide (NO), large amounts of which are emitted into the air by high temperature combustion processes. Industrial furnaces, power plants and motor vehicles are the primary sources of nitric oxide emissions.

Exposure to NO 2 is believed to increase the risks of acute respiratory disease and susceptibility to chronic respiratory infection. NO 2 also contributes to heart, lung, liver and kidney damage. At high concentrations, this pollutant can be fatal. At lower levels of 25 to 100 parts per million, it can cause acute bronchitis and pneumonia. Occasional exposure to low levels of NO 2 can irritate the eyes and skin.

Other effects of nitrogen dioxide are its toxicity to vegetation and its ability to combine with water vapor to form nitric acid. Furthermore, NO 2 is an essential ingredient, along with hydrocarbons, in the formation of ozone.

Conclusions

Nitrogen dioxide (NO₂) concentrations at all monitoring sites were well below the NAAQS for NO₂ in 1984. This was the third year the DEP used continuous electronic analyzers to measure NO₂ levels. NO₂ trend analyses or comparisons can be made when two full years of data are available at a monitoring site. This condition was satisfied at all three sites this year.

Sample Collection and Analysis

The DEP Air Monitoring Unit used continuous electronic analyzers employing the chemiluminescent reference method to continuously measure NO 2 levels.

Discussion of Data

Monitoring Network - There were three nitrogen dioxide monitoring sites in 1984 (see Figure 11). The sites — Bridgeport 123, East Hartford 003 and New Haven 123 — were located in three urban areas in order to obtain data alongside ozone monitors.

Precision and Accuracy - Sixty precision checks were made on the NO₂ monitors in 1984, yielding 95% probability limits ranging from -17% to +13%. Accuracy is determined by introducing a known amount of NO₂ into each of the monitors. Four audits for accuracy were conducted on the monitoring network in 1984. Four different concentration levels were tested on each monitor: low, low/medium, medium/high and high. The 95% probability limits for the low level test ranged from -22% to +12%; those for the low/medium level test ranged from -9% to +2%; those for the medium/high level test ranged from -11% to -2%; and those for the high level test ranged from -11% to -7%

Historical Data - The DEP's historical file of annual average nitrogen dioxide data from gas bubblers for 1973-1980 is available in the 1980 Air Quality Summary.

Annual Averages - The annual average NO₂ standard of 100 ug/m ³was not exceeded in 1984 at any site in Connecticut (see Table 22). In 1984 all three sites had sufficient data to compute valid arithmetic means. This permits comparisons with the 1983 annual averages, but not with the 1982 annual averages which are based on incomplete data. The arithmetic mean NO₂ concentration at each site decreased between 1983 and 1984.

Statistical Projections - The format of Table 22 is the same as that used to present the TSP and sulfur dioxide data. However, Table 22 gives the annual arithmetic mean of the hourly NO₂ concentrations to allow direct comparison to the annual NO₂ standard. The 95% confidence limits about the arithmetic mean for each site demonstrate that it is unlikely that any site exceeded the primary annual standard of 100 ug/m in 1984.

10-High Days with Wind Data - Table 23 presents for each site the ten days in 1984 when the highest hourly NO₂ readings occurred, along with the associated wind conditions for each day. (See the discussion of Table 11 in the TSP section for a description of the original use of the wind data.)

According to National Weather Service local climatological data recorded at Bradley Airport, 13 of the 20 days listed in the table had more then 50% of the possible sunshine. Of the seven remaining days, five followed days when the percent of possible sunshine exceeded 78%. This is interpreted to confirm the importance of photochemical oxidation in the formation of NO 2.

High NO₂ levels occurred most often (i.e., 45% of the time) during the winter season. Six out of the eight high NO₂ days that occurred at at least 2 of the sites had persistent winds out of the southwest quadrant. This was also true of 70% of the days listed in Table 23.

Given the above observations and the fact that two of the three NO₂ sites are located on the coast of Connecticut, it appears that a combination of pollutant transport and a high percent of possible sunshine (both of which occur on days with persistent southwest winds) tend to produce high NO₂ levels in Connecticut.

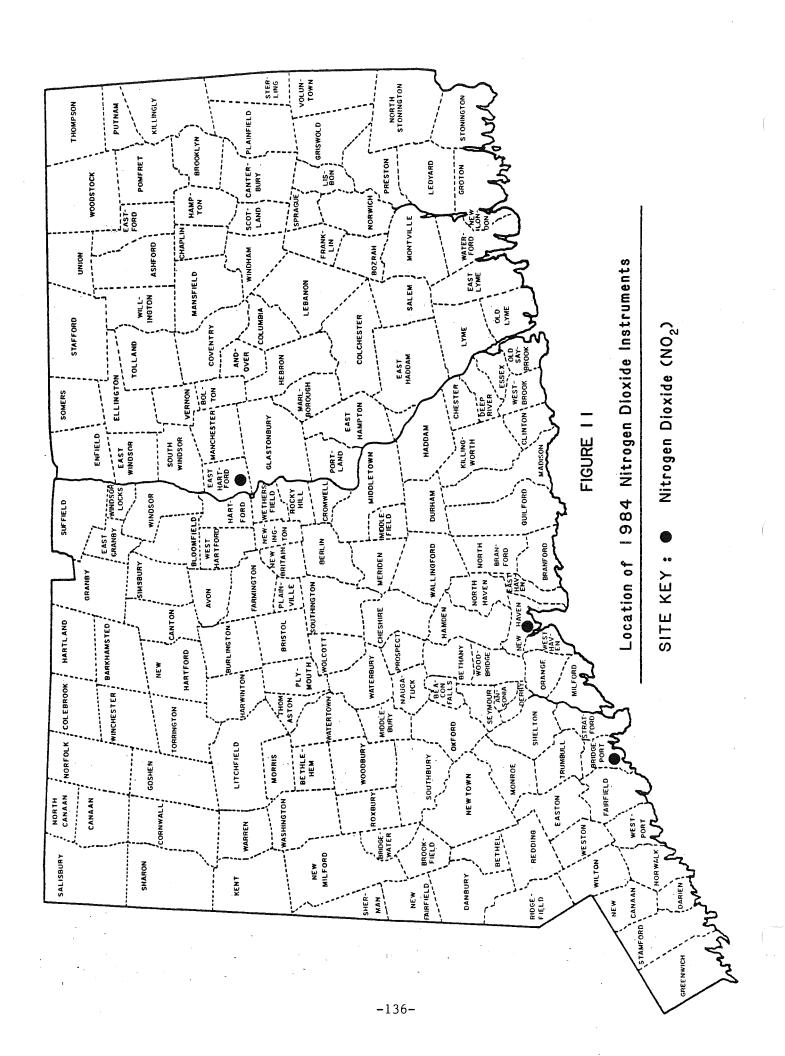


TABLE 22

1982-1984 NITROGEN DIOXIDE ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

Town Name S	ite	Vear	Samples	Arithmetic Mean	95-PCT- Lower	95-PCT-Limits -ower Upper	Standard Deviation
_	23	1982	6480*	53.7	53.3	54.1	30.9
_	23	1983	8328	56.4	56.2	56.6	34.7
=	123	1984	8689	51.5	51.4	51.6	29.7
ŏ	33	1982	6521*	36.5	36.2	36.8	22.5
ŏ	33	1983	8576	43.5	43.4	43.6	31.3
ŏ.	003	1984	8172	39.8	39.6	40.0	26.2
-	23	1982	6420*	54.2	54.0	54.4	17.2
-	23	1983	7971	62.8	62.7	62.9	13.5
-	23	1984	8530	58.2	58.1	58.3	29.0

* Sampling not random or of insufficient size for representative annual statistics N.B. The arithmetic mean and standard deviation have units of \log/m^3 .

ABLE 23

MILLION

: PARTS PER 0.104 6/9/84 250 10.6 11.2 0.943 250 6.2 8.1 0.102 6/8/84 220 8.29 9.2 0.967 190 5.9 6.3 6.3 0.996 6.3 0.996 6.3 0.080 2/2/84 230 230 4.28 4.28 6.72 1.1 1.1 2.0 0.564 0.564 0.921 0.921 7.8 7.8 8.3 0.086 2/13/84 100 1.1 1.1 1.5 2.00 2.00 1.5 2.4 0.607 7.1 7.1 7.2 0.991 1.7 1.7 0.106 11/26/84 210 210 6.3 6.8 0.939 190 3.0 3.2 0.104 1/23/84 210 210 4.4 4.4 0.812 260 260 4.4 7.2 0.608 5.5 0.960 0.110 12/13/84 240 6.7 7.9 0.847 210 2.2 5.6 0.090 11/2/84 310 8.4 14.2 0.594 290 6.9 12.1 0.575 330 8.4 11.6 0.726 270 13.9 0.106 12/28/84 210 2.0 2.0 5.3 190 4.1 6.8 0.608 2608 4.9 4.9 6.6 0.739 0.739 0.739 0.739 0.883 DAYS WITH WIND DATA 0.090 1/24/84 20 3.3 5.3 0.612 3.6 1.7 1.7 3.6 0.473 2.0 2.0 2.0 2.0 6.9 0.288 0.288 6.9 6.6 0.112 11/27/84 190 3.3 5.0 0.658 180 2.7 3.0 0.883 0.110 240 240 240 7.3 0.847 0.395 0.395 5.6 0.395 5.8 6.9 0.834 0.834 0.902 9 0.112 1/24/84 20 3.3 5.3 0.612 1.7 3.6 0.473 0.110 11/27/84 3.3 3.3 0.658 0.658 2.7 2.7 2.7 2.7 2.7 0.883 0.576 0.576 0.576 0.576 0.094 11/26/84 210 6.3 6.3 6.3 6.3 0.939 13.0 3.0 3.0 3.2 0.934 7.7 7.7 7.7 8.1 0.959 260 9.6 S 6/6/84 230 230 6.8 7.9 0.856 0.665 5.0 0.665 6.0 0.900 0.900 2.80 2.80 0.553 0.114 6/6/84 230 6.8 7.9 0.856 3.3 5.0 0.665 N02 HIGHEST 1-HOUR AVERAGE 0.104 1/23/84 210 210 4.4 0.932 160 22.0 22.0 260 4.4 4.4 7.2 0.608 5.5 0.960 0.122 1/23/84 210 4.4 4.7 0.932 160 2.0 2.4 0.812 6/13/84 230 7.6 7.6 9.9 0.770 0.770 7.0 7.0 7.1 7.7 7.8 0.988 0.988 0.988 0.988 0.973 0.126 6/8/84 220 8.9 9.2 0.967 190 5.9 6.8 0.128 2/11/84 240 0.6 0.6 1.000 190 3.9 4.2 0.947 180 0.146 2.9 0.146 7.8 0.104 1/18/84 20 2.9 4.7 0.618 3.7 3.7 4.2 0.877 6.1 6.6 0.926 1.3 0.318 0.112 1/17/84 250 4.4 4.4 4.6 0.958 130 0.7 1.0 0.714 250 0.842 0. 0.159 4/4/84 70 7.6 9.3 0.815 3.7 5.3 0.698 0.163 7/10/84 210 210 6.8 0.828 0.828 190 4.0 6.2 0.650 6.5 0.940 0.940 3.5 0.528 984 TEN NO2
DATE
DIR (DEG)
VEL (MPH)
RATIO
DIR (DEG)
VEL (MPH)
SPD (MPH)
SPD (MPH)
RATIO
DIR (DEG)
VEL (MPH)
RATIO
DIR (DEG)
VEL (MPH)
SPD (MPH)
SPD (MPH)
RATIO
SPD (MPH) NO2 DATE DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH) NO2
DATE
DIR (DEG)
VEL (MPH)
SPD (MPH)
RATIO
DIR (DEG)
VEL (MPH)
RATIO S.I.T.E. NEWARK METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT HARTFORD-003 (8172) BRIDGEPORT-123 (8689) HAVEN-123 (8530) METEOROLOGICAL

0.080 160 160 160 6.4 6.9 0.929 0.952 0.952 170 10.1 8.9 0.979 0.098 5/19/84 230 11.5 11.8 0.975 6.1 6.2 0.980

0.100 6/9/84 250 10.6 11.2 0.943 6.2 8.1 0.765 8.1 8.1 8.2 0.994 8.8 0.994 0.994

CONTINUED
23.
TABLE

		1984 IEN	HIGHESI	HIGHESI I-HOUK AVEKAGE NOZ DAYS WIIH WIND DAIA	KAGE NOZ	DAYS WITH	WIND DAI	∢	: STIND	PARTS PER	R MILLION	
TOWN-SITE (SAMPLES)	RANK	-	2	m .	#	rC	9	7	8	6	10	•
METEOROLOGICAL SITE DIR (DEG) 70	DIR (DEG)	70		260	220	200	220	260	250	230	210	
BRIDGEPORT	r VEL (MPH)	14.0		4.4	5.4	2.0	3.4	5.8	7.7	8.1	4.7	
	SPD (MPH)	14.2		7.2	0.9	6.9	5.9	6.9	8.1	8.2	5.2	
	RATIO	0.987	0.996	0.608	0.600	0.288	0.576	0.834	0.959	0.994	0.901	
METEOROLOGICAL SITE	DIR (DEG)	140		250	280	200	250	250	260	260	270	
WORCESTER	YEL (MPH)	1.6		5.5	2.7	4.8	7.8	9.9	9.6	8.6	4.9	
	SPD (MPH)	6.2		5.8	4.9	9.9	8.2	7.3	9.6	8.9	8.5	
	RATIO	0.252		0.960	0.553	0.733	0.952	0.902	0.992	0.962	0.751	

VI. CARBON MONOXIDE

Health Effects

Carbon monoxide (CO) is a colorless, odorless, poison gas formed when carbon-containing fuel is not burned completely. It is by far the most plentiful air pollutant. Fortunately, this deadly gas does not persist in the atmosphere. It is apparently converted by natural processes to harmless carbon dioxide in ways not yet understood, and this is done quickly enough to prevent any general buildup. However, CO can reach dangerous levels in local areas, such as city-street canyons with heavy auto traffic and little wind.

Clinical experience with accidental CO poisoning has shown clearly how it affects the body. When the gas is breathed, CO replaces oxygen in the red blood cells, reducing the amount of oxygen that can reach the body cells and maintain life. Lack of oxygen affects the brain, and the first symptoms are impaired perception and thinking. Reflexes are slowed, judgement weakened, and drowsiness ensues. An auto driver breathing high levels of CO is more likely to have an accident; an athlete's performance and skill drop suddenly. Lack of oxygen then affects the heart. Death can come from heart failure or general asphyxiation, if a person is exposed to very high levels of CO.

Conclusions

The eight-hour National Ambient Air Quality Standard of 9 parts per million (ppm) was exceeded at four of the five carbon monoxide monitoring sites in Connecticut during 1984. The standard was exceeded three times at Stamford 020 and twelve times at Hartford 017. No site measured an exceedance of the one-hour standard of 35 ppm in 1984.

In order to put the monitoring data into proper perspective, it must be realized that carbon monoxide concentrations vary greatly from place-to-place. More than 95% of the CO emissions in Connecticut come from motor vehicles. Therefore, concentrations are greatest in areas of traffic congestion. The magnitude and frequency of high concentrations observed at any monitoring site are not necessarily indicative of widespread CO levels.

The CO standards are likely to be exceeded in any city in the state where there are areas of traffic congestion. However, as Connecticut's SIP control strategies are implemented, there should continue to be a decrease in the number of congested areas. Also, as federally - mandated controls which reduce emissions from new motor vehicles are implemented, a reduction in ambient CO levels should be achieved.

Unlike SO₂, TSP and O₃, elevated CO levels are not often associated with southwesterly winds, indicating that this pollutant is more of a local-scale (not regional-scale) problem.

Method of Measurement

The DEP Air Monitoring Unit uses instruments employing a non-dispersive infrared technique to continuously measure carbon monoxide levels. The instantaneous concentrations are recorded on strip charts from which hourly averages are extracted. Due to the relative inertness of CO, a long sampling line can be used without the danger of CO being depleted by chemical reactions within the lines. The most important consideration in the measurement of CO is the placement of the sampling probe inlet; that is, its proximity to traffic lanes.

Discussion of Data

Monitoring Network - The network in 1984 consisted of five carbon monoxide monitors: Bridgeport 004, Hartford 017, New Britain 002, New Haven 007, and Stamford 020. They are all located in urban areas. All sites are located west of the Connecticut River, with three of them in coastal towns (see Figure 12). Hartford 017 is a new site and it replaces Hartford 012.

Precision and Accuracy - The carbon monoxide monitors had a total of 114 precision checks during 1984. The resulting 95% probability limits were -10% to +11%. Accuracy is determined by introducing a known amount of CO into each of the monitors. Eight audits for accuracy were conducted on the monitoring network in 1984. Three different concentration levels were tested on each monitor: low, medium and high. The 95% probability limits for the low level test ranged from -14% to +21%; those for the medium level test ranged from -6% to +6%; and those for the high level test ranged from -4% to +3%.

8-Hour and 1-Hour Averages - Hartford 017 and Stamford 020 had second high CO concentrations exceeding the 8-hour standard of 9 ppm, which means that the standard was violated at these sites in 1984 (see Table 24). In 1983, Hartford 012 and New Britain 002 recorded violations of the standard. Regarding the maximum 8-hour running average at each site, there were decreases from 1983 to 1984 at Bridgeport, New Britain and New Haven. Increases occured at Stamford and Hartford 017 (compared to Hartford 012). The second highest values were higher in 1984 vs. 1983 at Bridgeport, Hartford and Stamford and lower at New Britain and New Haven.

As for 1-hour averages, no site in the state recorded a value exceeding the primary 1-hour standard of 35 ppm. Stamford 020 recorded a maximum 1-hour value greater than the year before, and Hartford 017 had a higher maximum in 1984 than Hartford 012 in 1983. Second high 1-hour values were higher at these sites as well. The Bridgeport, New Haven and New Britain sites had lower maximum and second high values than last year.

The maximum and second high CO concentrations at each site are presented in Table 24. Table 25 presents highs and a tally of the number of times the standards were exceeded at each site. Seasonal variations in CO levels can be observed using this table.

10-High Days with Wind Data - Table 26 lists for each site the ten days in 1984 when the 1-hour CO averages were highest. The wind data associated with these high readings are also presented. (See the discussion of Table 11 in the TSP section for a description of the origin and use of these wind data.)

The high CO levels tended to occur during the colder months at all five CO sites. Low atmospheric mixing heights and stable atmospheric conditions are two reasons CO levels are high during the fall and winter. Also, cold starts and warmups (rich mixtures) contribute to an increase in CO. A noteworthy feature of the high CO days is that the persistence of a wind is more important than the direction to which or from which it is blowing. Since 95% of the CO emissions in Connecticut come from motor vehicles, it is likely that the high CO levels are caused when persistent winds are blowing CO emissions from the direction of nearby roads toward the monitors.

Trends - Due to the local nature of CO emissions, it is not appropriate to give an estimate of widespread CO trends. However, local CO trends can be addressed in a number of ways. Exceedances of the 8-hour standard can be tracked in order to determine if a CO problem is worsening or abating at a site. This is illustrated in Table 26a and in Figure 13. One can see that over the past five years the number of exceedances has dropped significantly at the New Britain and Stamford sites and has remained low and relatively unchanged at the Bridgeport and New Haven sites. The Hartford-017 site

is not included here because it has been in existence for only one year. The Stamford-020 site is excluded from Figure 13 because the range of the number of exceedances is too large to illustrate satisfactorily.

Another way of illustrating local CO trends is to use running averages. Running averages have the advantage of smoothing out the abrupt, transitory changes in pollutant levels that are often evident in consecutive sampling periods. Figure 14 shows the 36-month running average CO concentrations at four sites. The Hartford-017 site is not included due to the lack of adequate data. There appears to be no common trend at these sites.

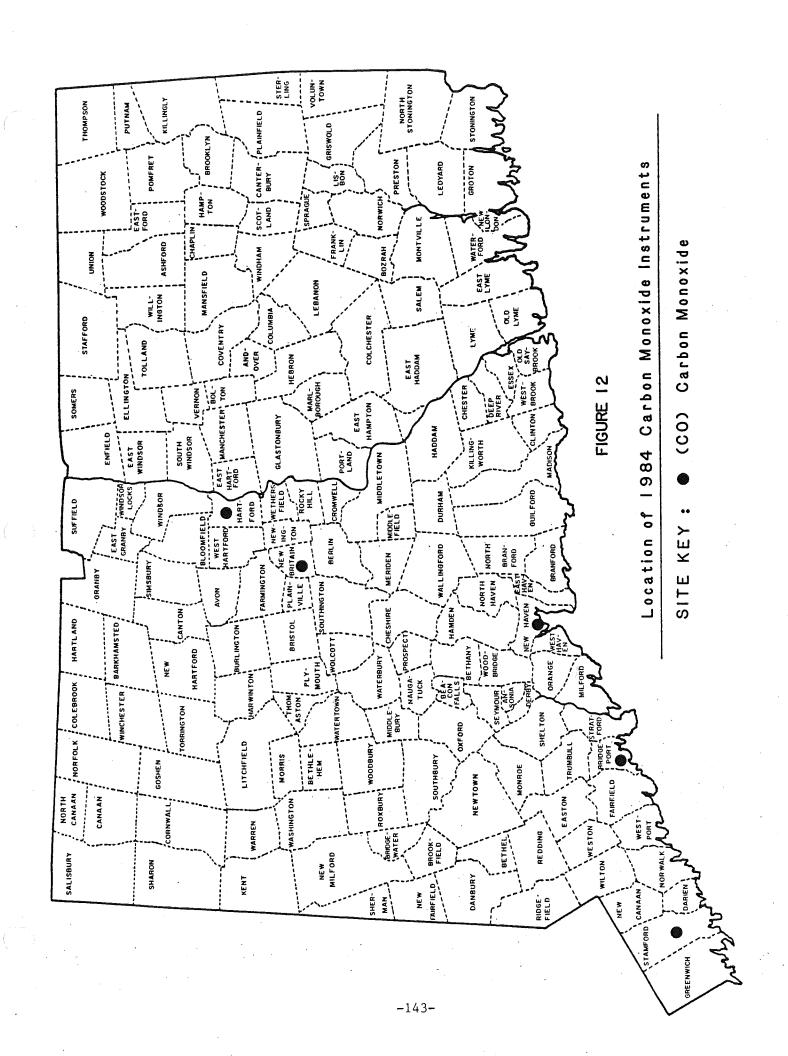


TABLE 24

1984 CARBON MONOXIDE STANDARDS ASSESSMENT SUMMARY

TOWN-SITE	MAXIMUM 8-HGUR RUNNING AVERAGE	TIME OF MAXIMUM 8-HOUR RUNNING AVERAGE 1	2ND HIGH 8-HOUR RUNNING AVERAGE	TIME OF 2ND HIGH 8-HOUR RUNNING AVERAGE1	MAXIMUM 1-HOUR AVERAGE	TIME OF MAXIMUM 1-HOUR AVERAGE 2	2ND HIGH 1-HOUR AVERAGE	TIME OF 2ND HIGH 1-HOUR AVERAGE 2
Bridgeport-004	9.8	1/23/24	8.1	1/27/15	13.1	1/23/20	11.8	1/23/21
Hartford-017	13.34	1/23/23	11.8	1/27/21	22.6	2/17/18	21.3	1/27/19
New Britain-002	0.6	1/24/1	8.5	1/27/14	15.4	2/3/8	14.5	12/17/19
New Haven-007	7,.5	12/28/18	6.4	11/27/12	13.6	11/27/9	11.6	12/28/17
Stamford-020	10.7	1/23/23	10.5	12/13/21	18.4	12/13/19	17.9	1/27/19

Irime of 8-hour averages is reported as follows: month/day/hour (EST), specifying the end of the AB-hour average period
Arime of 1-hour averages is reported as follows: month/day/hour (EST), specifying the end of the 1-hour average period

N.B. CO averages are expressed in terms of parts per million (ppm).

 ${\bf a}$ Site operated from October through December only.

TABLE 25

1984 CARBON MONOXIDE SEASONAL FEATURES

						٠							
TOWN-SITE	٠	JAN.	FEB.	MARCH	APRIL	MAY	JUNE	JULY	AUG.	SEPT.	OCT.	NOV.	DEC.
Bridgeport -004	Max. 1-Hr.	13.1	8.1	8.5	6.2	5.2	4.6	3.0	4.9	5.0	8.8	11.3	10.1
1	Max. Running 8-Hr.	9.8	5.7	5.0	4.5	3.7	3.8	2.2	2.8	3.2	5.0	6.4	5. 9
	* Times 8-Hr. Exceeded	· 0	0	0	. 0			0	0	0	0	0	0
Hartford -017	Max. 1-Hr.	21.3	14.5	14.2	15.0	0.6	10.0	7.5	9.5	10.7	13.9	14.1	22.6
; ;	Max. Running 8-Hr.	13.4	8.3	8.2	10.0	6.5	6.7	6.2	5.4	7.1	6 4.	6.3	6.9
	# Times 8-Hr. Exceeded	28	0	0	-	0	0	0	0	0	9	o 7	o †
New Britain	Max. 1-Hr.	13.5	15.4	8.0	7.6	12.0	7.8	5.1	4.0	4.3	9.9	12.2	14.5
	Max. Running 8-Hr.	0.6	6.7	6.1	ე	6.8	5.7	3.3	3.3	a.a	9.4	7.3	7.0
	# Times 8-Hr. Exceeded	0	0	0	0	0	0	0	0	0	0	0	0
New Haven	Max. 1-Hr.	1	ı	1	1	1	ţ	1	ı	ı	7.1	13.6	11.6
	Max. Running 8-Hr.	l	ı	ı	. 1	1	ı	1,	1	ı	5.0	6.4	7.5
	# Times 8-Hr. Exceeded	1	1	1	1	1	i	1	ŀ	1	0	0	0
											•		
Stamford -020	Max. 1-Hr.	17.9	10.8	8.0	6.5	6.6	6.4	7.1	10.7	8.0	11.1	13.5	18.4
) 	Max. Running 8-Hr.	10.7	9.1	6.0	9.4	5.0	5.1	5.1	5.4	4.9	6.2	8.0	10.5
	# Times 8-Hr. Exceeded	-	6	0	0	0	0	0	0	0	0	0	-

N.B. The CO concentrations are in terms of parts per million (ppm)

ARI F 26

8.5 10/11/84 20 20 6.9 0.286 1.5 20 170 1.4 0.293 0.293 0.293 0.931 11,26/84 210 210 6.3 6.8 0.939 190 3.2 3.2 0.934 250 7.7 7.7 7.7 8.1 0.959 9.6 9.9 12/10/84 MILLION 20 4.7 7.9 0.595 PER 10.0 1/24/84 20 3.3 5.3 0.612 30 1.7 3.6 0.473 8.5 3/5/84 150 2.5 5.0 0.499 0.1 4.2 0.020 90 4.2 4.2 6.729 140 4.0 5.2 3/5/84 150 150 150 0.499 0.19 0.020 0.020 0.789 0.782 0.782 PARTS 10.0 2/24/84 340 8.6 12.9 0.665 9.4 11.2 0.840 2/24/84 340 340 8.6 12.9 0.665 360 350 9.1 11.2 0.840 9.1 10.6 0.857 9.1 10.6 0.857 9.1 10.6 11.0 1/23/84 210 4.4 4.7 0.932 160 2.0 2.0 2.4 14.8 12/10/84 20 1.2 1.7 7.9 0.595 0.998 30 7.2 7.2 7.8 0.924 0.924 0.924 0.924 0.4.22 0.6578 0.6578 0.6578 0.932 0.932 0.932 0.932 11.7 11/26/84 210 6.3 6.3 6.8 0.939 190 3.0 3.2 1984 TEN HIGHEST 1-HOUR AVERAGE CO DAYS WITH WIND DATA 9.0 7/5/8 210 210 5.1 5.6 0.906 180 3.7 3.7 3.7 3.7 3.7 0.985 140 2.1 2.1 2.6 0.804 2.6 0.804 2.6 0.804 0.804 0.906 0 12.0 5/31/84 10.1 11.2 0.899 0.899 8.1 8.3 0.973 11/26/84 210 6.3 6.3 6.8 0.939 190 3.2 0.934 250 7.7 7.7 8.1 0.959 260 9.6 16.0 1/24/84 20 20 3.3 5.3 0.612 3.5 1.7 1.7 1.7 2.0 2.0 6.9 0.288 6.9 6.9 6.9 12.2 11/27/84 190 3.3 5.0 0.658 180 2.7 3.0 0.883 17.5 1/17/84 250 4.4 4.6 0.958 0.958 0.7 1.0 0.7 7.0 7.0 7.0 6.3 0.935 9.8 300 300 1.77/8 6.3 0.268 3.3 0.389 4.2 4.2 4.3 0.866 3.3 0.866 3.3 0.866 3.3 0.866 3.3 20.0 1/23/84 210 210 4.1 0.932 160 22.0 220 260 4.1 4.1 0.608 0.508 0.508 0.508 10.1 12/17/84 240 10.4 11.1 0.938 6.5 6.5 6.5 6.5 7.4 7.4 7.5 0.986 240 7.5 0.986 8.5 0.986 8.5 0.986 8.5 0.986 8.5 0.986 8.5 0.986 21.3 1/27/84 300 1.7 6.3 0.268 350 350 3.3 0.389 0.389 0.866 250 250 3.3 14.5 12/17/84 240 10.4 11.1 0.938 220 6.5 8.2 11.3 17.27/84 190 190 1.658 0.658 2.7 2.7 2.7 2.0 3.4 5.9 0.576 7.8 8.2 N 13.1 1/23/84 210 4.4 4.7 0.932 160 22.0 22.0 260 4.4 4.4 7.2 0.608 250 250 250 250 250 22.6 240 10.4 11.1 0.938 6.5 8.2 0.798 7.5 0.986 7.5 0.986 7.5 0.986 7.5 0.883 6.4 6.9 0.929 190 6.6 6.9 0.952 CO DATE DIR (DEG) VEL (MPH) SPD (MPH) RATIO CO DATE DIR (DEG) VEL (MPH) SPD (MPH) BIR (DEG) VEL (MPH) SPD (MPH) CO DATE DIR (DEG) VEL (MPH) SPD (MPH) RANK . SITE NEWARK _ SITE . NEWARK METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT BRITAIN-002 (8418) BRIDGEPORT-004 (8455) METEOROLOGICAL METEOROLOGICAL HARTFORD-017 (7964) TOWN-SITE (SAMPLES)

TABLE 26, CONTINUED

MILLION	10	30 7.2 7.8 0.924 40 4.0 5.2 0.768	6.3 12/18/84 330 6.1 10.5 0.579 330 4.0 5.6 0.965
PARTS PER	6	200 2.00 6.9 0.288 200 4.8 6.6 0.733	6.5 260/84 260/84 5.6 0.597 293 0.727 280 7.3 7.3 7.3 10.8 2/24/84 11.2 0.958 0.665 360 360 360 360 360 360 360 360 360 360
UNITS:	æ	350 9.1 10.6 0.857 360 9.8 12.9 0.758	7.0 160/41 160 160 160 180 180 180 180 180 180 180 180 180 18
	_	260 0.608 0.608 0.950 0.960	7.1 10/30/84 150 3.5 0.783 170 4.5 0.900 3.5 0.812 2.0 2.0 2.0 3.3 0.872 2.0 3.3 3.3 3.3 0.872 2.0 3.3 3.3 0.872 2.0 3.3 0.872 2.0 3.3 3.3 0.872 2.0 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3
WIND DATA	9	250 7.7 7.7 8.1 0.959 9.6 0.992 0.992	8.5 210 210 210 210 5.9 0.932 0.934 11/26/84 220 6.3 0.939 0
DAYS WITH	Z.	350 7.6 0.965 360 6.8 6.8 7.8	8.8 240 240 240 6.7 6.7 6.7 6.8 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9
8	#	220 3.4 5.9 0.576 0.576 7.8 7.8	8.8 11/26/84 210 6.3 6.3 6.3 0.934 7.7 0.959 0.959 0.959 14.9 0.873 0.873 0.873 0.873 0.873 0.873 0.873 0.873 0.873 0.873 0.873 0.873 0.873 0.956 0.956 0.957 0.958 0.956 0.957
1-HOUR AVERAGE	ന	30 4.2 4.9 0.866 250 3.3 3.3 6.0	10.2 240 10.9 220 0.938 0.986 0.986 0.986 1.2 1.2 1.2 1.2 1.2 1.2 0.932 0.932 0.932 0.608
HIGHEST 1	2	240 7.4 7.5 0.986 7.2 7.2 7.2 0.853	12/28/84 210 210 210 210 210 210 6.88 0.608 0.739 6.66 0.739 1.77/84 1
1984 TEN	-	170 9.7 10.1 0.966 8.7 8.9	13.6 11/27/84 190 3.3 3.3 5.0 0.558 0.883 220 3.4 5.9 0.576 2.7 7.8 0.952 0.952 0.952 0.952 0.395 0.395 0.395 0.395 0.395 0.395 0.395
	RANK	DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	CO VEL (MPH) SPD (MPH)
	TOWN-SITE (SAMPLES)	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	NEW HAVEN-007 (2084) METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRADLEY

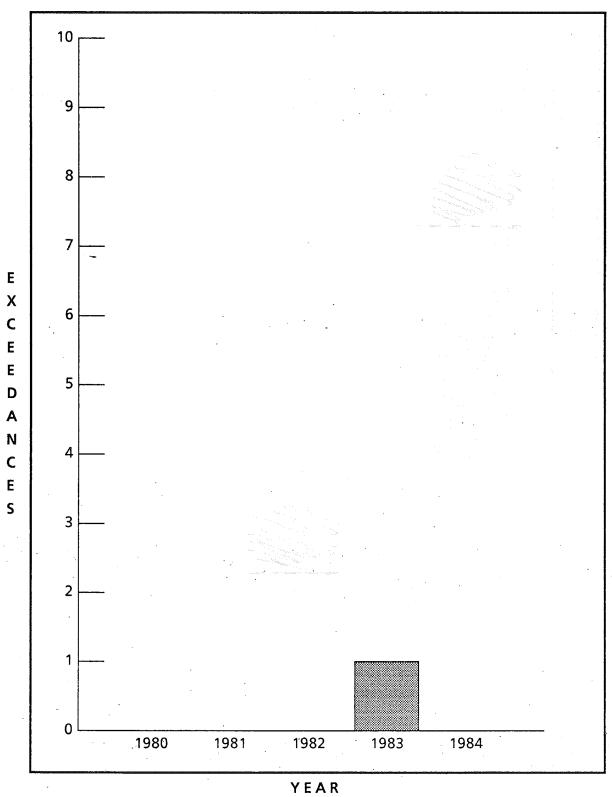
TABLE 26a

Exceedances of 8-hour CO Standard

	ι, ,				
SITE	1980	1981	1982	1983	1984
Bridgeport-004	0	0	0	1	0
New Britain-002	,87	Ti-	\$2	2	0
New Haven-007	XO	10	0 .	1	0ª
Stamford-020	241203	113 ^b	2 ^c	14	3-2

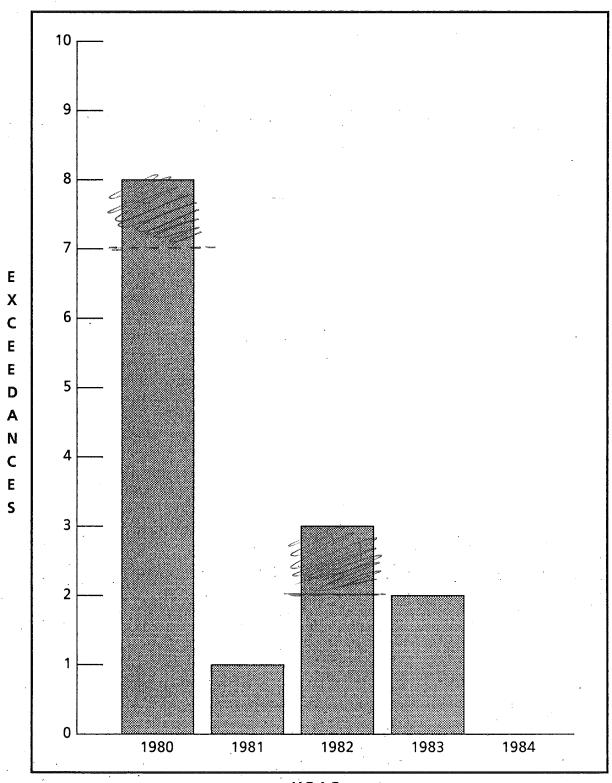
^aMissing data from January through September.

 $^{^{\}mathrm{b}}\mathrm{Missing}$ data from October through December.


cLocal road was changed from 2-way to 1-way traffic.

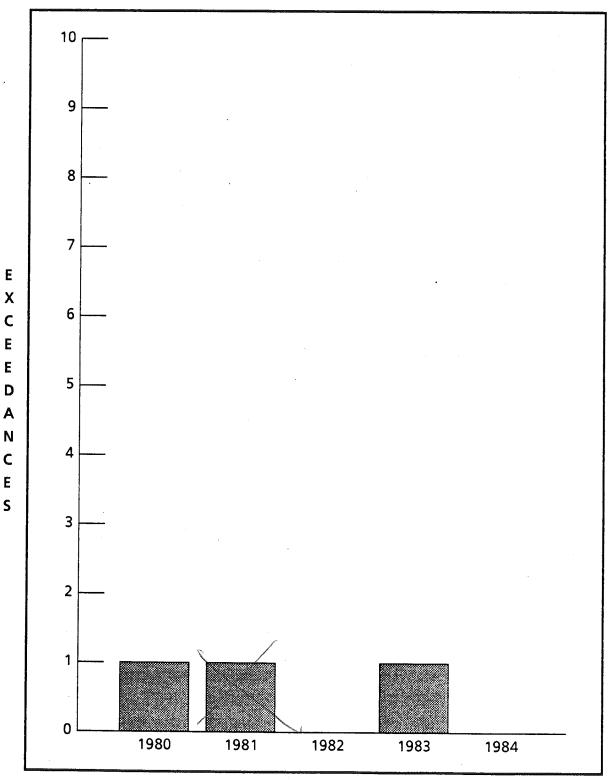
d golo of the dota is missing from November and December.

FIGURE 13


EXCEEDANCES OF THE 8-HOUR CO STANDARD

SITE: BRIDGEPORT-004

FIGURE 13, CONTINUED EXCEEDANCES OF THE 8-HOUR CO STANDARD


SITE: NEW BRITAIN-002

YEAR

FIGURE 13, CONTINUED EXCEEDANCES OF THE 8-HOUR CO STANDARD

SITE: NEW HAVEN-007

YEAR

FIGURE 14
36-MONTH RUNNING AVERAGE CO CONCENTRATION
SITE: BRIDGEPORT-004

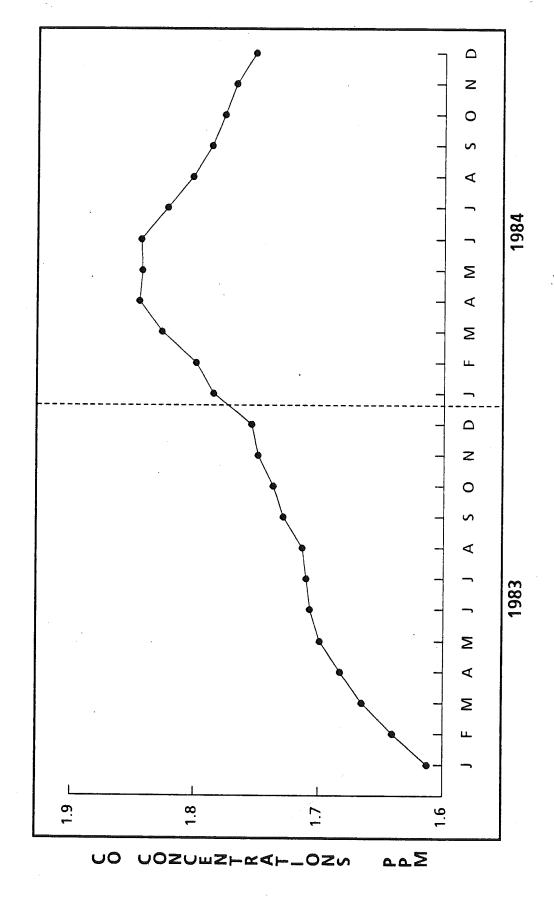


FIGURE 14, CONTINUED 36-MONTH RUNNING AVERAGE CO CONCENTRATION

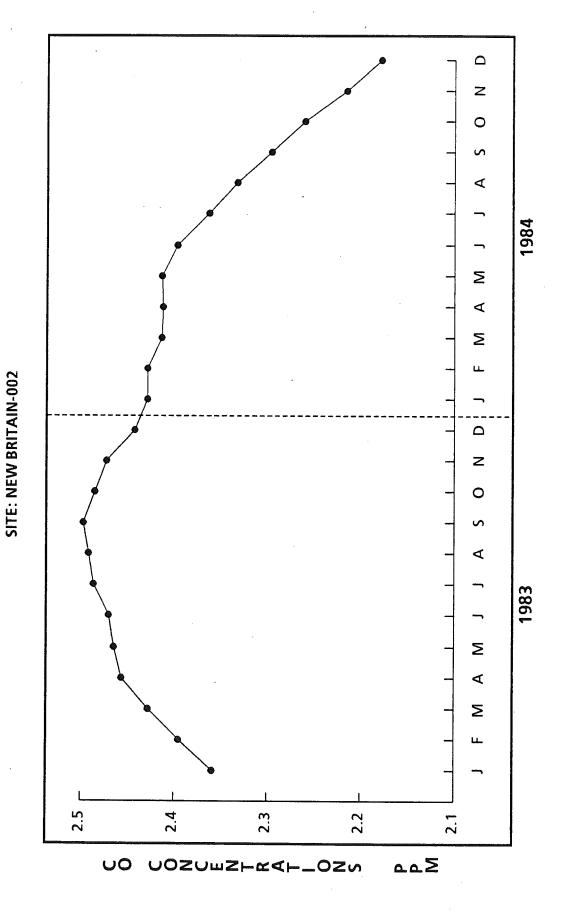


FIGURE 14, CONTINUED
36-MONTH RUNNING AVERAGE CO CONCENTRATION

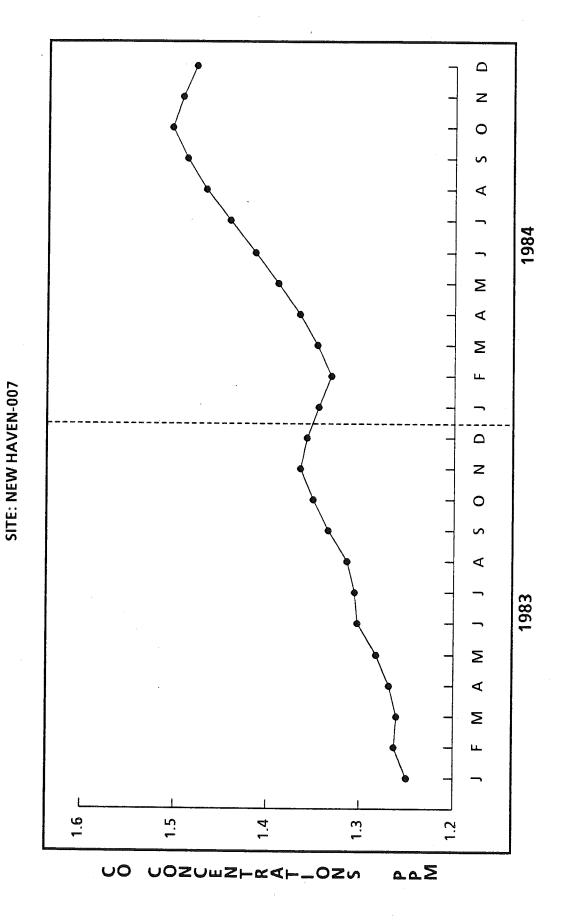
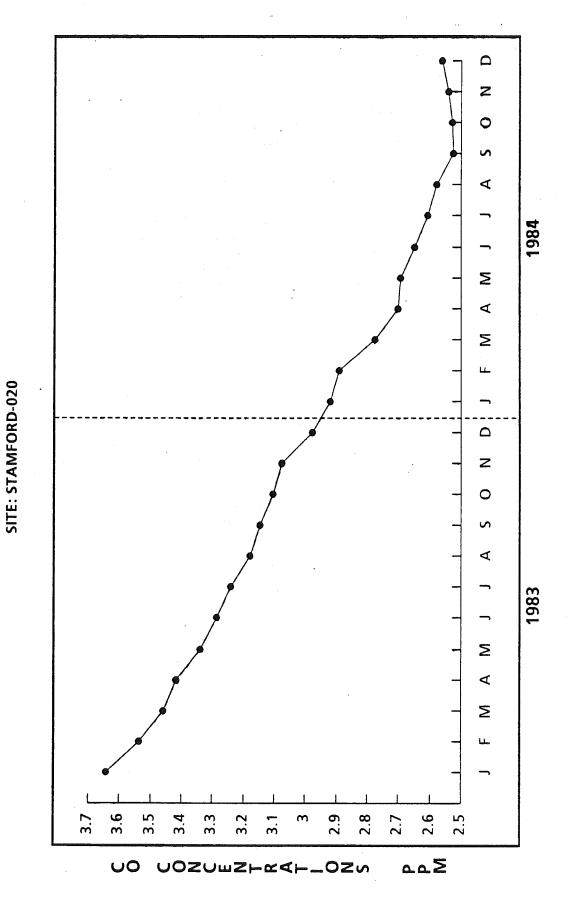



FIGURE 14, CONTINUED
36-MONTH RUNNING AVERAGE CO CONCENTRATION

VII. LEAD

Health Effects

Lead (Pb) is a soft, dull gray, odorless and tasteless heavy metal. It is a ubiquitous element that is widely distributed in small amounts, particularly in soil and in all living things. Although the metallic form of lead is reactive and rarely occurs in nature, lead is prevalent in the environment in the form of various inorganic compounds, and occasional concentrated deposits of lead compounds occur in the earth's crust.

The presence of lead in the atmosphere is primarily accounted for by the emissions of lead compounds from man-made processes, such as the extraction and processing of metallic ores, the incineration of solid wastes, and the operation of motor vehicles. The combustion of lead-containing gasoline by motor vehicles is the largest source of airborne lead emissions and is responsible for approximately 90% of the total. These emissions are in the form of fine-to-course particulate matter and are comprised of lead sulfate, ammonium lead halides, and lead halides, of which the chief component is lead bromochloride. The halide compounds appear to undergo chemical changes over a period of hours and are converted to lead carbonate, oxide and oxycarbonate.

The most important sources of lead in humans and other animals are ingestion of foods and beverages, inhalation of airborne lead, and the eating of non-food substances. From the standpoint of the general population, the intake of lead into the body is primarily through ingestion. The direct intake of lead from the ambient air is relatively small. Except in special cases, the contribution to the total body burden of lead via inhalation of airborne lead in urban areas is usually less than 30%. In non-urban areas, it is usually less than 5%.

Overexposure to lead in the United States is primarily a problem in children. Age, pica, diet, nutritional status, and multiple sources of exposure serve to increase the risk of lead poisoning in children. This is especially true in the inner cities where the prevalence of lead poisoning is greatest. Overexposure to lead compounds may result in undesirable biologic effects. These effects range from reversible clinical or metabolic symptoms that disappear after cessation of exposure to permanent damage or death from a single extreme dose or prolonged overexposure. Clinical lead poisoning is accompanied by symptoms of intestinal cramps, peripheral nerve paralysis, anemia, and severe fatigue. Very severe exposure results in permanent neurological, renal, or cardiovascular damage or death.

Conclusions

The Connecticut primary and secondary ambient air quality standard for lead and its compounds was not exceeded at any site in Connecticut during 1984.

The monitoring sites where the lead levels were highest were generally in urban locations with moderate to heavy traffic. This is due to the fact that in Connecticut the primary source of lead in the atmosphere is the combustion of leaded gasoline in motor vehicles.

A downward trend in measured concentrations of lead has been observed since 1978. This is probably due to the increasing use of unleaded gasoline. Figure A shows that the decrease in lead emissions from gasoline combustion from 1975 to 1984 has been commensurate with a decrease in statewide ambient average led concentrations. In fact, this relationship is so close, it has a correlation coefficient of 0.971 (see Figure B). Regarding Figures A and B, the reader should note that after 1981 a change occurred in the way in which lead concentrations were determined. Before 1982, lead concentrations were determined by analysis of quarterly composite samples from existing TSP monitors. Beginning in 1982, lead concentrations were determined by analysis of monthly composite samples

from only approved lead monitors. Both data points are depicted in Figure A for 1982. The discontinued method gives a lower average lead concentration in 1982 than the new method. The higher average lead concentration is used in Figure B.

Sample Collection and Analysis

The Air Monitoring Unit uses hi-vol and lo-vol samplers to obtain ambient concentrations of lead. These samplers are used to collect particulate matter onto fiberglass filters. The particulate matter collected on the filters is subsequently analyzed for its chemical composition. Wet chemistry techniques are used to separate the particulate matter into various components. The lead content of the TSP is determined using an atomic absorption spectrophotometer. (The use of these sampling devices and the chemical analysis techniques were fully described in the TSP section.) Unlike hi-vol TSP samples which are analyzed separately, the hi-vol lead sample is a composite of all the individual samples obtained at a site in a single month. That is, a cutting is taken from each filter during the month and these cuttings are collectively chemically analyzed for lead.

Discussion of Data

Monitoring Network - In 1984, both hi-vol and lo-vol samplers were operated in Connecticut to monitor lead levels (see Figure 15). There were 16 hi-vol sites and 5 lo-vol sites operated throughout the State (see Table 35) as part of the State and Local Air Monitoring Stations (SLAMS) network. The DEP operated the five lo-vol monitors in cities with populations greater than 200,000. They are Hartford 015 and 016, Stamford 022, New Haven 016, and Bridgeport 010. These "micro-scale" lead sites are situated near some of the busiest city streets in order to monitor "worst-case" lead concentrations. EPA approval for these lo-vol was granted in February, 1984.

Precision and Accuracy - The hi-vol lead monitors had a total of 24 precision checks in 1984. The resulting 95% probability limits were -9% to +10%. Accuracy for lead is defined as the accuracy of the analysis method. It is determined by chemical analysis of known lead samples. There were 14 audits for accuracy conducted on the monitoring network in 1984. Two different concentration levels were tested: low and high. The 95% probability limits for the low level test ranged from -7% to +9%; those for the high level test ranged from -6% to +7%.

NAAQS - Connecticut's ambient air quality standard for lead and its compounds, measured as elemental lead, is: 1.5 micrograms per cubic meter (ug/m^3), maximum arithmetic mean averaged over three consecutive calendar months. This standard was enacted on November 2, 1981. Previously, Connecticut's lead standard was substantially identical: 1.5 ug/m^3 for a calendar quarter-year average. The change to a 3-month running average means that a more stringent standard now applies, since there are three times as many data blocks within a calendar year which must be below the limiting concentration of 1.5 ug/m^3 .

3-Month Running Averages - Three-month running average lead concentrations are given in Table 27 for the year 1984. These values are also presented in graphical form in Figure 16 for the period 1982-84.

Trends - As was mentioned above, airborne concentrations of lead have been trending steadily downward. This was demonstrated on a statewide level in Figure A. The trend in lead levels can also be shown on a regional or a site-specific basis. Figure C shows the trend in annual average lead concentrations at each of nine monitoring sites. (Twelve sites from the lead monitoring network are not included here because they have not been in existence long enough to be able to demonstrate a long term trend.) Figure D shows the trends in the 3-year running average lead concentrations at the same nine sites. A downward trend in lead levels is apparent at all the sites, especially since 1978. This decrease in lead levels is commensurate with the decrease in lead emissions from gasoline combustion.

FIGURE A
STATEWIDE ANNUAL LEAD EMISSIONS FROM GASOLINE
AND
STATEWIDE ANNUAL AVERAGE LEAD CONCENTRATIONS

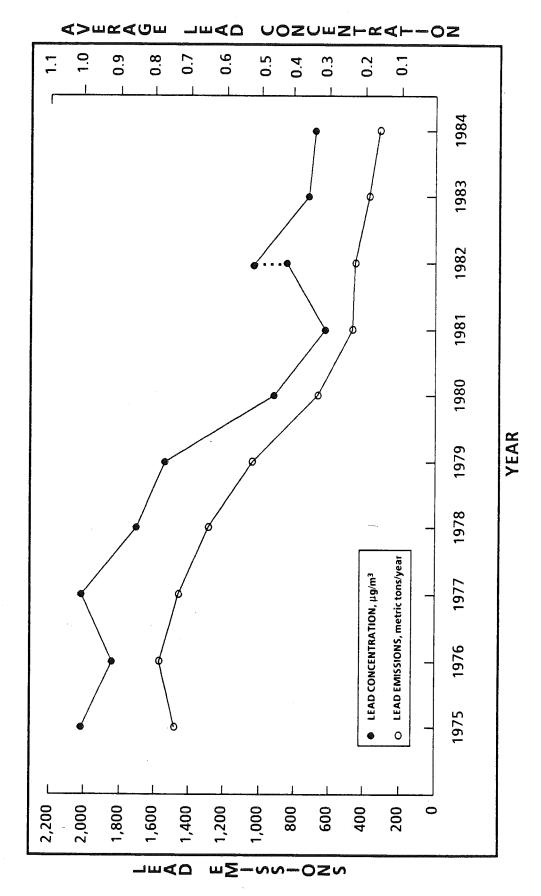
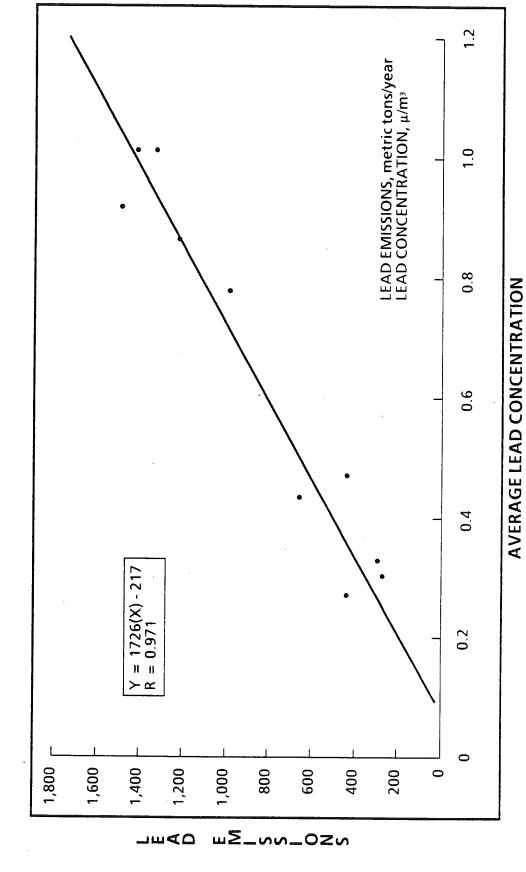



FIGURE B
STATEWIDE ANNUAL LEAD EMISSIONS FROM GASOLINE

STATEWIDE ANNUAL AVERAGE LEAD CONCENTRATIONS

S.

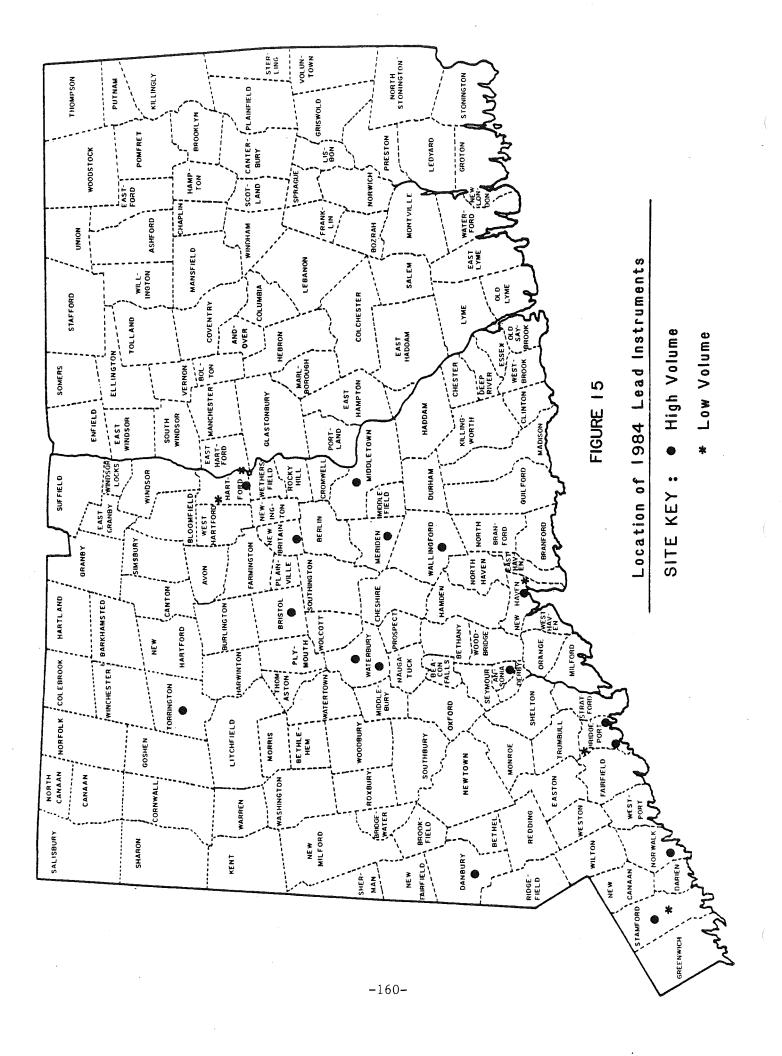
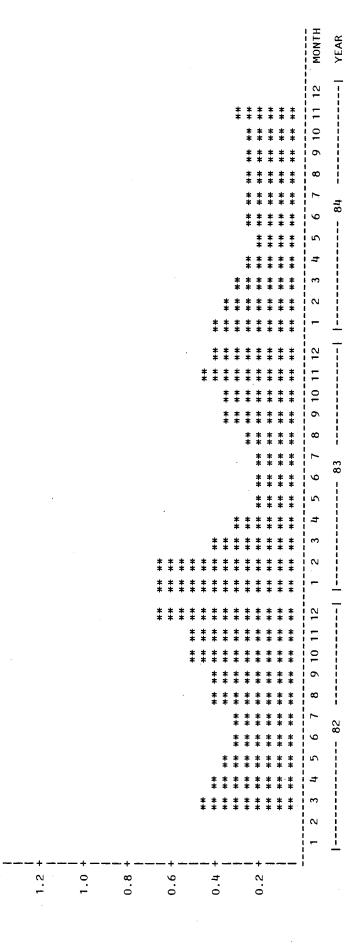


TABLE 27

1984 3-MONTH RUNNING AVERAGE LEAD CONCENTRATIONS (ug/m3)


Ansonia-003 0	Jan.*	Feb.*	Mar.	Apr.	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
	0.42	0.34	0.29	0.24	0.22	0.26	0.26	0.27	0.24	0.26	0.30	1
Bridgeport-009 0	0.35	0.31	0.23	0.24	0.20	0.25	0.22	0.24	0.22	0.24	0.27	0.30
Bridgeport-010 -		 		1	0.37	0.45	0.47	0.49	0.42	0.44	0.45	0.50
Bridgeport-123 0	0.44	0.37	0.31	0.33	0.32	0.33	0.32	0.34	0.32	0.36	0.41	0.49
Bristol-001 0	0.25	0.18	0.15	0.16	0.15	0.16	0.16	0.18	0.20	0.22	0.25	0.26
Danbury-002 0		0.31	0.25	0.25	0.19	0.20	0.19	0.21	0.22	0.24	0.26	0.29
Hartford-014 0		0.34	0.30	0.25	0.23	0.25	0.25	0.25	0.24	0.28	0.38	0.48
Hartford-015 0	0.58	0.53	0.53	0.45	0.38	0.40	0.41	0.43	0.40	0.51	0.55	0.67
Hartford-016	0.75	0.68 30.63	0.63	0.49	0.41	0.46	0.50	0.54	0.52	0.50	0.56	0.67
Meriden-002 0	0.34	0.30	0.28	0.22	0.19	0.20	0.21	0.22	0.26	0.30	0.41	0.44
Middletown-003 0	0.37	0.32	0.27	0.24	0.22	0.21	0.21	0.25	0.27	0.33	0.30	0.35
New Britain-007 0	0.30		0.21	0.19	0.16	0.14	0.15	0.18	0.20	0.23	0.28	0.32
New Haven-016 0		0.44	0.41	0.30	0.31	0.42	0.50	0.54	0.49	0.49	0.46	0.48
New Haven-123 0		f	0.45		0.42	0.41	0.39	0.34	0.36	0.43	0.52	0.54
Norwalk-012 0		0.39	0.31		0.24	0.28	0.28	0.27	0.24	0.28	0.33	0.36
Stamford-001 0		0.29	0.24	0.26	0.21	0.26	0.26	0.28	0.23	0.25	0.27	0.29
		0.35 0.35	0.35	0.30	0.29	0.35	0.40	0.41	0.38	0.37	0.39	0.37
Torrington-123 0		0.293	0.27	"0.2 <u>8</u>	0.23	0.22	1	1	 	1 1 1	 	1
Wallingford-001 0		0.31	0.25	0.21×0.19	0.19	0.22	0.23	0.26	0.24	0.26	0.33	0.40
Waterbury-007 0	0.53	0.43	0.34	0.31	0.31	0.35	0.39	0.41	0.37	0.40	0.51	0.56
Waterbury-123 0	0.74	0.53	0.41	0.38	0.37	0.43	0.45	0.46	0.44	0.47	0.62	0.72

st 3-month running average includes data from the last 2 months of 1983

3-MONTH RUNNING AVERAGES FOR LEAD

AVG

3-MONTH RUNNING AVERAGES FOR LEAD STATION=BRIDGEPORT 009 FIGURE 16, CONTINUED

AVG

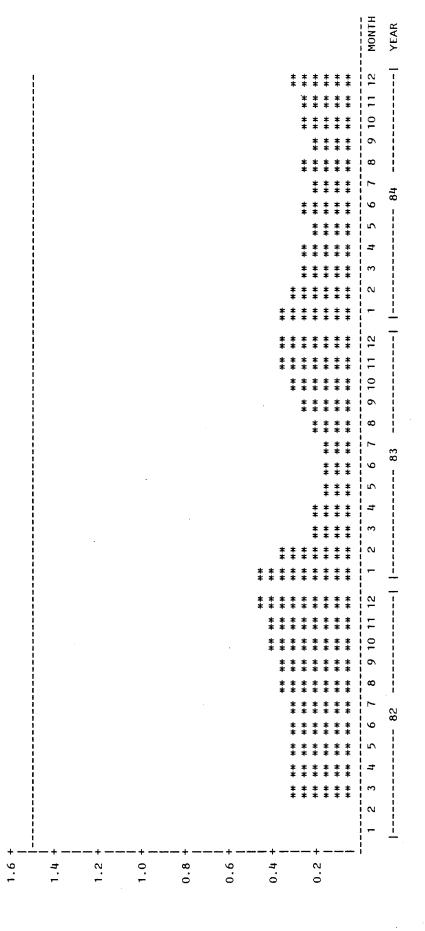


FIGURE 16, CONTINUED

3-MONTH RUNNING AVERAGES FOR LEAD STATION=BRIDGEPORT 010

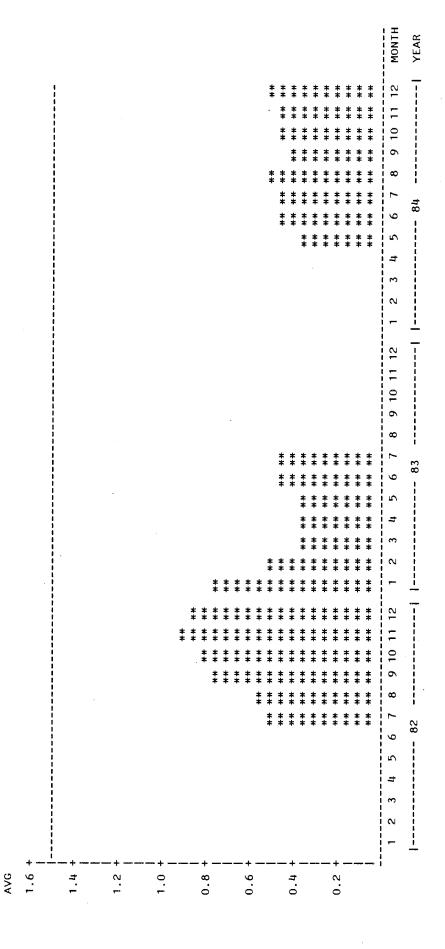


FIGURE 16, CONTINUED

3-MONTH RUNNING AVERAGES FOR LEAD STATION=BRIDGEPORT 123

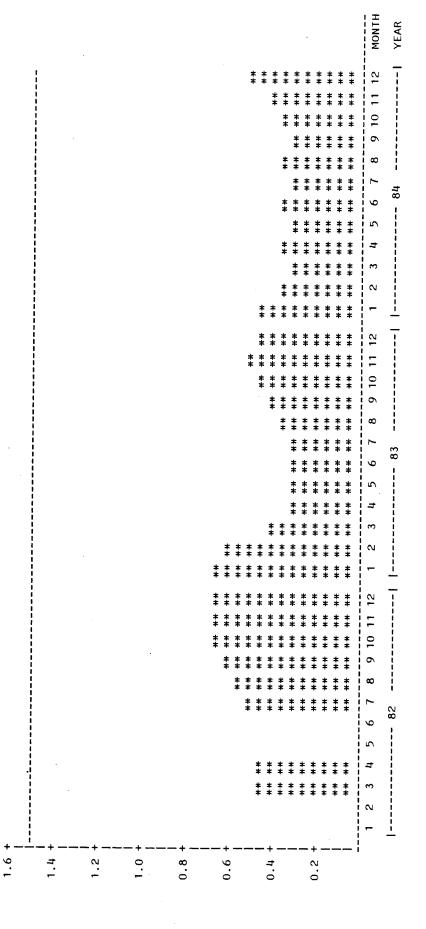


FIGURE 16, CONTINUED

3-MONTH RUNNING AVERAGES FOR LEAD STATION=BRISTOL 001

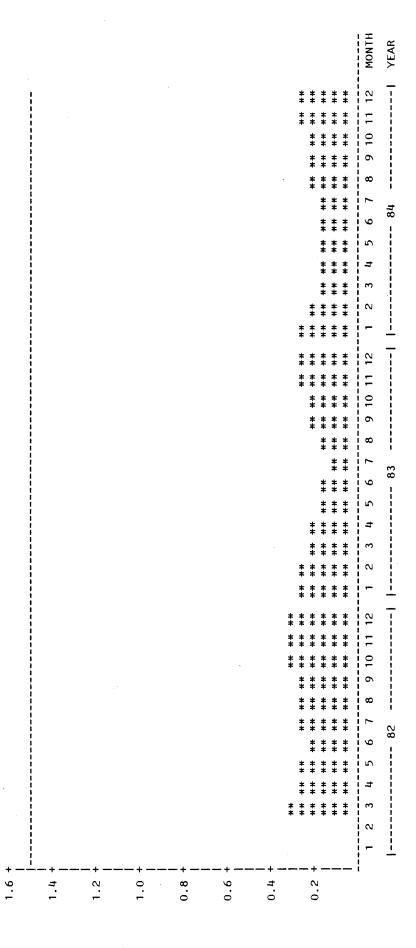


FIGURE 16, CONTINUED

3-MONTH RUNNING AVERAGES FOR LEAD STATION=DANBURY 002

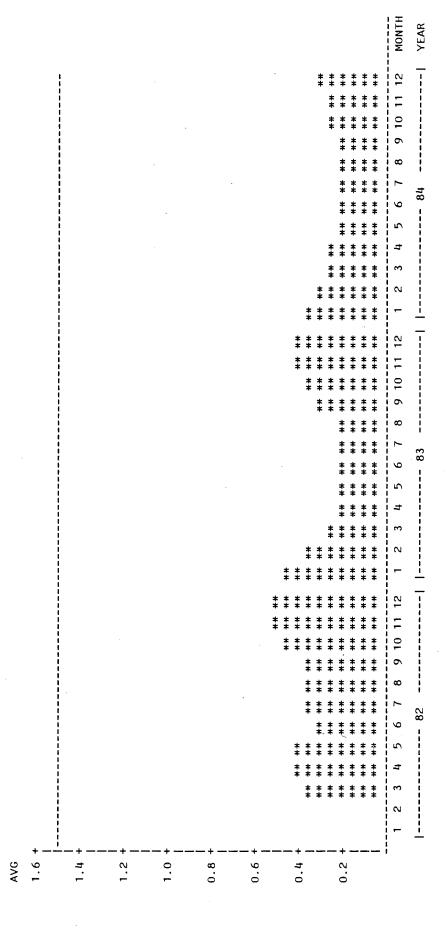


FIGURE 16, CONTINUED

3-MONTH RUNNING AVERAGES FOR LEAD STATION=HARTFORD 014

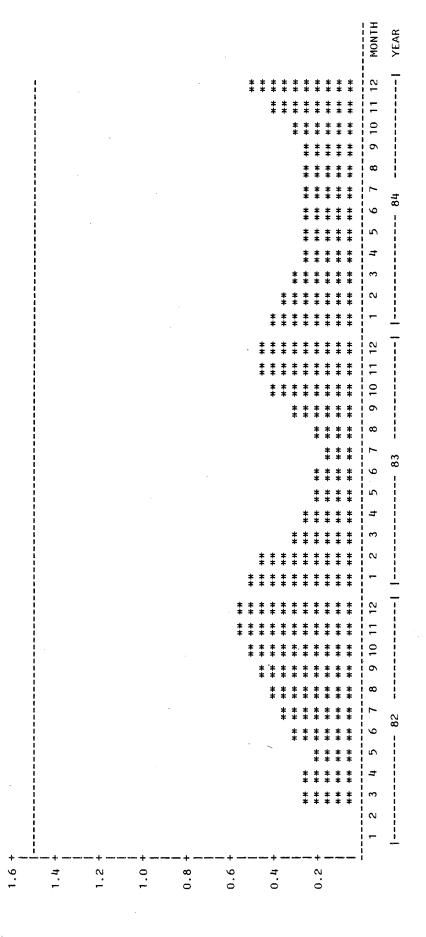


FIGURE 16, CONTINUED

3-MONTH RUNNING AVERAGES FOR LEAD

STATION=HARTFORD 015

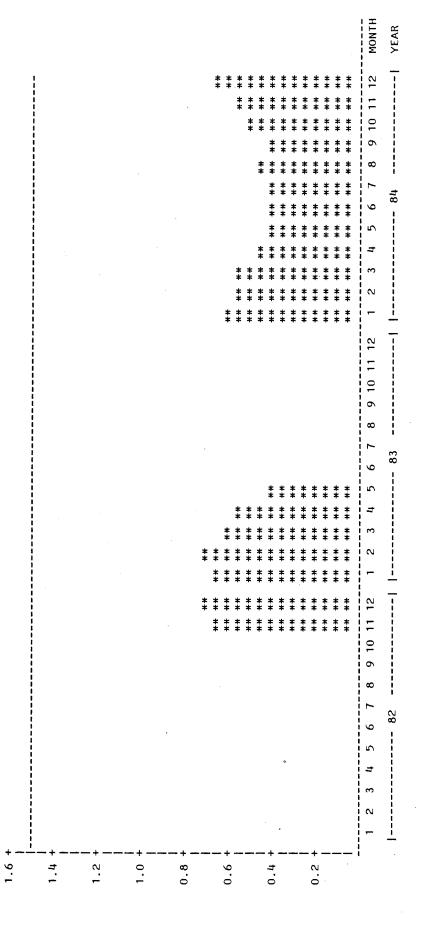


FIGURE 16, CONTINUED

3-MONTH RUNNING AVERAGES FOR LEAD STATION=HARTFORD 016

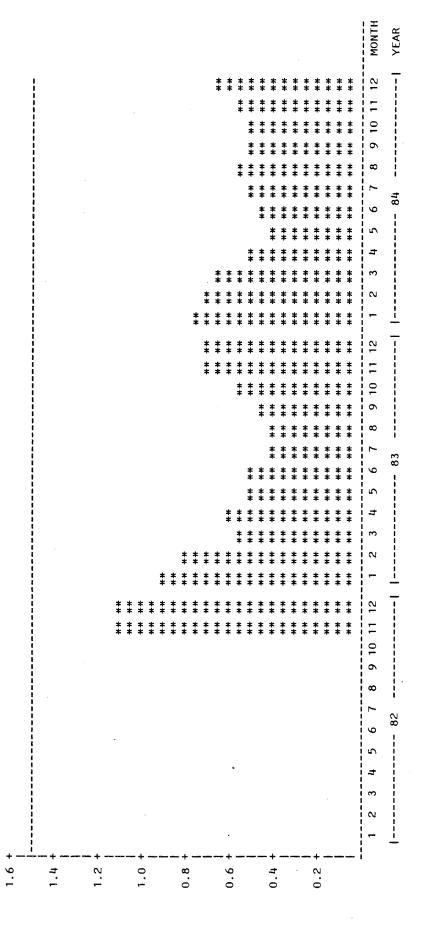


FIGURE 16, CONTINUED

3-MONTH RUNNING AVERAGES FOR LEAD

1.6 +

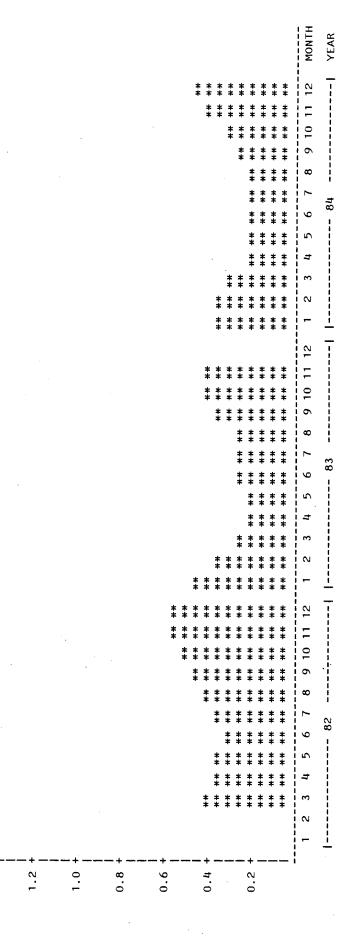


FIGURE 16, CONTINUED

3-MONTH RUNNING AVERAGES FOR LEAD STATION=MIDDLETOWN 003

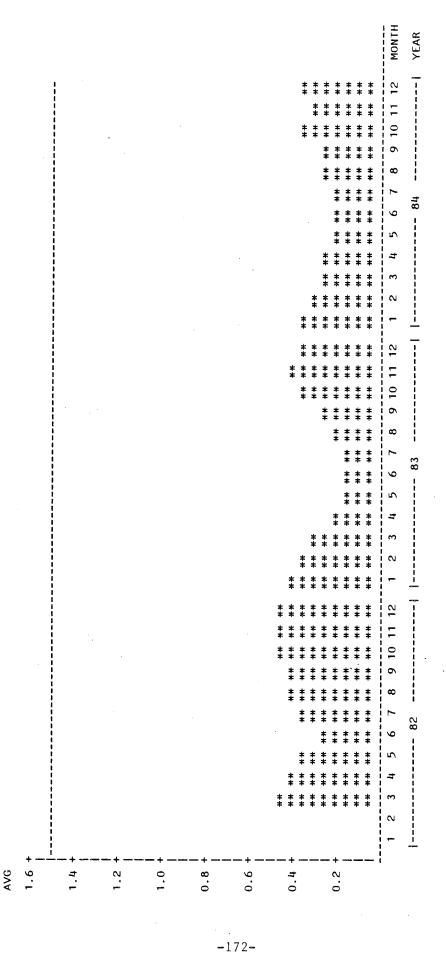


FIGURE 16, CONTINUED

3-MONTH RUNNING AVERAGES FOR LEAD

STATION=NEW BRITAIN 007

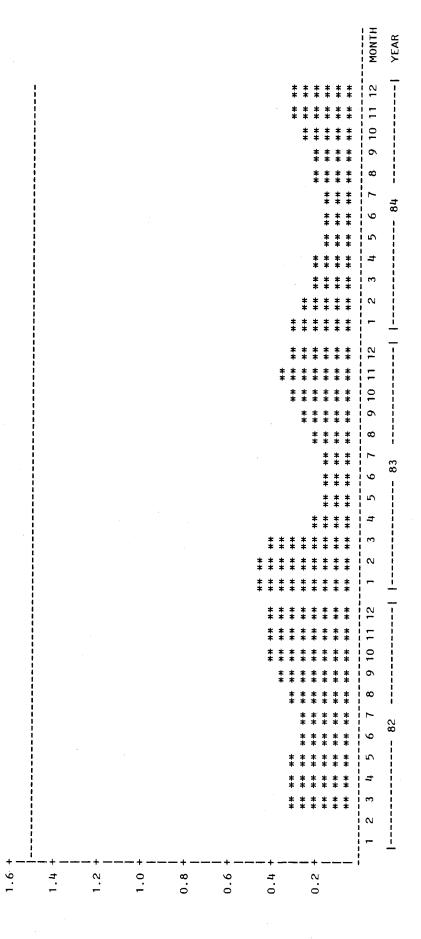


FIGURE 16, CONTINUED

3-MONTH RUNNING AVERAGES FOR LEAD STATION=NEW HAVEN 016

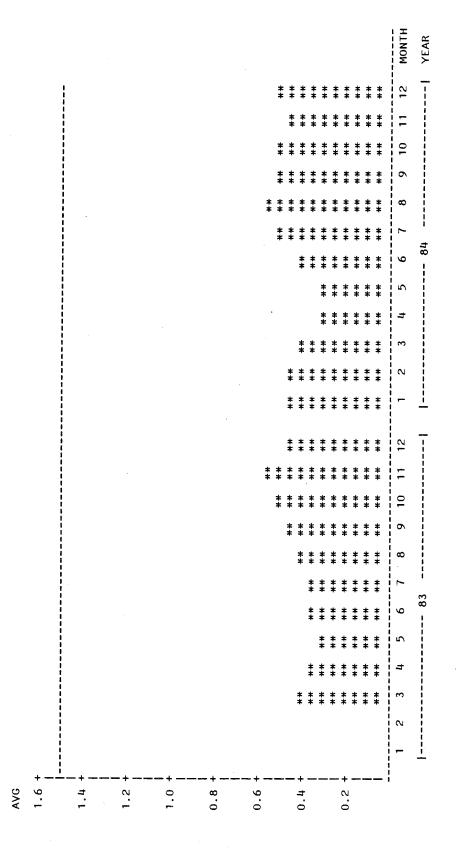


FIGURE 16, CONTINUED

3-MONTH RUNNING AVERAGES FOR LEAD STATION=NEW HAVEN 123

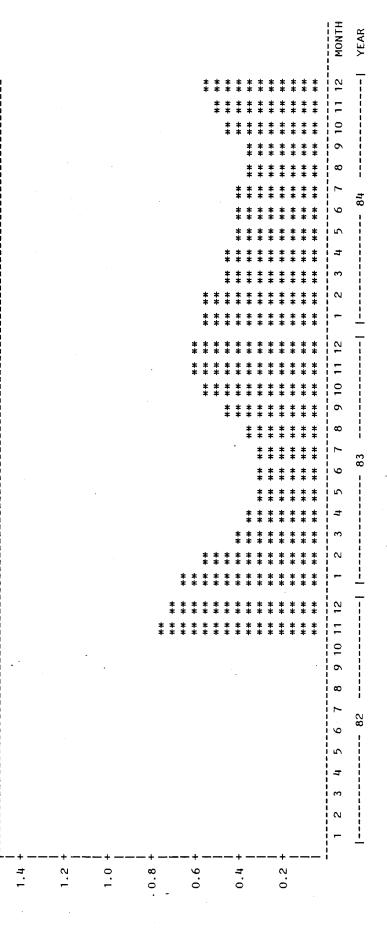


FIGURE 16, CONTINUED

3-MONTH RUNNING AVERAGES FOR LEAD STATION=NORWALK 012

AVG

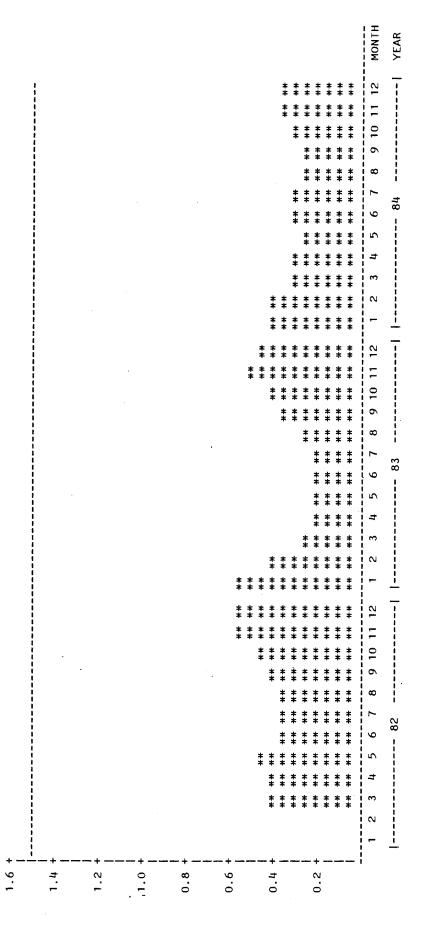


FIGURE 16, CONTINUED

3-MONTH RUNNING AVERAGES FOR LEAD STATION=STAMFORD 001

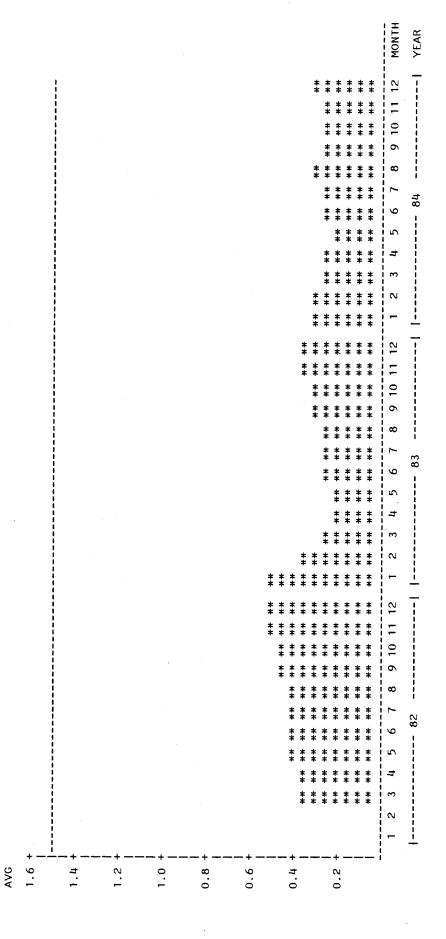


FIGURE 16, CONTINUED

3-MONTH RUNNING AVERAGES FOR LEAD STATION=STAMFORD 022

AVG

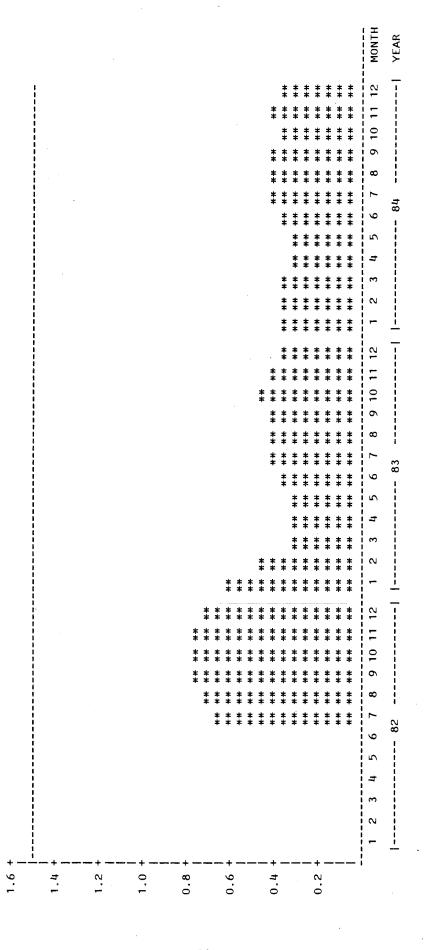
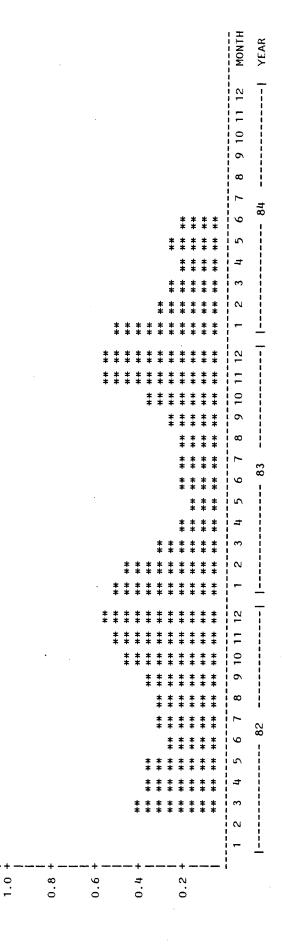



FIGURE 16, CONTINUED

3-MONTH RUNNING AVERAGES FOR LEAD
STATION=TORRINGTON 123

1.4

1.2

AVG

FIGURE 16, CONTINUED

3-MONTH RUNNING AVERAGES FOR LEAD STATION=WALLINGFORD 001

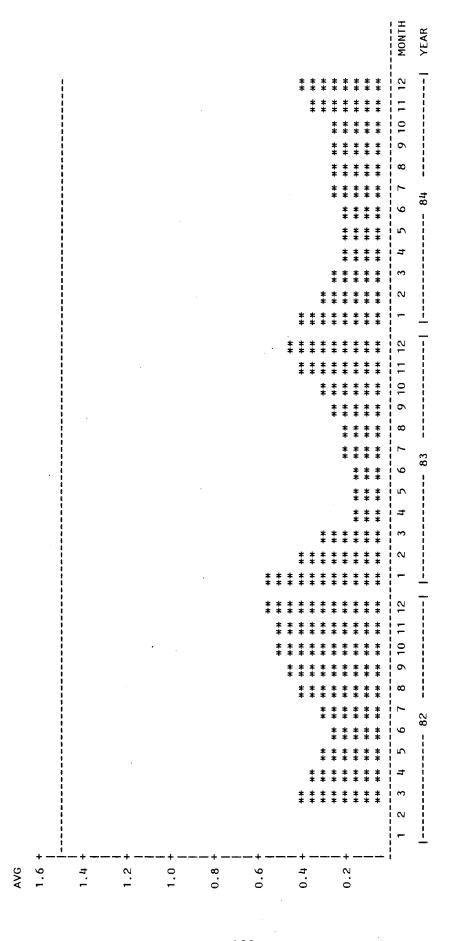


FIGURE 16, CONTINUED

3-MONTH RUNNING AVERAGES FOR LEAD STATION=WATERBURY 007

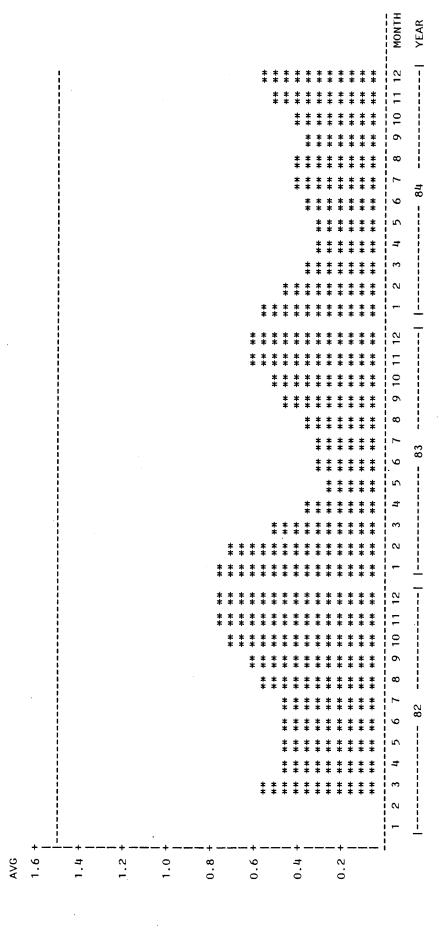
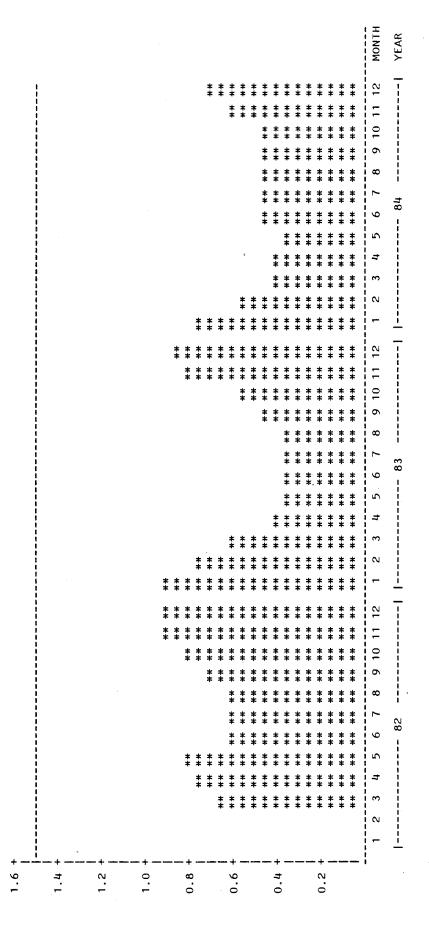



FIGURE 16, CONTINUED

3-MONTH RUNNING AVERAGES FOR LEAD STATION=WATERBURY 123

ANNUAL AVERAGE LEAD CONCENTRATION FIGURE C

SITE: ANSONIA-003

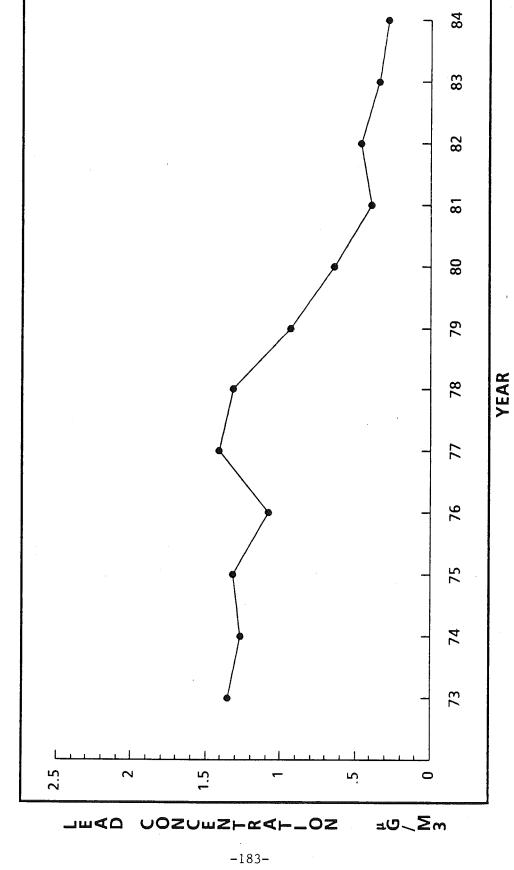


FIGURE C, CONTINUED

ANNUAL AVERAGE LEAD CONCENTRATION

SITE: BRIDGEPORT-123

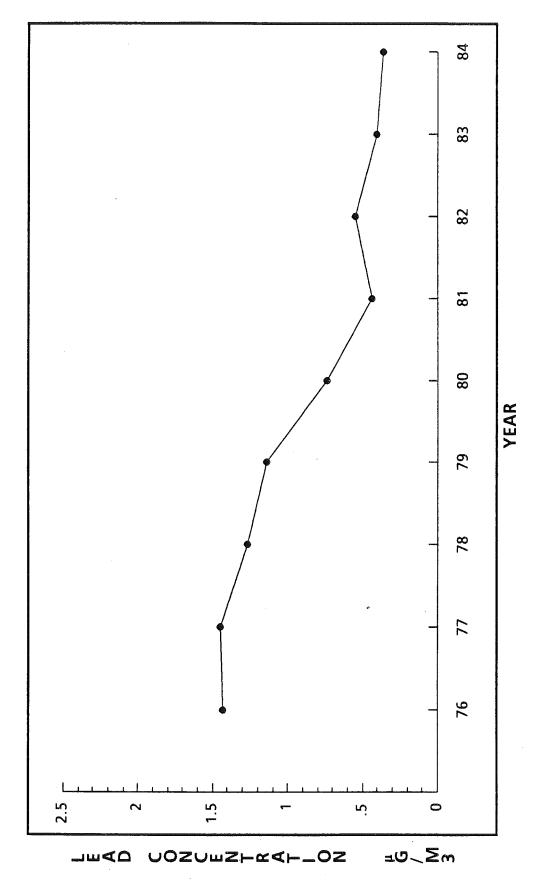


FIGURE C, CONTINUED
ANNUAL AVERAGE LEAD CONCENTRATION

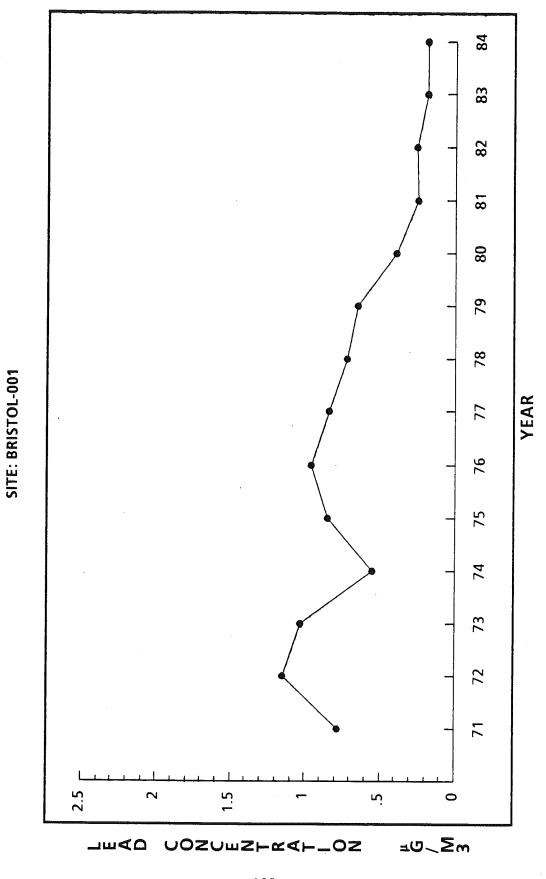
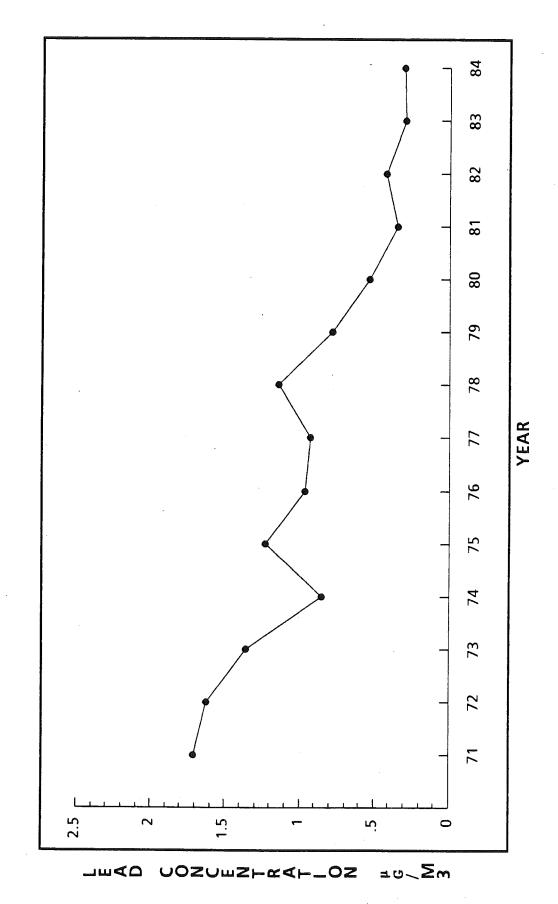


FIGURE C, CONTINUED
ANNUAL AVERAGE LEAD CONCENTRATION

SITE: MERIDEN-002



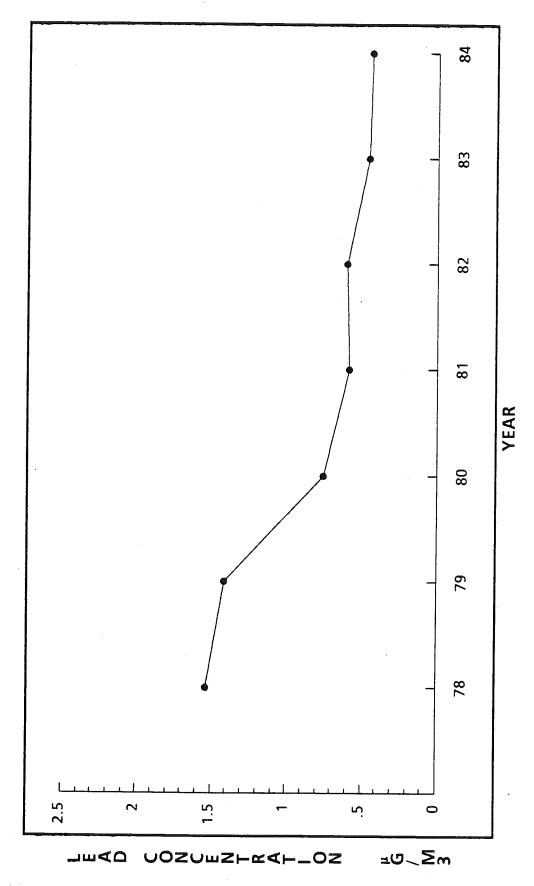

FIGURE C, CONTINUED
ANNUAL AVERAGE LEAD CONCENTRATION

FIGURE C, CONTINUED

ANNUAL AVERAGE LEAD CONCENTRATION

SITE: NEW HAVEN-123

ANNUAL AVERAGE LEAD CONCENTRATION FIGURE C, CONTINUED

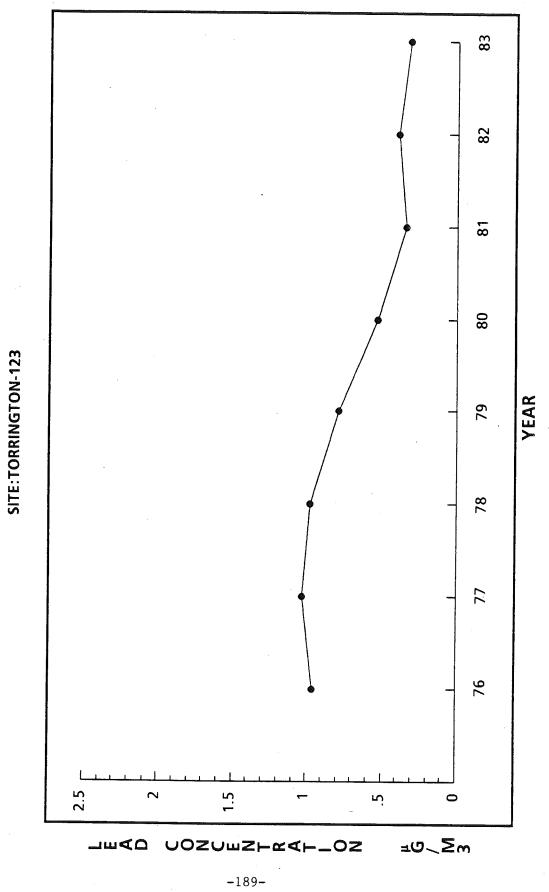


FIGURE C, CONTINUED

ANNUAL AVERAGE LEAD CONCENTRATION

SITE: WALLINGFORD-001

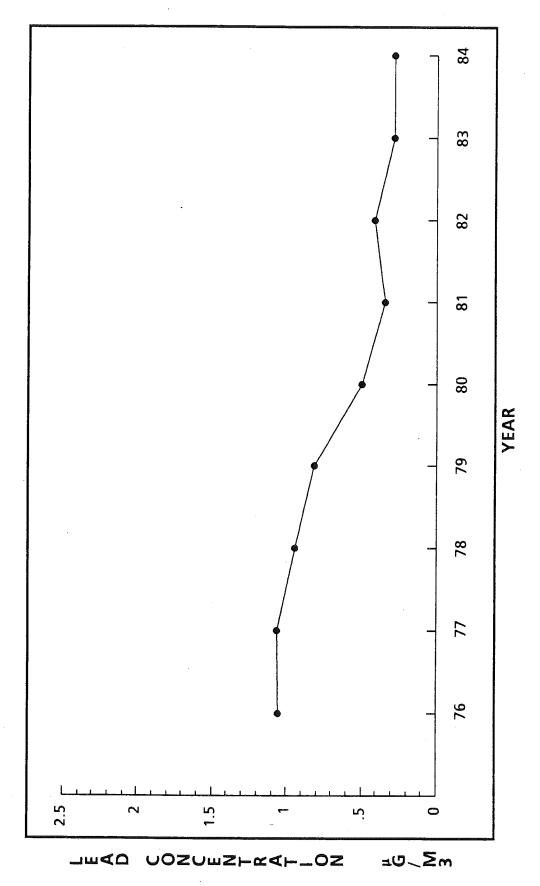


FIGURE C, CONTINUED ANNUAL AVERAGE LEAD CONCENTRATION

SITE:WATERBURY-123

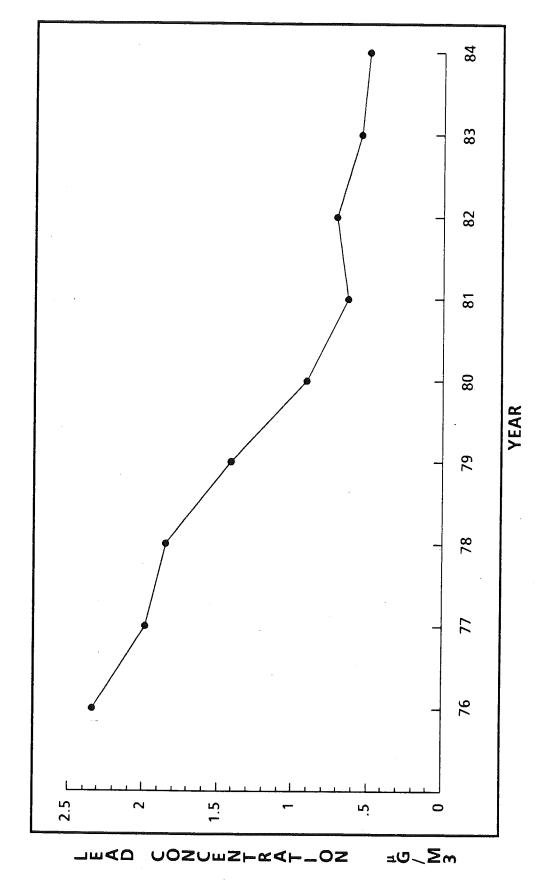


FIGURE D

3-YEAR RUNNING AVERAGE LEAD CONCENTRATION

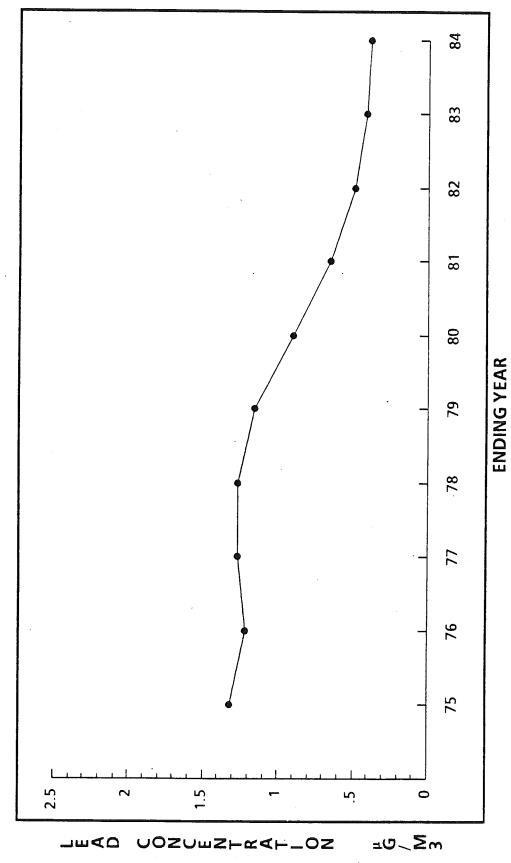


FIGURE D, CONTINUED

3-YEAR RUNNING AVERAGE LEAD CONCENTRATION

SITE: BRIDGEPORT-123

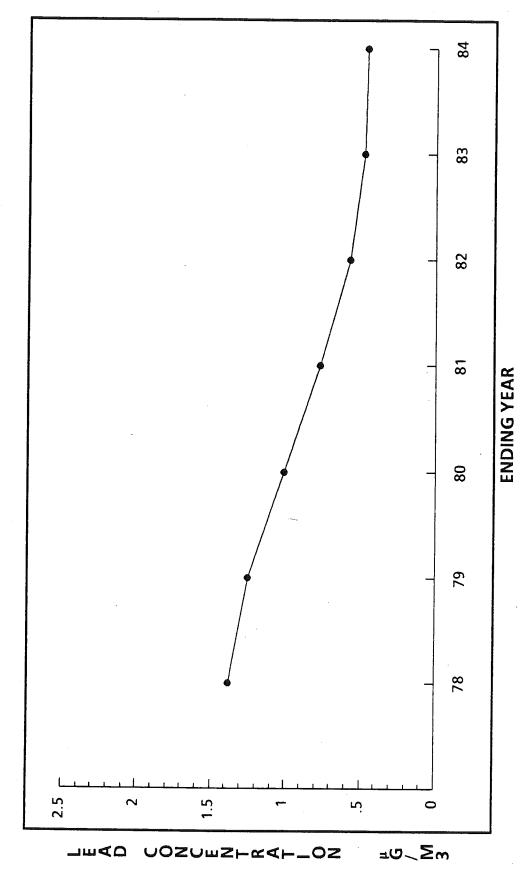


FIGURE D, CONTINUED

SITE: BRISTOL-001

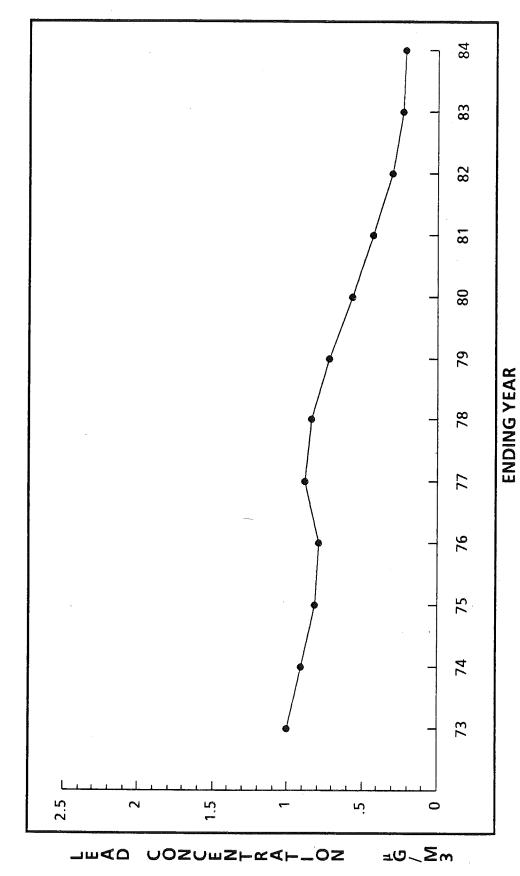


FIGURE D, CONTINUED

SITE: MERIDEN-002

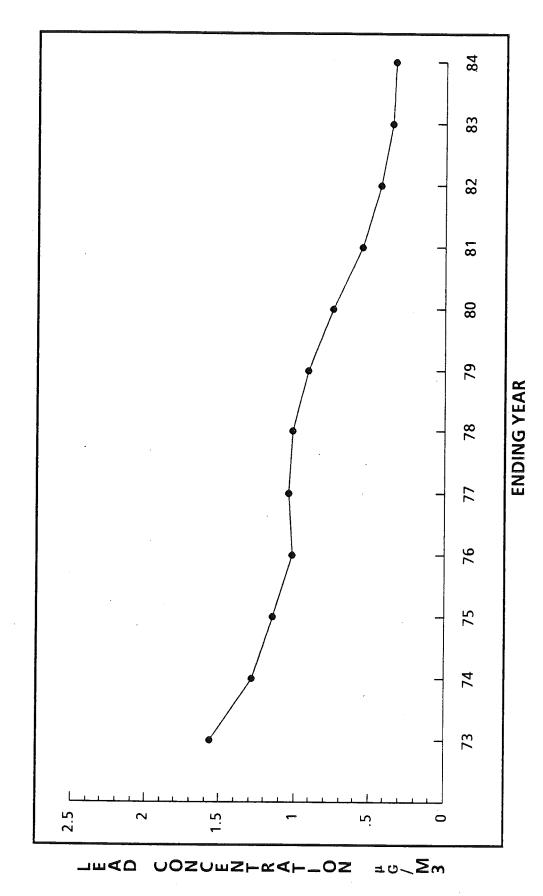


FIGURE D, CONTINUED

SITE: MIDDLETOWN-003

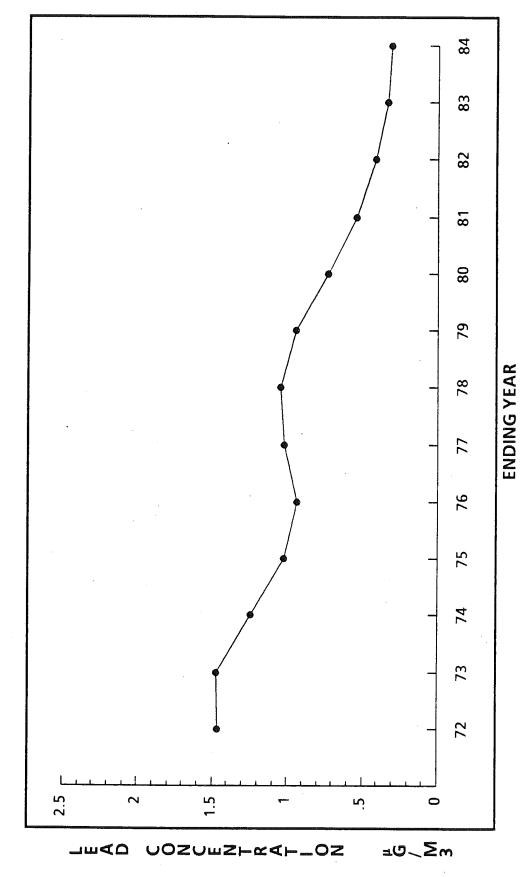


FIGURE D, CONTINUED

3-YEAR RUNNING AVERAGE LEAD CONCENTRATION

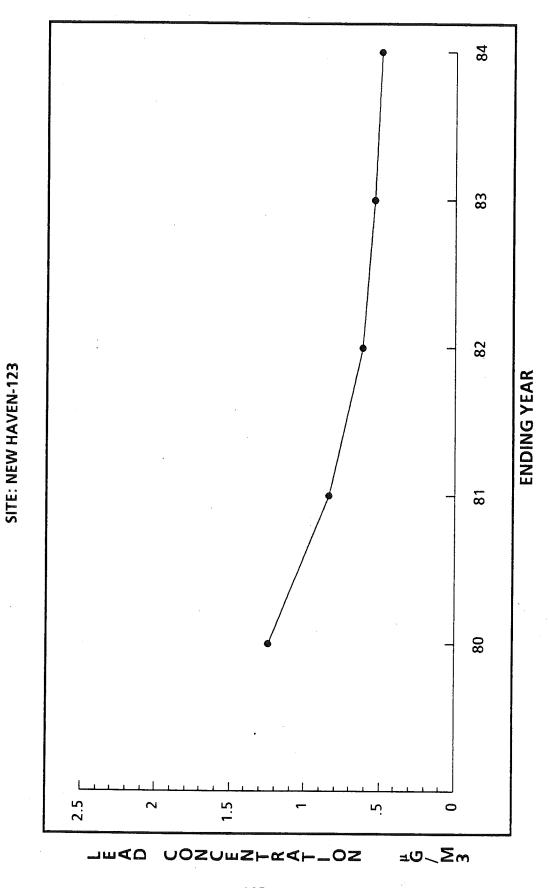


FIGURE D, CONTINUED

SITE: TORRINGTON-123

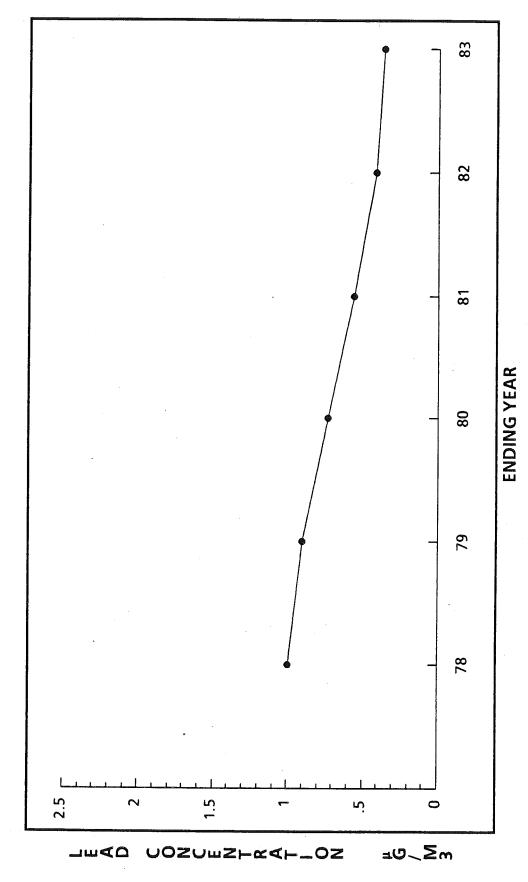


FIGURE D, CONTINUED

3-YEAR RUNNING AVERAGE LEAD CONCENTRATION

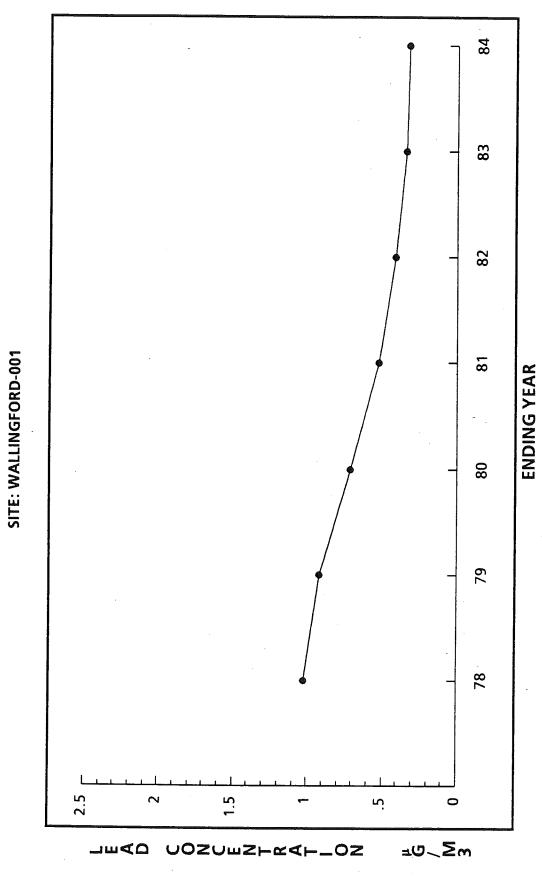
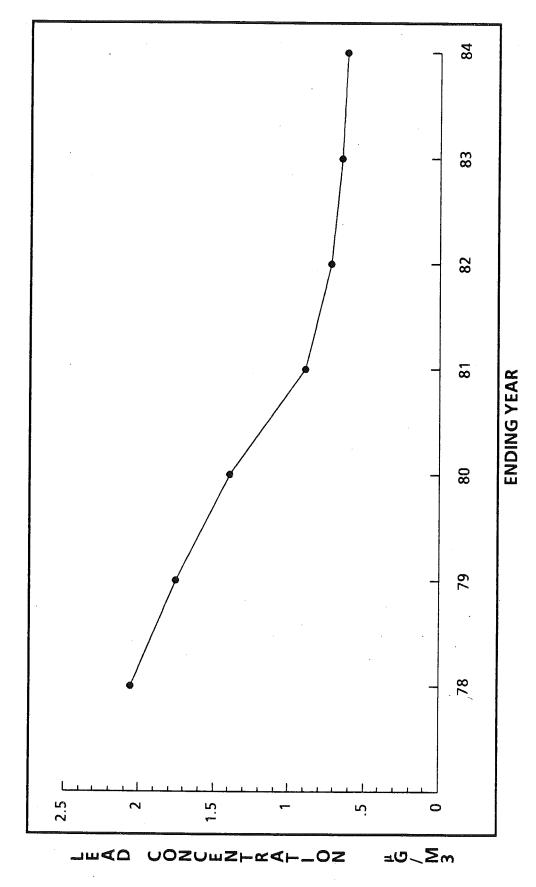



FIGURE D, CONTINUED

3-YEAR RUNNING AVERAGE LEAD CONCENTRATION SITE: WATERBURY-123

VIII. ACID PRECIPITATION

Monitoring Program

Recently, there has been a growing public concern about the occurrence and effects of atmospheric deposition, most notably acid precipitation or "acid rain." It has become apparent that, in order to address this concern, basic data need to be collected on the chemical properties of precipitation. Recognizing this, the State of Connecticut, through the Department of Environmental Protection, has agreed to cooperate with the Water Resources Division of the United States Geological Survey (USGS) to establish the Connecticut Atmospheric Deposition Monitoring Program.

Program Objectives

The program is designed to collect and analyze precipitation on an event basis and has the following objectives:

- (1) to determine selected chemical and physical properties of precipitation in Connecticut;
- (2) to determine the spatial and temporal distribution of precipitation chemistry in the State;
- (3) to determine the relationships between precipitation chemistry and meteorological conditions, such as storm track and air mass movement;
- (4) to provide baseline information that can be used to determine trends and estimate loads; and
- to use techniques and methodologies consistent with those of the national monitoring networks in order to provide comparative information.

Data Collection Sites

Data collection sites have been established according to siting criteria used in the National Atmospheric Deposition Program (NADP). Use of these criteria ensures the validity of comparisons made between data which are collected through Connecticut's program and data from other atmospheric deposition programs. Other objectives considered during the siting process were the collection of samples representative of different geographic areas of the State, and the sampling of precipitation representative of long-range transport and not merely local sources. Using these criteria, precipitation sampling sites were established in the towns of Plainfield, Marlborough and Litchfield (see Figure 17).

Equipment

Each site is equipped with a Geo Filter automatic wet-dry sensing precipitation collector. This collector is the same type as those used by the NADP and the National Trends Network (NTN). The collector operates when precipitation wets an electronic sensor, completing an electrical circuit. This activates a motor that opens a lid over the sample container when the precipitation event begins and closes the lid when the precipitation ceases. The purpose of the lid is to retard the loss of samples through evaporation and to prevent contamination by dry fallout.

Each site is also equipped with an automatic rain gage which provides a record of the quantity of rain at 15-minute intervals.

In addition to the above equipment, a prototype precipitation quality monitor is being tested at the Plainfield site. Developed by the USGS Hydrologic Instrumentation Facility, the monitor consists of a wet-dry sensing precipitation collector fitted with a funnel in place of a collection container. Precipitation flows from the funnel through tubing to a series of sensors. The sensors continuously measure pH, temperature and specific conductance throughout a precipitation event and record the data at pre-selected intervals. Precipitation quantity is measured by a tipping-bucket type rain gage.

Data Collection

Samples of precipitation are gathered from the automatic collectors as soon as possible following the end of a precipitation event, in most cases within 24 hours. The samples are immediately tested for acidity through pH measurements. The samples are also tested for specific conductance, which is a measure of the ions in solution — the dissolved solids in solution — which is a measure of the pollutant load. The results of this testing for the three precipitation sampling sites are tabulated from 1981 in Tables 28, 29 and 30. The results for 1984 are illustrated in Figures 18 through 26.

Samples from selected precipitation events are also sent to a USGS laboratory for further analyses to determine the concentrations of additional chemical constituents, including major anions, cations, nutrients and trace metals.

Through the Connecticut Atmospheric Deposition Monitoring Program, a network capable of providing uninterrupted baseline data on precipitation quality within the State has been developed. Data collected through the program is currently being published monthly by the USGS in its report, Water Resources Conditions in Connecticut. When using the data, one should note that it is specific only to the time and place of its collection.

Discussion of Data

Presently, data that has been collected in the initial stages of the study is being analyzed to determine, on a preliminary basis, the distribution and magnitude of atmospheric deposition in Connecticut. Because precipitation chemistry is a function of air quality and climate, both of which fluctuate over time and space, several more years of continuous data collection will be necessary to develop an adequate baseline to determine trends accurately and to more fully define the controlling processes. However, a preliminary evaluation of the data indicates that the precipitation occurring within Connecticut has been chemically affected by man-made contaminants. The data show that 24 percent of the precipitation events studied to date have had a pH of 4.0 or below. Further evaluation of the data will provide more information on the source of the contaminants and the effects upon the environment.

It is important to stress that it is presently difficult to forecast statewide trends in the chemical properties of precipitation, or to perform comparative analyses, because of a lack of a large long-term data base. Generally, a 20-year or greater period of record is an acceptable statistical data base. When performing comparative analyses, some hydrologic data bases use 60 years or more of record keeping. Therefore, it should be apparent that data collection under the Connecticut Atmospheric Deposition Monitoring Program must continue until a sufficient period of record has been obtained.

Further information is available from the Water Resources Division, United States Geological Survey, 450 Main Street, Hartford, Connecticut 06103 at (203) 722-2528, or from the Natural Resources Center, Department of Environmental Protection, 165 Capitol Avenue, Hartford, Connecticut 06106 at (203) 566-3540.

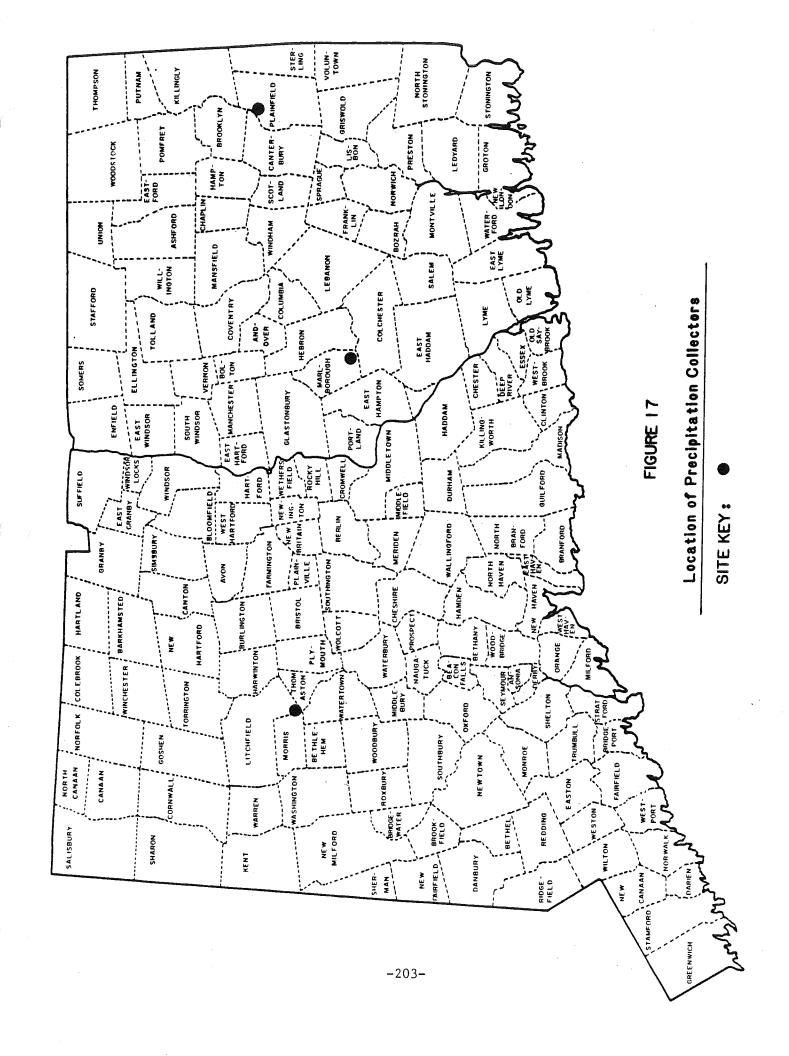


TABLE 28

ATMOSPHERIC DEPOSITION DATA FOR THE PLAINFIELD SITE

Event <u>Number</u>	Period of Collection	Specific Conductance	Hq	Inches of Precipitation
1 2 3 4 5	10/23/81 - 10/27/81 11/14/81 - 11/16/81 12/01/81 - 12/02/81 12/14/81 12/15/81 - 12/16/81 12/27/81 - 12/28/81	15 15 14 12 12 51	4.5 4.5 4.4 4.6 4.0	
1 2 3 4 5 6 7 8 9	01/04/82 - 01/05/82 04/26/82 - 04/27/82 05/29/82 - 05/31/82 06/02/82 06/04/82 - 06/06/82 07/28/82 - 07/29/82 08/09/82 08/09/82 - 08/10/82 11/28/82 - 11/29/82 12/16/82	15 11 18 5 10 18 25 31 8	4.8 4.8 4.4 5.0 5.1 4.4 4.2 4.8 4.9	2.70 0.99 1.43 2.86 4.28 0.11 0.96 0.71 0.98 0.85
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	01/05/83 - 01/06/83 01/13/83 01/22/83 - 01/24/83 01/29/83 - 01/31/83 02/03/83 02/06/83 - 02/07/83 02/11/83 - 02/12/83 02/17/83 03/02/83 03/06/83 - 03/09/83 03/19/83 - 03/21/83 03/27/83 - 03/28/83 04/10/83 04/10/83 04/16/83 - 04/17/83 04/19/83 - 04/20/83 04/24/83 05/31/83 06/04/83 06/27/83 - 06/28/83 07/6/83 07/22/83 07/22/83 07/25/83 08/11/83 - 08/12/83 09/12/83	15 18 8 26 14 13 6 17 26 47 20 22 32 13 16 13 15 30 41 68 27 79 38 39 87	4.792779520542645920838007	0.49 0.78 1.17 0.36 1.21 0.44 0.04 1.09 0.37 1.37 1.91 1.11 0.02 2.37 0.96 2.84 2.42 1.47 0.99 1.22 0.38 0.25 0.29 1.60 0.54

TABLE 28, Continued

Event <u>Number</u>	Period of Collection	Specific <u>Conductance</u>	На	Inches of Precipitation
26 27 28 29 30 31 32 33 34 35 36	09/23/83 10/01/83 - 10/02/83 10/12/83 - 10/13/83 10/18/83 10/23/83 - 10/25/83 11/03/83 - 11/04/83 11/10/83 11/15/83 - 11/16/83 11/21/83 11/24/83 - 11/26/83 11/28/83 - 11/29/83	14 17 4 45 8 30 17 8 14 5	4.7 4.4 5.4 4.0 4.8 4.2 4.4 4.8 4.6 5.2 4.3	0.95 1.33 1.10 0.28 1.15 0.60 1.08 2.46 0.69 2.89 0.97
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19 20 21 22 22 22 22 23 23 23 23 23 23 23 23 23	01/10/84 - 01/11/84 01/18/84 - 01/19/84 01/24/84 02/03/84 - 02/05/84 02/11/84 02/14/84 - 02/18/84 02/24/84 - 02/25/84 02/28/84 - 03/01/84 03/05/84 03/13/84 - 03/19/84 03/18/84 - 03/19/84 03/21/84 03/21/84 03/28/84 - 04/15/84 04/14/84 - 04/15/84 04/14/84 - 04/15/84 05/03/84 - 05/04/84 05/03/84 - 05/04/84 05/12/84 - 05/14/84 05/12/84 - 05/31/84 05/31/84 - 06/03/84 06/19/84 06/27/84 - 06/29/84 07/19/874 07/19/874 07/23/84 07/27/84 09/04/84 09/12/84 09/12/84	24 52 25 24 37 37 25 11 54 20 12 12 10 17 21 40 40 62 62 18 71 51 51 51 51 51 51 51 51 51 51 51 51 51	213319469253865901993885059000912 4444444444444344334443443454344	0.81* 0.30* 0.32* 0.32* 0.327 0.388 0.47 0.588 0.488 0.424 0.583 1.967 0.165 0.888 0.49 0.5588 0.49 0.75 0.627 1.08 0.669 1.07

^{*}Water equivalent of snowfall

TABLE 28, Continued

Event <u>Number</u>	Period of Collection	Specific <u>Conductance</u>	На	Inches of Precipitation
36	10/23/84 - 10/24/84	25	4.4	0.15
37	10/26/84 - 10/29/84	38	4.0	1.22
38	11/05/84	6	5.0	0.55
39	11/11/84	8	4.8	1.79
40	11/15/84	55	4.0	0.18
41	11/29/84	17	4.7	0.42
42	12/03/84	21	4.4	0.65
43	12/05/84 - 12/06/84	10	4.7	1.19*
44	12/19/84	40	4.1	0.33
45	12/21/84 - 12/22/84	47	4.0	0.91*

^{*} Water equivalent of snowfall

TABLE 29

ATMOSPHERIC DEPOSITION DATA FOR THE MORRIS DAM SITE

Event <u>Number</u>	Period of Collection	Specific <u>Conductance</u>	Hq	Inches of <u>Precipitation</u>
1	12/16/82	22	4.5	1.18
12345678901121156789012222222223122223333	01/05/83 - 01/06/83 01/10/83 - 01/11/83 01/23/83 02/02/83 - 02/03/83 02/06/83 - 02/07/83 02/11/83 - 02/12/83 02/17/83 03/02/83 03/02/83 - 03/21/83 03/27/83 - 03/28/83 04/10/83 04/10/83 04/16/83 - 04/17/83 04/19/83 - 04/20/83 04/19/83 - 05/16/83 05/15/83 - 05/16/83 05/29/83 - 05/30/83 06/04/83 06/28/83 07/05/83 07/25/83 08/11/83 - 08/12/83 09/12/83 09/12/83 10/12/83 - 10/02/83 10/12/83 - 10/02/83 10/18/83 10/23/83 - 10/25/83 11/03/83 - 11/04/83 11/10/83 11/10/83 11/15/83 - 11/16/83	22 18 6 13 19 5 9 40 10 10 10 10 10 10 10 10 10 10 10 10 10	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.18 0.64 2.39 1.45 1.89 0.45* 0.27 1.29 1.07 2.61 1.35 0.81 1.75 0.81 1.54 0.94 1.18 3.32 0.94 1.64
33 34 35 36	11/21/83 11/24/83 - 11/25/83 11/28/83 - 11/29/83 12/06/83	14 21 24 32	4.6 4.5 4.3 4.2	0.57 1.45 0.71 1.04
37 1 2	12/12/83 - 12/14/83 01/10/84 - 01/11/84 01/18/84 - 01/19/84	26 12 45	4.5 4.5 4.0	3.41 0.47* 0.21*

^{*} Water equivalent of snowfall

TABLE 29, Continued

Event	Period of	Specific		Inches of
<u>Number</u>	Collection	Conductance	<u>Ha</u>	<u>Precipitation</u>
•				
3	01/24/84	34	4.2	0.45
4	01/30/84 - 01/31/84	22	4.3	0.38*
5 6	02/03/84 - 02/05/84	41	4.0	0.69
6	02/11/84	43	4.0	0.48
7	02/14/84 - 02/16/84	23	4.7	1.53
8	02/24/84 - 02/25/84	80	3.8	0.86
9	02/28/84 - 03/01/84	10	4.6	1.34
10	03/05/84 - 03/06/84	25	4.2	0.53
11	03/18/84 - 03/19/84	30	4.1	0.52
12	03/21/84	24	4.3	0.65
13	03/28/84 - 03/30/84	10	4.8	1.61*
14	04/05/84	25	4.4	2.79
15	04/13/84 - 04/16/84	32	4.2	1.25
16	04/23/84 - 04/24/84	17	4.6	0.55
1 <i>7</i>	05/03/84 - 05/04/84	28	4.2	1.24
18	05/08/84	34	4.2	0.99
19	05/12/84 - 05/14/84	55	3.9	0.77
20	05/19/84 - 05/21/84	78	3.8	0.21
21	05/25/84	19	4.4	0.88
22	05/27/84 - 05/31/84	13	4.5	6.11
23	05/31/84 - 06/03/84	5	5.0	0.74
24	06/24/84 - 06/25/84	20	4.3	0.87
25	06/27/84 - 07/01/84	39	4.0	0.60
26	07/09/84	24	4.2	0.23
27	07/16/84	62	3.9	0.71
28	07/19/84	52	4.0	0.53
29	07/27/84	18	4.4	0.70
30	09/04/84	50	3.9	0.80
31	09/12/84	20	4.4	0.22
32	10/01/84 - 10/02/84	8	4.8	0.51
33	10/22/84 - 10/23/84		4.4	0.91
34	10/23/84 - 10/24/84	55	4.4	0.07
35	10/26/84 - 10/29/84	61	3.8	0.63
36	11/05/84	6	5.0	0.96
37	11/29/84	15	4.6	0.54
38	12/03/84	33	4.4	0.54
39	12/05/84 - 12/06/84	10	5.0	0.46
40	12/19/84	39	4.1	0.32
41	12/21/84 - 12/22/84	46	3.9	0.33

^{*} Water equivalent of snowfall

TABLE 30

ATMOSPHERIC DEPOSITION DATA FOR THE MARLBOROUGH SITE

Event <u>Number</u>	Period of Collection	Specific <u>Conductance</u>	На	Inches of <u>Precipitation</u>
1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	05/29/83 - 05/31/83 06/04/83 06/27/83 - 06/28/83 07/05/83 - 07/06/83 07/21/83 07/24/83 08/11/83 - 08/12/83 09/23/83 10/01/83 - 10/02/83 10/12/83 - 10/13/83 10/23/83 - 10/24/83 11/03/83 - 11/04/83 11/10/83 11/15/83 - 11/16/83 11/21/83 11/24/83 - 11/25/83 11/28/83 - 11/29/83 12/06/83	36 42 75 89 46 40 27 11 5 10 32 4 38 20 6 12 7 21 30	4.1 3.8 3.7 4.0 4.2 4.8 4.2 4.8 4.9 4.9 4.9 4.9 4.9 4.9 4.3	1.39 0.99 2.63 0.27 0.39 0.91 1.75 1.18 2.22 1.22 0.19 1.97 0.75 1.27 1.73 0.49 2.43 1.04 0.68
20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	12/12/83 - 12/14/83 01/10/84 - 01/11/84 01/18/84 - 01/19/84 01/24/84 01/30/84 - 01/31/84 02/03/84 - 02/05/84 02/11/84 02/14/84 - 02/16/84 02/24/84 - 02/25/84 02/28/84 - 03/01/84 03/04/84 - 03/06/84 03/13/84 - 03/14/84 03/21/84 03/28/84 - 03/30/84 04/05/84 04/13/84 - 04/16/84 04/23/84 - 04/24/84 05/03/84 - 05/04/84 05/08/84 05/12/84 - 05/14/84 05/19/84 - 05/21/84 05/25/84 05/27/84 - 05/31/84	40 7 38 23 36 28 50 22 16 7 26 10 48 15 6 25 20 15 34 44 60 18 16	4.6 4.14.12.9.9.5.8.2.5.9.4.0.4.4.6.1.1.0.9.4.5.4.4.6.1.4.3.4.5.4.4.6.1.4.3.4.5.4.4.6.1.4.5.4.5.4.5.4.5.4.5.4.5.4.5.4.5.4.5.4	1.89 0.77* 0.62* 0.18 0.64* 0.83 0.20 0.83 1.20 1.57 0.28 3.14* 0.27 0.47 0.44* 2.47 2.12 0.52 1.37 0.48 0.57 0.41 0.50 6.35

*Water Equivalent of Snowfall

TABLE 30, Continued

E∨ent	Period of	Specific		Inches of
<u>Number</u>	Collection	<u>Conductance</u>	<u>Ha</u>	<u>Precipitation</u>
24	05/31/84 - 06/02/84	7	4.8	1.46
25	06/19/84	57	3.9	0.12
26	06/25/84	11	4.9	1.73
27	06/28/84 - 06/29/84	63	3.9	0.21
28	07/07/84	13	4.5	4.18
29	07/16/84	88	3.8	0.15
30	07/18/84 - 07/19/84	26	4.3	1.09
31	07/21/84 - 07/22/84	4	5.1	1.35
32	07/27/84	32	4.2	0.57
33	09/04/84	39	4.1	3.91
34	09/15/84	30	4.3	1.04
35	10/01/84 - 10/02/84	· 7	4.8	1.96
36	10/22/84 - 10/23/84	18	4.4	2.41
37	10/23/84 - 10/24/84	33	4.3	0.13
38	10/26/84 - 10/29/84	39	4.0	1.32
39	11/05/84	8	4.9	0.52
40	11/11/84	6	5.0	1.93
41	11/15/84	64	3.9	0.10
42	12/03/84	22	4.5	0.56
43	12/05/84 - 12/06/84	6	4.9	1.19*
44	12/19/84	42	4.0	0.30
45	12/21/84 - 12/22/84	59	3.8	0.94*

^{*}Water Equivalent of Snowfall

FIGURE 18

INCHES OF PRECIPITATION PLAINFIELD SITE, 1984

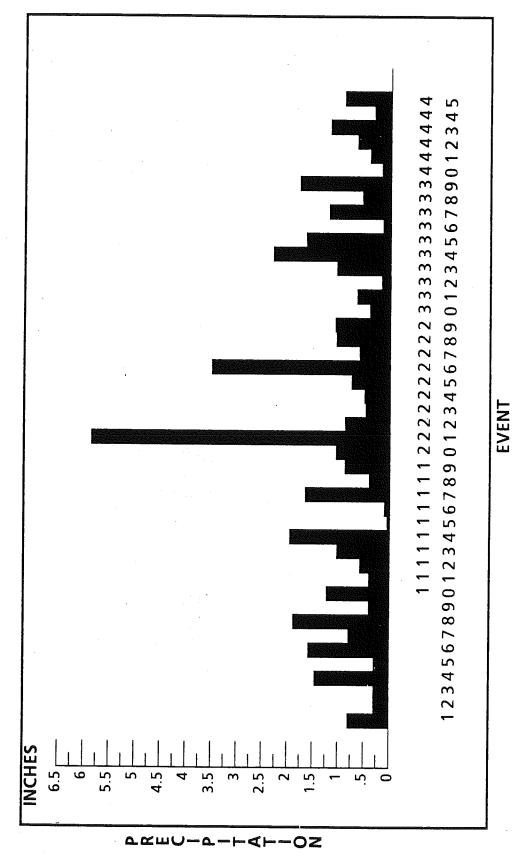
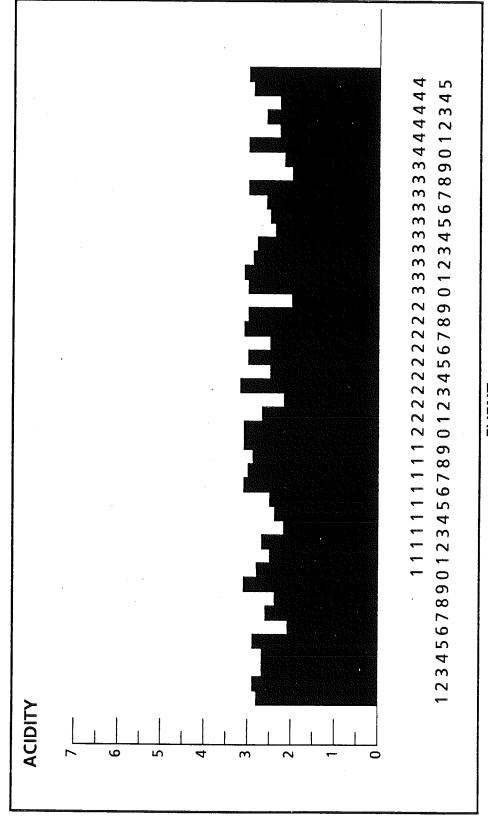
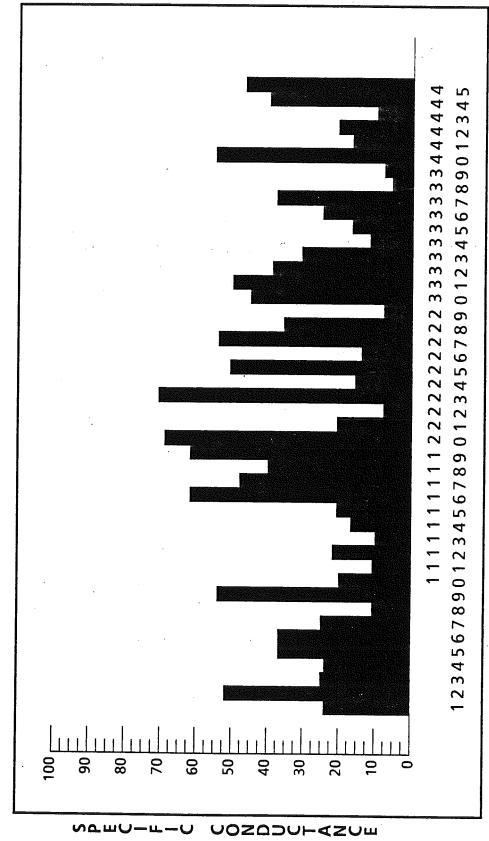



FIGURE 19

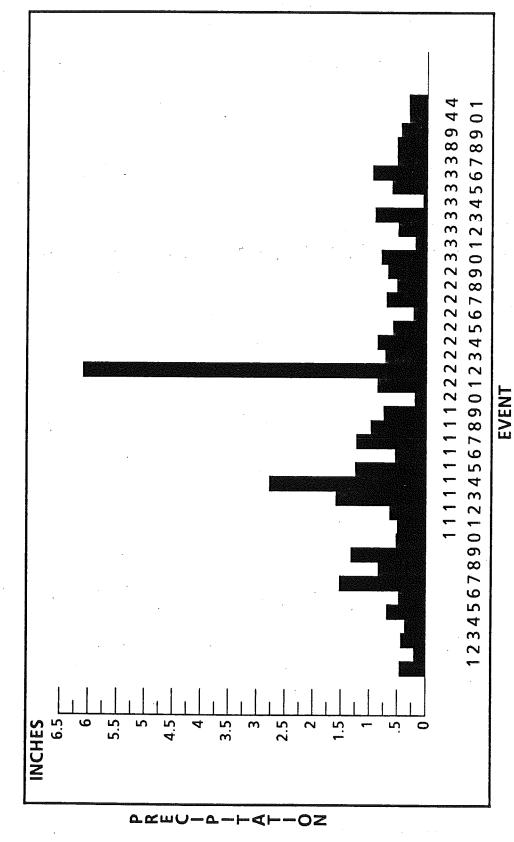
ACIDITY OF PRECIPITATION PLAINFIELD SITE, 1984



EVENT

ACIDITY = 7 - pH

FIGURE 20


SPECIFIC CONDUCTANCE OF PRECIPITATION PLAINFIELD SITE, 1984

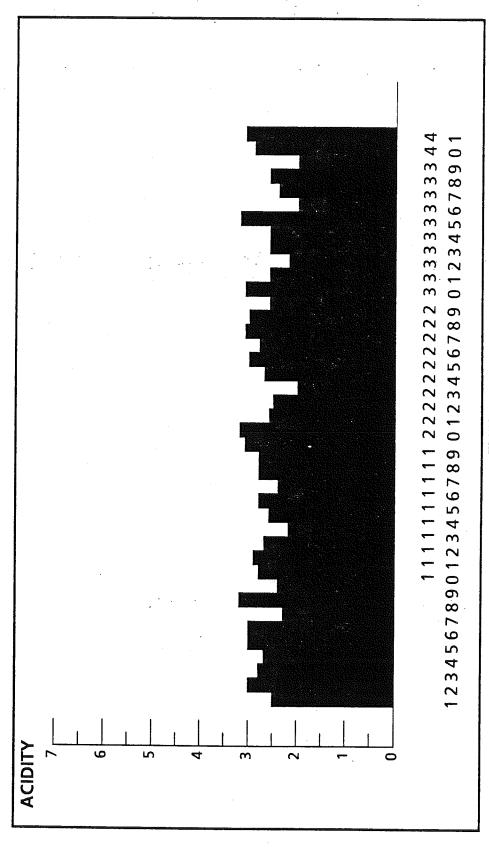
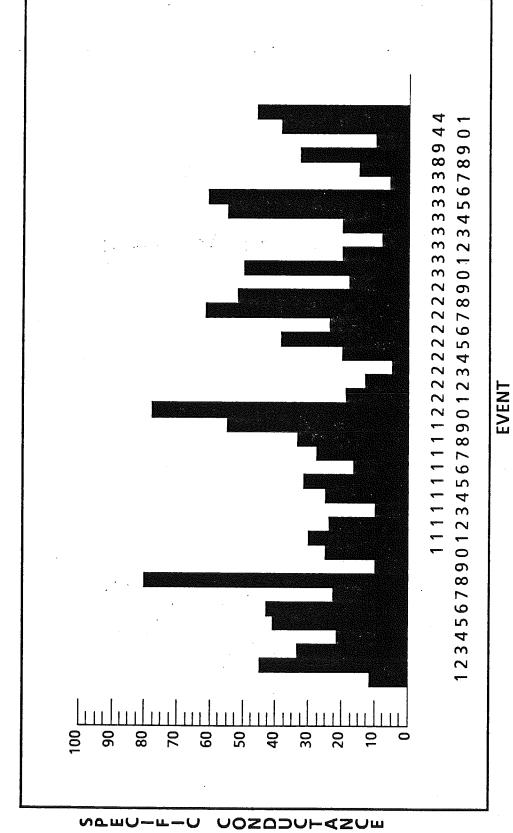

EVENT

FIGURE 21

INCHES OF PRECIPITATION MORRIS DAM SITE, 1984

ACIDITY OF PRECIPITATION MORRIS DAM SITE, 1984



EVENT

ACIDITY = 7 - pH

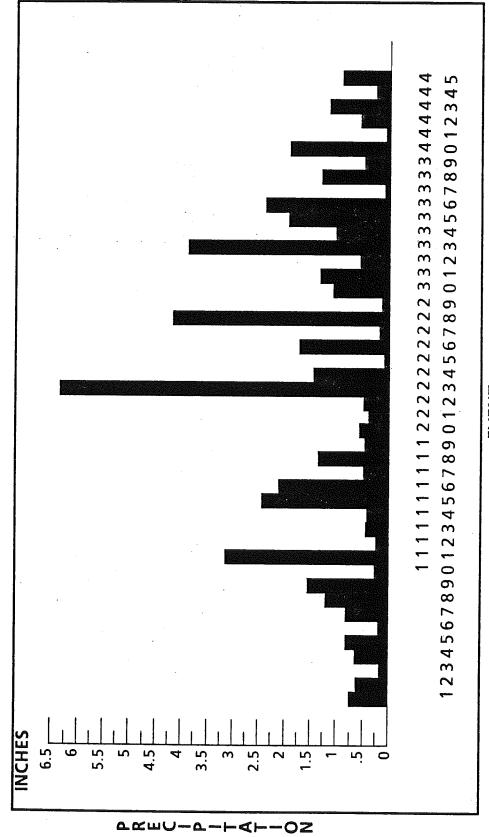
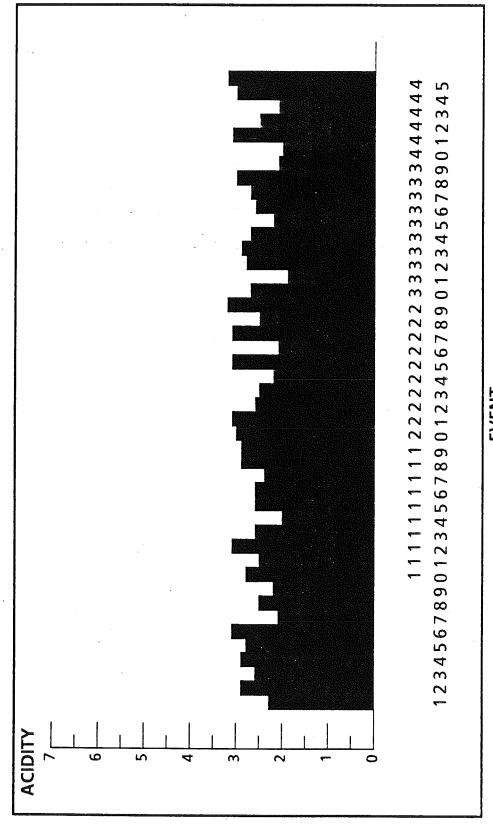
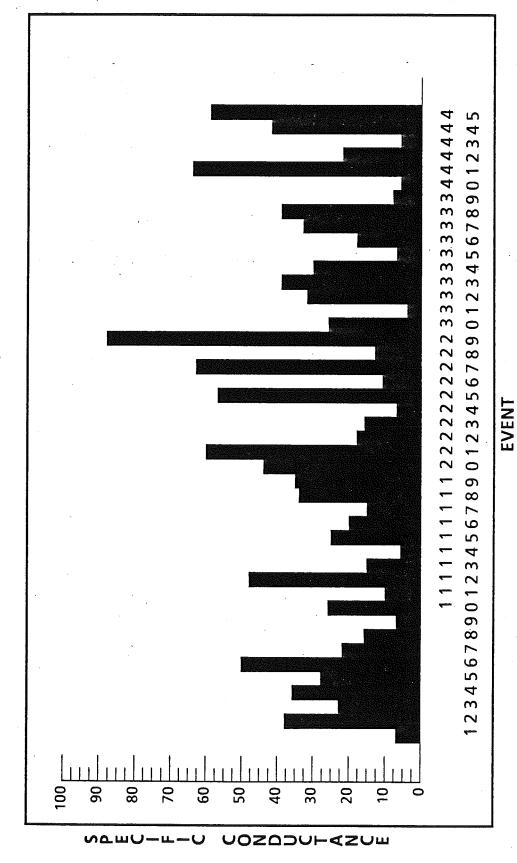

FIGURE 23 SPECIFIC CONDUCTANCE OF PRECIPITATION

FIGURE 24


INCHES OF PRECIPITATION MARLBOROUGH SITE, 1984

EVENT

FIGURE 25


ACIDITY OF PRECIPITATION MARLBOROUGH SITE, 1984

EVENT

ACIDITY = 7 - pH

FIGURE 26
SPECIFIC CONDUCTANCE OF PRECIPITATION
MARLBOROUGH SITE, 1984

IX. CLIMATOLOGICAL DATA

Weather is often the most significant factor influencing short-term changes in air quality. It also has an affect on long-term trends. Climatological information from the National Weather Service station at Bradley International Airport in Windsor Locks is shown in Table 31 for the years 1983 and 1984. Table 32 contains information from the National Weather Service station located at Sikorsky Memorial Airport near Bridgeport. All data are compared to "mean" or "normal" values. Wind speeds* and temperatures are shown as monthly and yearly averages. Precipitation data includes both the number of days with more than 0.01 inches of precipitation and the total water equivalent. Also shown are degree days** (heating requirement) and the number of days with temperatures exceeding 90°F.

Wind roses for Bradley Airport and Newark Airport have been developed from 1984 National Weather Service surface observations and are shown in Figures 28 and 30, respectively. Wind roses from these stations for 1983 are shown in Figures 27 and 29, respectively.

- The mean wind speed for a month or year is calculated for all the hourly wind speeds, regardless of the wind directions.
- ** The degree day value for each day is arrived at by subtracting the average temperature of the day from 65°F. This number (65) is used as a base value because it is assumed that there is no heating requirement when the outside temperature is 65°F.

TABLE 31

1983 AND 1984 CLIMATOLOGICAL DATA
BRADLEY INTERNATIONAL AIRPORT
WINDSOR LOCKS

Q (H	Mean	1.6	4.6	10.0	10.2	8.9	1.8	7.5	7.2	7.3	7.7	8.4	9.8	8.5	
AVERAGE WIND SPEED (MPH)	1984	6.0	7.5	9.2	7.9	7.8	7.2	6.7	5.5	6.0	6.2	7.3	6.7	7.0	ration
AVE	1983	7.1	7.9	9.3	8.0	7.8	6.1	6.9	6.2	5.8	9.9	7.2	7.6	7.2	dminist
10 NO	Mean	=	10	12	=	12	Ξ	10	10	6	, 6 0	Ξ	12	127	Local Climatological Data Charts U.S. Department of Commerce National Oceanic and Atmospheric Administration Environmental Data Service
NUMBER OF DAYS WITH MORE THAN .01 INCHES OF PRECIPITATION	1984	8	4	4	12	15	10	10	7	7	7	7	4	130	il Data Ch Commerce id Atmosph Service
NUM DAY MORE INCI	1983	10	7	17	13	19	7	Ŋ	12	9	=	Ξ	-	129	Local Climatological Data Charts U.S. Department of Commerce National Oceanic and Atmospheric Environmental Data Service
	เผ														tolo ment eani al D
I ON S NT	Mean	3.54	3.26	3.76	3.80	3.63	3.54	3.51	3.78	3.61	3.17	3.75	3.77	43.13	Local Climatologica U.S. Department of National Oceanic ar Environmental Data
PRECIPITATION IN INCHES WATER EQUIVALENT	1984	1.80	4.72	3.93	4.24	11.55	2.16	4.22	1.32	1.20	2.76	2.45	2.46	42.85	Local U.S. Natio
PRE(1983	4.68	3.83	98.9	9.90	4.82	2.61	1.07	2.55	2.10	5.52	60.9	5.97	56.00	F 70%:
DAYS	Normal	1234	1047	874	486	197	20	0	80	102	391	702	1113	6174	Extracted F
DEGREE C	1984	1332	884	1035	503	286	32	ო	က	186	298	698	968	6156	Ä
ا ق	1983	1170	1002	793	483	261	24	0	7.	106	404	662	1135	6047	
	Меап	0	0	. 0	*	-	4		വ	2	#	0	0	20	
NUMBER OF DAYS DURING WHICH MAX. TEMP. EXCEEDED 90°F	1984	0	0	0	0	0	9	7	4	0	0	0	0	12	
DAN DAN TEMP	1983	0	0	0	0	0	ω	13	ω	თ	<u>`</u>	0	o ,	38	
S S S	Mean	26.6	27.7	37.0	48.1	59.0	68.0	73.2	71.0	63.5	53.1	42.0	30.4	50.0	0 · S
AVERAGE TEMPERATURES	1984	21.8	34.3	31.4	48.0	56.0	8.69	71.8	73.2	59.8	55.2	41.5	35.7	49.9	
TEMPE	1983	27.1	29.1	39.2	48.9	56.8	6.69	74.9	72.7	66.5	52.5	42.7	28.1	50.7	Less 1955- 1960- 1951-
		Jan.	Feb.	March	April	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	YEAR	* a to o

1983 AND 1984 CLIMATOLOGICAL DATA SIKORSKY INTERNATIONAL AIRPORT STRATFORD

. QNI	Mean	13.2	13.6	13.5	13.0	9.11	10.5	10.0	10.1	11.2	11.9	12.7	13.0	12.0	
, AVERAGE WIND SPEFD (MOH)		1	1	!!!	1	1	 	1		. !	i 1	. !	-		
AVER	1983	†	! !	1	1	-	1	-	1	!	!	1	.	! !	
)F 'H . 01 JF 10N	Mean d	=	10	=	Ξ	:	6	80	့တ	6	7	10	=	117	
	1984	13	12	12	7	4	10	1	80	7	80	10	13	125	
NUMBER (DAVS WI) MORE THAN INCHES (PRECIPITATA)	1983	7	8	15	Ξ	15	ហ	9	60	4	10	12	12	113	
NO I	Mean	3.62	3.32	3.98	3.93	3.73	3.37	3.67	3.97	3.52	3.37	3.76	3.71	43.94	
PRECIPITATION IN INCHES WATER EQUIVALENT	1984	1.52	4.72	3.49	4.37	8.14	3.53	6.54	1.23	2.24	2.79	1.83	2.56	42.96	
PRE	1983	3.72	2.40	9.21	10.72	4.77	3.72	1.66	2.57	2.20	4.63	6.58	4.74	56.92	
DAVS	Norma 1 ^C	1101	963	831	492	220	20	0	0	49	285	585	955	5501	
DEGREE DAYS	1984	1188	819	952	508	227	18	0	0	104	219	593	761	5389	
۵	1983	1034	914	754	501	280	29	0	80	73	320	550	981	5444	
OF ING AX. EDED	Mean	0	0	0	0	*	-	က	2	*	0	.	0	9	
NUMBER OF DAYS DURING WHICH MAX. TEMP. EXCEEDED	1984	0	0	0	0	0	ហ	2	2	0	0	0	· 0	თ	
TEMP (1983	0	0	0	0	0	7	ဇ	5	4	0	, o	0	Ξ	
ES F	Mean a	28.3	30.4	37.8	48.0	58.4	67.8	73.3	71.9	65.1	54.7	44.2	33.2	51.1	
AVERAGE TEMPERATURES	1984	26.6	36.5	34.1	47.9	57.8	71.0	73.1	74.8	63.3	57.7	45.0	40.2	52.3	
TEMPE	1983	31.4	32.3	40.5	48.1	55.8	67.7	74.3	73.1	67.3	55.1	46.5	33.1	52.1	
		Jan.	Feb.	March	April	Мау	June	yuly	Aug.	Sept.	Oct.	Nov.	Dec.	YEAR	

Local Climatological Data Charts U.S. Department of Commerce National Oceanic and Atmospheric Administration Environmental Data Service Extracted From:

1962=1984 1958-198

* Less than 0.5 a 1955-1984 b 1966-1984 c 1951-1980 d 1949-1984 e 1962-1984

FIGURE 27

ANNUAL WIND ROSE 1983 BRADLEY INTERNATIONAL AIRPORT WINDSOR LOCKS, CONNECTICUT

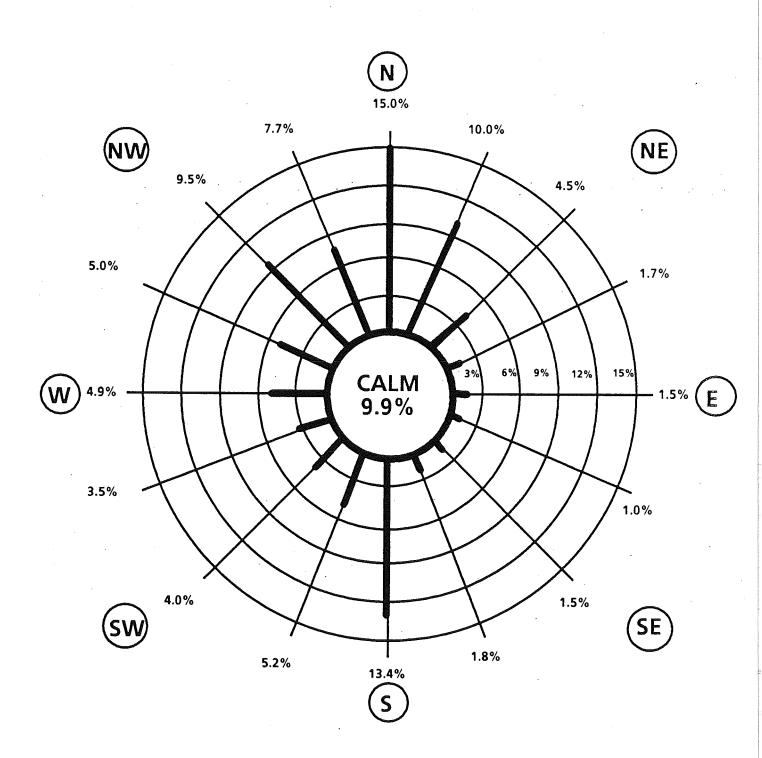


FIGURE 28

ANNUAL WIND ROSE 1984 BRADLEY INTERNATIONAL AIRPORT WINDSOR LOCKS, CONNECTICUT

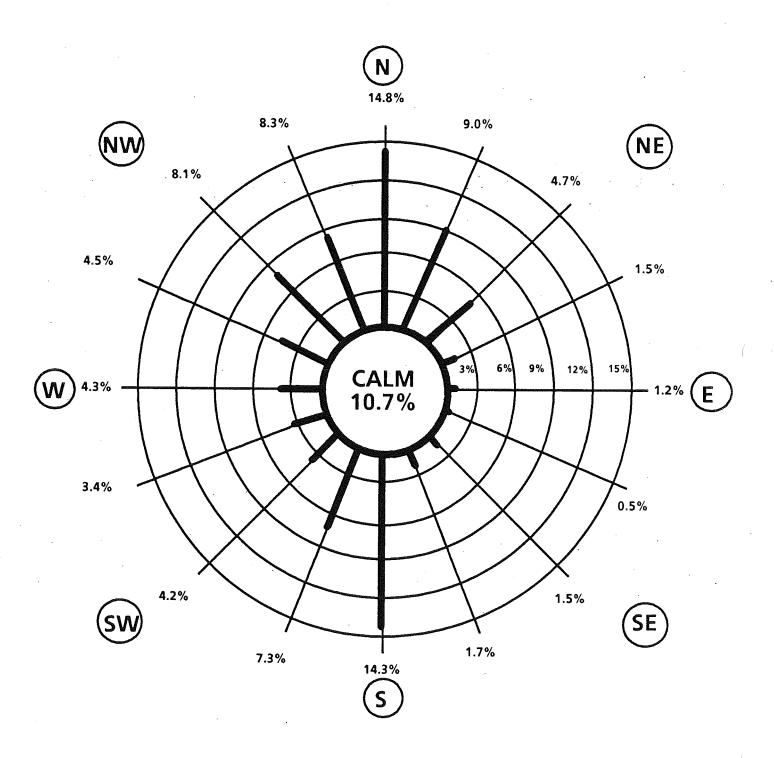


FIGURE 29

ANNUAL WIND ROSE 1983 NEWARK INTERNATIONAL AIRPORT NEWARK, NEW JERSEY

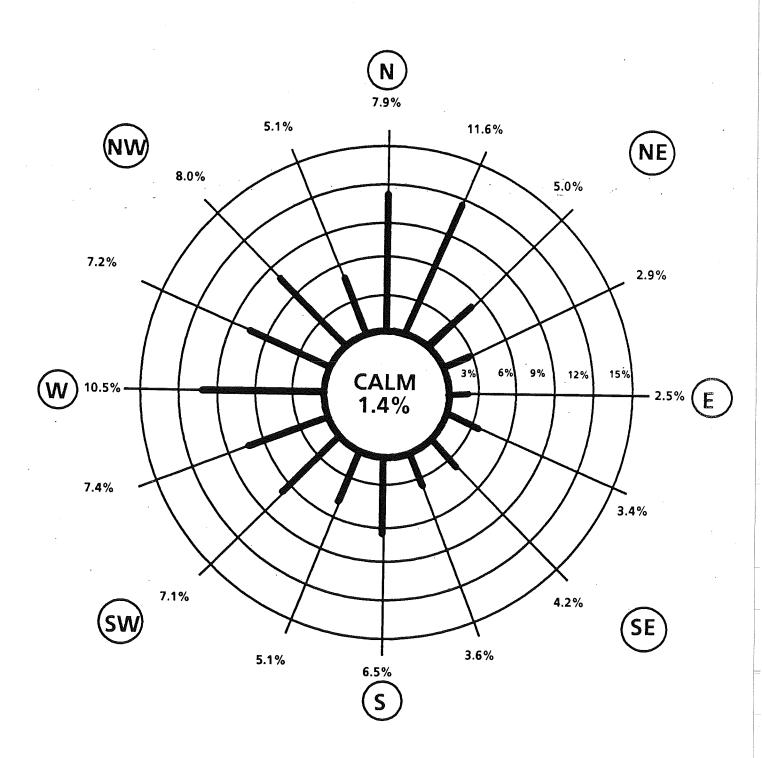
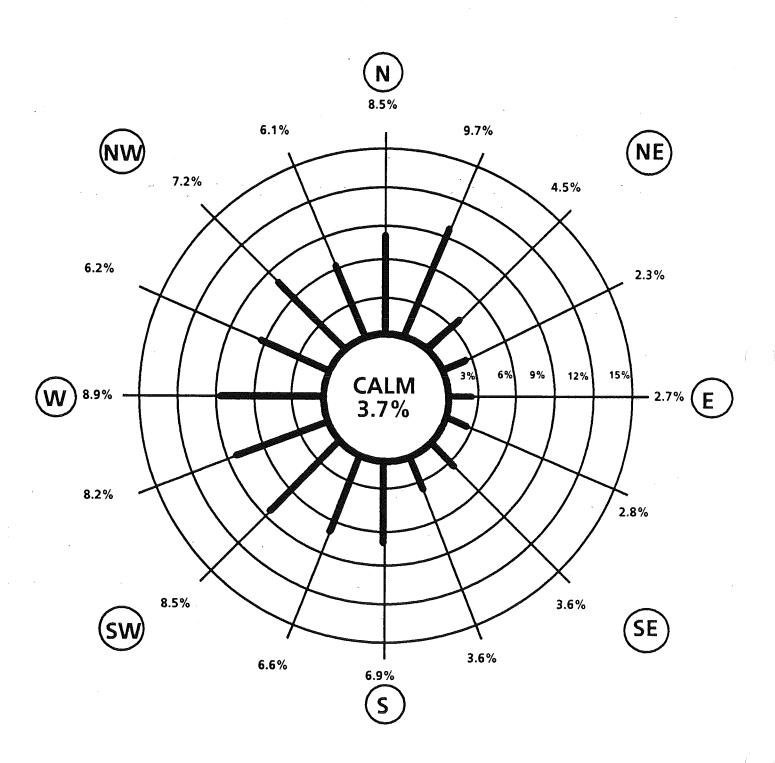



FIGURE 30

ANNUAL WIND ROSE 1984 NEWARK INTERNATIONAL AIRPORT NEWARK, NEW JERSEY

X. ATTAINMENT AND NON-ATTAINMENT OF NAAQS IN CONNECTICUT'S AQCR'S

The attainment status designations for Connecticut's four Air Quality Control Regions (AQCR's, see Figure 31) with regard to the National Ambient Air Quality Standards (NAAQS) have been determined for 1984 for the following pollutants: total suspended particulates (TSP); sulfur dioxide (SO₂); ozone (O₃); nitrogen dioxide (NO₂); carbon monoxide (CO); and lead (Pb). Table 33 shows the attainment status of each AQCR by pollutant. The AQCR's are classified as attainment, non-attainment or unclassifiable. These classifications conform to federal EPA guidelines and were applied in each case only after federal approval was granted. Where both a short-term and a long-term standard exist (e.g., the secondary TSP standard), the federal EPA classifies an AQCR as attainment when both standards are attained. This notwithstanding, Table 33 contains the AQCR classifications with respect to all relevant short-term and long-term standards.

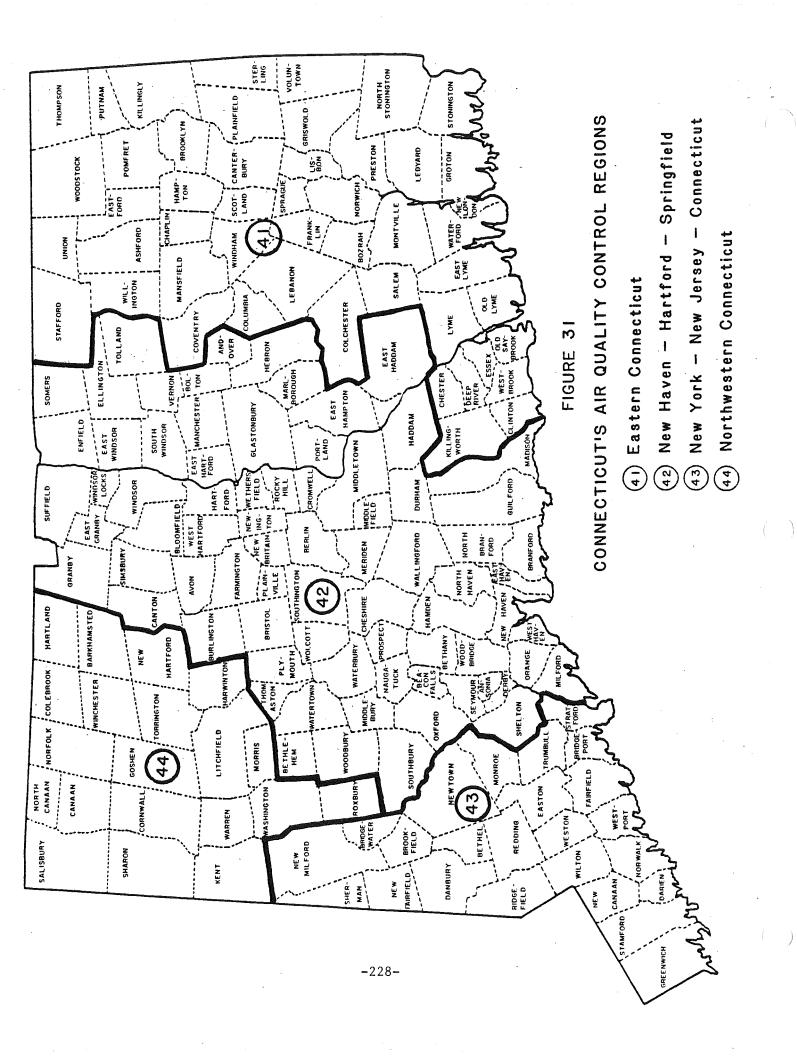


TABLE 33

CONNECTICUT'S COMPLIANCE WITH THE NAAQS (BY AQCR) FOR 1984

<u>Pollutant</u>	Primary or <u>Secondary</u>	<u>NAAQS</u>	AQCR 41	AQCR 42	AQCR 43	AQCR 44
TSP	Primary	Annual 24-Hour	A A	A A	A A	A A
	Secondary	Annual 24-Hour	A X	A	A X	A X
SO ₂	Primary	Annual 24-Hour	A A	A A	A A	A A
	Secondary	3-Hour	Α	A	Α	
Ozone	Both	1-Hour	X	X	X	X
NO ₂	Both	Annual	Α	Α	Α	A
СО	Both	1–Hour 8–Hour	A U	A X	A X	A U
Lead	Both	3-Month	· A	· A	A	Α

X = Non-Attainment

U = Unclassifiable

A = Attainment

XI. CONNECTICUT SLAMS AND NAMS NETWORK

On May 10, 1979, the U.S. Environmental Protection Agency made public its final rulemaking for ambient air monitoring and data reporting requirements in the "Federal Register" (Vol. 44, No. 92). These regulations are meant to ensure the acceptability of air measurement data, the comparability of data from all monitoring stations, the cost-effectiveness of monitoring networks, and timely data submission for assessment purposes. The regulations address a number of key areas including quality assurance, monitoring methodologies, network design and probe siting. Detailed requirements and specific criteria are provided which form the framework for ambient air quality monitoring. These regulations apply to all parties conducting ambient air quality monitoring for the purpose of supporting or complying with environmental regulations. In particular, state/local control agencies and industrial/private concerns involved in air monitoring are directly influenced by specific requirements, compliance dates and recommended guidelines.

Quality Assurance

The regulations specify the minimum quality assurance requirements for State and Local Air Monitoring Stations (SLAMS) networks, National Air Monitoring Stations (NAMS) networks, and Prevention of Significant Deterioration (PSD) air monitoring. Two distinct and equally important functions make up the quality assurance program: assessment of the quality of monitoring data by estimating their precision and accuracy, and control of the quality of the data by implementation of quality control policies, procedures, and corrective actions. (See Part E of Section I, Quality Assurance).

The data assessment requirements entail the determination of precision and accuracy for both continuous and manual methods. A one-point precision check must be carried out at least once every other week on each automated analyzer used to measure SO₂, NO₂, CO and O₃. Standards from which the precision check test data are derived must meet specifications detailed in the regulations. For manual methods, precision checks are to be accomplished by operating co-located duplicate samplers. In 1984, Connecticut maintained three co-located TSP monitors (Bridgeport 009, Hartford 003, and Waterbury 005) and two co-located lead samplers (New Haven 123 and Waterbury 123).

Accuracy determinations are accomplished by performing analyzer audits via special audit gases for automated analyzers, via reference flow devices for hi-vols, and via spiked strip analyses for lead. For SLAMS analyzers, accuracy audits must be performed on each analyzer at least once per calendar year. Each PSD analyzer must be audited at least once each calendar quarter.

All precision and accuracy data are derived through calculation methods specified by the regulations, with the results reported quarterly on Data Assessment Report Forms. The NAMS network is actually part of the SLAMS network; so the SLAMS accuracy determinations also apply to the NAMS network. The distinguishing characteristics of NAMS are: 1) only continuous instruments are used to monitor gaseous pollutants; 2) the regulations specify a minimum number and locations for them; and 3) the data, in addition to being included in the annual report, are reported quarterly to EPA.

In order to control the quality of data, the monitoring program must have operational procedures for each of the following activities:

- 1. Installation of equipment,
- 2. Selection of methods, analyzers, or samplers,
- 3. Zero/span checks and analyzer adjustments,
- 4. Calibration,
- 5. Control limits for zero/span and other control checks, and respective corrective actions when such limits are exceeded,

- 6. Control checks and their frequency,
- 7. Preventive and remedial maintenance,
- 8. Calibration and zero/span checks for multi-range analyzers,
- 9. Recording and validating data, and
- 10. Documentation of quality control information.

Monitoring Methodologies

Except as otherwise stated within the regulations, the monitoring method used must be "reference" or "equivalent," as designated by the EPA. Table 34 lists methods used in Connecticut's network in 1984 which were on the EPA-approved list as of 9/18/80. Additional updates to these approved methods are provided through the "Federal Register."

Network Design

The regulations also describe monitoring objectives and general criteria to be applied in establishing the SLAMS networks and for choosing general locations for new monitors. Criteria are also presented for determining the location and number of monitors. These criteria serve as the framework for all State Implementation Plan (SIP) monitoring networks that were to be complete and in operation by January 1, 1984.

The SLAMS network must be designed to meet four basic monitoring objectives: (1) to determine the highest pollutant concentration in the area; (2) to determine representative concentrations in areas of high population density; (3) to determine the ambient impact of significant sources or source categories; and (4) to determine general background concentration levels. Proper siting of a monitor requires precise specification of the monitoring objectives, which usually includes a desired spatial scale of representativeness. The spatial scales of representativeness are specified in the regulations for each pollutant and monitoring objective. The 1984 SLAMS and NAMS networks in Connecticut are presented and described in Table 35.

Probe Siting

Location and exposure of monitoring probes have been an area of confusion for a number of years because of conflicting guidelines and a lack of guidance or recommended criteria. The probe siting criteria promulgated in the regulations are specific. They are also sufficiently inclusive to define the requirements for ensuring the uniform collection of compatible and comparable air quality data.

These criteria are detailed by pollutant and include vertical and horizontal probe placement, spacing from obstructions and trees, spacing from roadways, probe material and sample residence time, as well as various other considerations. A summary of the probe siting criteria is presented in Table 36. The siting criteria generally apply to all spatial scales except where noted. The most notable exception is spacing from roadways which is dependent on traffic volume.

For the reactive gases SO 2, NO 2, and O 3, the regulations specify borosilicate glass, FEP teflon or their equivalent as the only acceptable probe materials. Additionally, in order to minimize the effects of particulate deposition on probe walls, sampling probes for reactive gases must have residence times of less than 20 seconds.

TABLE 34

U.S. EPA APPROVED MONITORING METHODS USED IN CONNECTICUT IN 1984

Manual Methods Reference High Volume Method	Reference Equivalent Thermo Electron 43 (0.5)
	Bendix 8501-5CA (50)
	Bendix 8002 (0.5)
	Thermo Electron 14 B/E (0.5)
High Volume Method	
range in ppm	

TABLE 35

1984 SLAMS AND NAMS SITES

SULFUR DIOXIDE

Spatial Scale and Representativeness Neighborhood Neighborhood Neighborhood Neighborhood Neighborhhod Neighborhood Neighborhood Urban Urban Neighborhood Regional Neighborhood Neighborhood Neighborhood Neighborhood Neighborhood Neighborhood Neighborhood Ne i ghborhood Ne i ghborhood Ne i ghborhood Neighborhood Ne i ghborhood Ne i ghborhood Regional Regional Middle Urban Urban Urban High Conc. Rish N ₹.00 000 High Conc. Population High Conc. High Conc. High Conc. High Conc. High Conc. Monitoring Objective Background Population Population Background Population Population Population Population Background High Conc. Pop⊍lation Background Population High Conc. High Conc. Population High Conc. High Conc. High Conc. High Conc. Source Operating Schedule Contin. Contin Sampling & Analytic Method Pulsed Fluorescence Fluorescence Fluorescence Fluorescence Fluorescence Pulsed Fluorescence Pulsed Fluorescence Pulsed Fluorescence Fluorescence Fluorescence Fluorescence Fluorescence Fluorescence Pulsed Fluorescence Pulsed Fluorescence Pulsed Fluorescence Pulsed Fluorescence Pulsed Fluorescence Fluorescence NITROGEN OXIDES Chemiluminescent Chemiluminescent Chemiluminescent Chemiluminescent Chemiľuminescent Chemiluminescent Chemiluminescent Chemiluminescent Chemiluminescent Chemiluminescent Chemiluminescent Chemiluminescent OZONE Pulsed SLAMS NAMS ŗ 12 Justin Site 123 005 003 005 123 001 007 017 123 002 011 017 123 013 123 123 003 017 005 123 003 123 007 Springfield/ E. Windsor-Stamford New Britain New London/ New London/ Bridgeport Hartford New Haven New London/ Urban Area Bridgeport Bridgeport Bridgeport Bridgeport Bridgeport Stamford Waterbury New Haven New Haven New Haven New Haven Danbury Hartford Stamford Norwich Hartford Naterbury Hartford Norwich Hartford Norwich Stamford Norwalk Danbury NONE Bridgeport E. Hartford New Haven Bridgeport Danbury E. Hartford Greenwich E. Hartford New Britain East Haven New Haven Stafford Stratford Bridgeport Middletown Bridgeport Waterbury Waterbury Greenwich New Haven New Haven Hartford Stamford Stamford TOWN Enfield Milford Norwalk Preston Danbury Groton Groton

TOTAL SUSPENDED PARTICULATES

			1			1		
i i	, , , , , , , , , , , , , , , , , , ,		0.00	Samp.	Analytic	Operating	Monitoring	Spatial Scale and
CW.	Urban Area	Site	NAMS	Meth.	Method	Schedule	Objective	Representativeness
Ansonia	Bridgeport	003	S	Hi-Vol	Gravimetric	6-day	Population	Neighborhood
Bridgeport	Bridgeport	100	z	Hi-Vol	Gravimetric	6-day	Population	Ne i ghborhood
Bridgeport	Bridgeport	600	z	Hi-Vo1	Gravimetric	6-day	Population	Neighborhood
Bridgeport	Bridgeport	123	z	Hi-Vol	Gravimetric	6-day	High Conc.	Neighborhood
Bristol	Bristol	001	S	H1-Vo1	Gravimetric	6-day	Population	Neighborhood
Burlington	NONE	001	S	Hi-Vol	Gravimetric	6-day	Background	Regional
Danbury	Danbury	002	z	Hi-Vol	Gravimetric	6-day	High Conc.	Neighborhood
Danbury	Danbury	123	z	Hi-Vol	Gravimetric	6-day	Population	Neighborhaod
East Hartford	Hartford	004	'n	Hi-Vol	Gravimetric	6-day	Population	Neighborhood
Greenwich	Stamford	800	S	Hi-Vol	Gravimetric	6-day	Population	Neighborhood
Groton	New London/	900	S	Hi-Vol	Gravimetric	6-day	Population	Neighborhood
	Norwich							the same of the sa
Hartford	Hartford	003	z	Hi-Vol	Gravimetric	6-day	High Conc.	Neighborhood
Hartford	Hartford	013	z	Hi-Vol	Gravimetric	6-day	ation	Neighborhood
Hartford	Hartford	014	z	Hi-Vol	Gravimetric	6-day	. 5.	Political Substitution (Particular Neighborhand
Manchester	Hartford	001	s	Hi-Vol	Gravimetric	6-day	s.	Neighborhood
Meriden	Meriden	002	z	Hi-Vol	Gravimetric	6-day	High Conc.	Neighborhood
Middletown	Hartford	003	s	H1-V0]	Gravimetric	6-day	Population	Neighborhood
Milford	Bridgeport	002	S	H1-V01	Gravimetric	6-day	Population	Neighborhood
Morris	NONE	100	S	Hi-Vol	Gravimetric	6-day	Background	Regional
Naugatuck	Waterbury	100	S	Hi-Vol	Gravimetric	6-day	Population	Neighborhood
		200	z	Hi~Vol	Gravimetric	6-day	High Conc.	Neighborhood
Britai		800	z	Hi-Vol	Gravimetric	6-day	Population	Neighborhood
New Britain	New Britain	600	z	Hi-Vol	Gravimetric	6-day		Neighborhood
New Haven	New Haven	002	z	Hi-Vol	Gravimetric	6-day	High Conc.	Neighborhood
New Haven	New Haven	013	z	Hi-Vol	Gravimetric	6-day		Neighborhood
Norselk	Norwalk	001	S	Hi-Vol	Gravimetric	6-day		Neighborhood
Norwalk	Norwalk	005	z	Hi-Vol	Gravimetric	6-day	High Conc.	Neighborhood
Norwälk	Norwalk	012	z	Hi-Vol	Gravimetric	6-day	Population	Neighborhood
Norwich	New London/	001	S	Hi-Vol	Gravimetric	6-day	Population	Neighborhood
	Norwich							
Norwich	New London/	002	S	Hi-Vol	Gravimetric	6-day	Population_	Neighborhood
Stamford	Stamford	001	z	Hi-Vol	Gravimetric	6-19	High Conc	Nejobborbood
Stamford	Stamford	200	z	H: - V - 1	Gravimetric	\ n T U		Neighborhood
Stamford	Stamford	021	z	H1-V01	Gravimetric	\ e \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Population	Nejohorhorho
V+ra+60rd	Bridgeont	- 100	·	1000	Gravet motors	6 day	0001104	No other productions
J. 1 at 1 0 1 d	NONE	500	, u	1000	Gravitant of	6000	Population	
TOTAL TRIBLE			n u	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Graviment ic	0 C C C C C C C C C C C C C C C C C C C	מיייים וייים מייים	Net gribbi 1000
Voluntown	NON I	- 00	n	0 \	Gravimetric	o-day	Background	Keglonal
Wallingford	New Haven	100	z:	H1-V0	Gravimetric	6-day	Population	Neighborhood
Waterbury	Waterbury	005	z	Hi-Vol	Gravimetric	6-day	Population	Neighborhood
Waterbury	Waterbury	900	S	Hi-Vol	Gravimetric	6-day	Population	Neighborhood
Waterbury	Waterbury	007	z	Hi-Vol	Gravimetric	6-day	High Conc.	Neighborhood
Willimantic	NONE	002	S	Hi-Vol	Gravimetric	6-day	Population	Neighborhood

TABLE 35, Continued <u>LEAD</u>

Spatial Scale and	ממונים מים ומים ומים מים מים מים מים מים מים מים מים מים	Neighborhood	Neighborhood	Middle	Doodroddo Lay	Netahodd	Nejahhorhood	Nejabbarbood	Micro	Micro	Nejahborhood	Nejabborhood	Nejabborbood	Micro	Middle	Nejabborhood	Nejahborhood	Nejohochood	Netaborhood	Nejabborbood	Neighborhood	Middle		Micro	Micro	Micro	Micro	Micro
Monitoring		Population.	Population	High Conc.	Population	Population	Population	Population	High Conc.	High Conc.	Population	Population	Population	High Conc.	High Conc.	Population	Population	High Conc.	Population	Population	Population	High Conc.		High Conc.	High Conc.	High Conc.		High Conc.
Operating Schedule		o-day	6-day	1-month	\ap-9	6-day	6-day	6-day	1-month	1-month	6-day	6-day	6-day	1-month	6-day	6-day	6-day	1-month	6-day	6-day	6-dav	6-day		Contin.	Contin.	Contin.	Contin.	Contin.
Analytic . Method	1			Atomic Abs.	Atomic Abs.	Atomic Abs.		Atomic Abs.	Atomic Abs.			Atomic Abs.		Atomic Abs.	Atomic Abs.	Atomic Abs.	Atomic Abs.		Atomic Abs.		Atomic Abs.	Atomic Abs.	CARBON MONOXIDE					
Samp. Meth.			H1-V01	Lo-Vol	Hi-Vol	H1-Vo1	Hi-Vol	Hi-Vol	Lo-Vol	Lo-Vol	Hi-Vol	Hi-Vol	Hi-Vol	Lo-Vol	Hi-Vol	Hi-Vol	Hi-Vol	Lo-Vol	Hi-Vol	Hi-Vol	Hi-Vol	Hi~Vol	CARB	NDIR	NDIR	NDIR	NDIR	NDIR
SLAMS or NAMS	U) (n	S	S	S	S	z	S	z	S	S	S	S	S	s	S	S	s	s	s	S	•	S	s	S	s	S
Site	000	0 0	500	010	123	001	002	014	015	910	002	003	200	016	123	012	100	022	123	001	200	123		004	017	002	200	020
Urban Area	Bridgen		bridgeport	Bridgeport	Bridgeport	Bristol	Danbury	Hartford	Hartford	Hartford	Meriden	Hartford	New Britain	New Haven	New Haven	Norwalk	Stamford	Stamford	Torrington	New Haven	Waterbury	Waterbury		Bridgeport	Hartford	New Britain	New Haven	Stamford
Town	Ansonia		pi lugebort	Bridgeport	Bridgeport	Bristol	Danbury	Hartford	Hartford	Hartford	Meriden	Middletown	New Britain	New Haven	New Haven	Norwalk	Stamford	Stamford	Torrington	Wallingford	Waterbury	Waterbury		Bridgeport	Hartford	New Britain	New Haven	Stamford

TABLE 36

SUMMARY OF PROBE SITING CRITERIA

Other Spacing Criteria	 Should be >20 meters from trees. Distance from sampler to obstacle, such as a building, must be at least twice the height the obstacle protrudes above the sampler. Must have unrestricted airflow 270 degrees around the sampler. No furnace or incineration flues should be nearby.^C Must have minimum spacing from roads. This varies with height of monitor and spatial scale. 	 Should be >20 meters from trees. Distance from inlet probe to obstacle, such as a building, must be at least twice the height the obstacle protrudes above the inlet probe. Must have unrestricted alrflow 270 degrees around the inlet probe, or 180 degrees if probe is on the side of a building. No furnace or incineration flues should be nearby.^C 	 Must be >10 meters from intersection and should be at a midblock location. Must be 2-10 meters from edge of nearest traffic lane. Must have unrestricted airflow 180 degrees around the inlet probe. 	 Must have unrestricted airflow 270 degrees around the inlet probe, or 180 degrees if probe is on the side of a building. Spacing from roads varies with traffic.^d
Hejaht Above Ground, Meters	2 - 15	,	^	7
om Supporting e, Meters Horizontal ^a	^ 2	1		7
Distance from Structure, Vertical		3 - 15	3 ± 1/2	15
Scale	LIA	1 1 A	Micro	Middle Neighborhood
Pollutant	TSP .	202	00	

TABLE 36, Continued

Other Spacing Criteria	 Should be >20 meters from trees. Distance from inlet probe to obstacle, such as a building, must be at least twice the height the obstacle protrudes above the inlet probe. Must have unrestricted airflow 270 degrees around the inlet probe, or 180 degrees if probe is on the side of a building. Spacing from roads varies with traffic.^d 	1. Should be >20 meters from trees. 2. Distance from inlet probe to obstacle, such as a building, must be at least twice the height the obstacle protrudes above the inlet probe. 3. Must have unrestricted airflow 270 degrees around the inlet probe, or 180 degrees if probe is on the side of a building. 4. Spacing from roads varies with traffic. ^d
, ,		
Height Above Ground, Meters	6 1 10	7
om Supporting e, Meters Horizontal ^a	7	7
Distance from Structure, Vertical	,	ω 1
Scale	4 [L 4
Pollutant	ε ₀	NO ₂

^a when probe is located on rooftop, this separation distance is in reference to walls, parapets, or penthouses located on the roof. B Sites not meeting this criterion would be classified as middle scale. C Distance is dependent on height of furnace or incineration flue, type of fuel or waste burned, and quality of fuel (sulfur and ash content). This is to avoid undue influences from minor pollutant sources. d Distance is dependent upon traffic ADT, pollutant and spatial scale.

XII. EMISSIONS INVENTORY

Connecticut's computerized emissions inventory contains two separate components — a point source file of 12,000 stationary sources and an area source file of small sources. Area sources, such as home furnaces and transportation activities, are too small to be treated individually. The Compilation of Air Pollutant Emission Factors, designated as EPA publication no. AP-42, was used to compute estimated emissions for both point and area sources. Emission factors for motor vehicles were calculated at an annual average temperature of 50°F using EPA MOBILE3.

Table 37 summarizes the actual annual in-state emissions of each of the five (5) major air pollutants in Connecticut — TSP, SO₂, CO, VOC, and NO₂ — by county, for 1984. The table reveals two things. First, the most populous counties have the largest pollutant totals; second, excluding SO₂, which is largely generated by utilities, area sources (mobile sources in particular) account for the bulk of the total emissions.

County names and geographic locations are displayed in Figure 32, which also serves as a reference for the charts that follow.

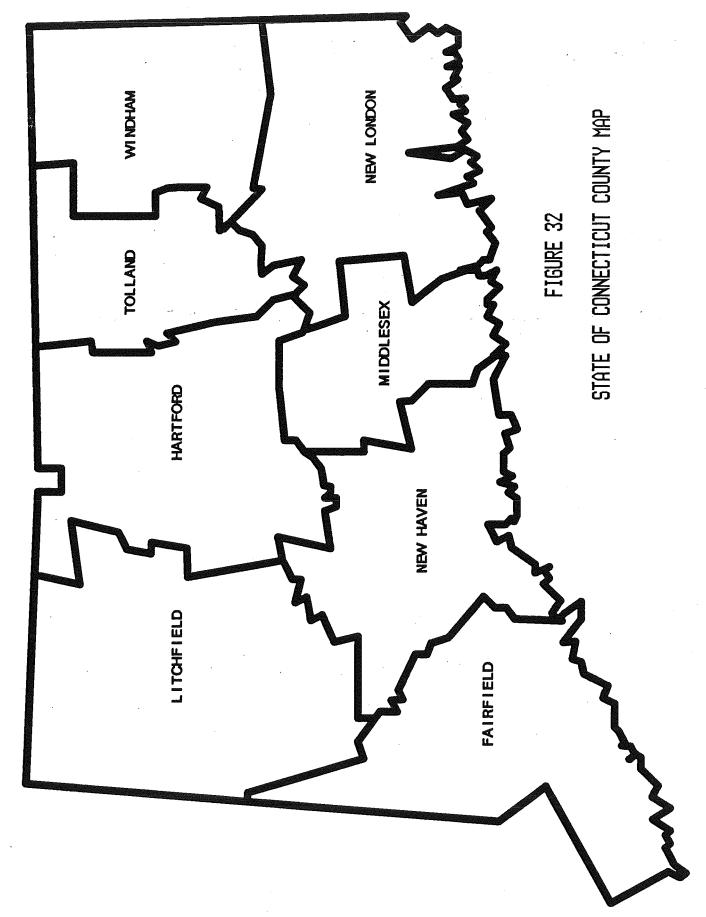
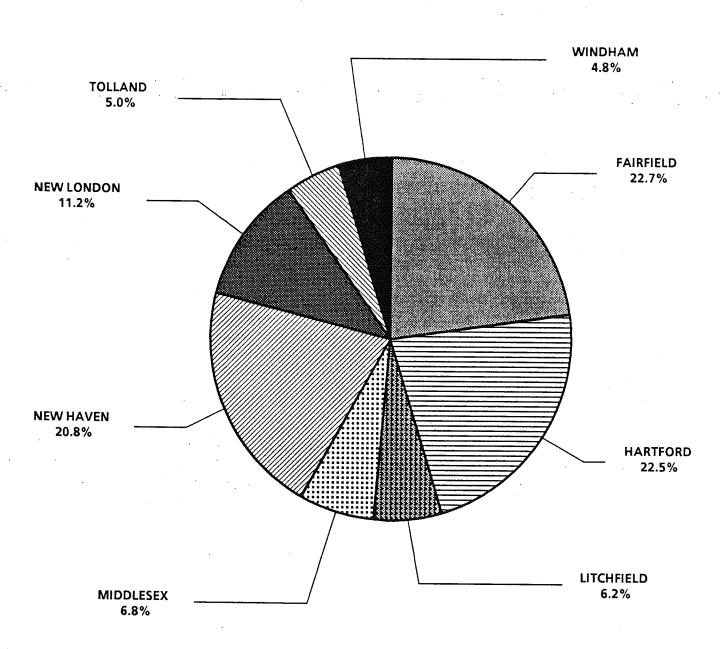
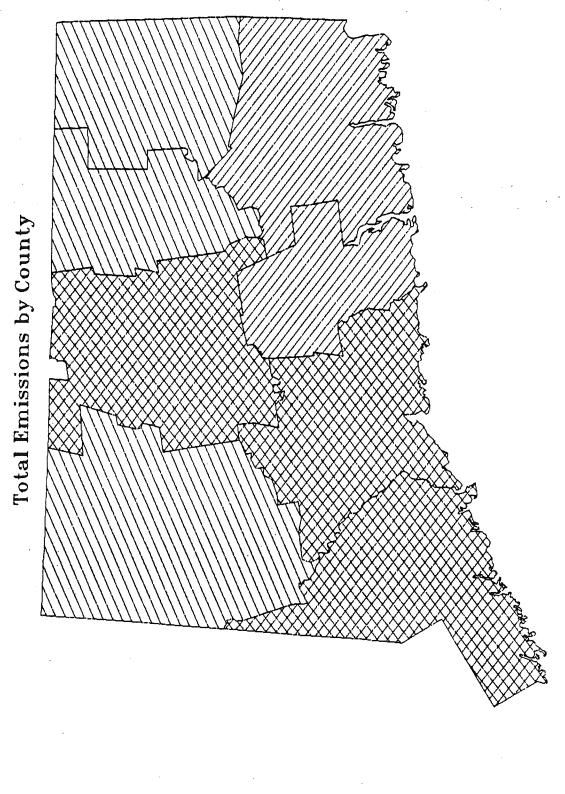

Figures 33 through 47 give various visual displays of the level of emissions for each of the major air pollutants. Figures 33, 36, 39, 42, and 45 are pie charts that show the percent of each air pollutant for Connecticut's eight (8) counties. Figures 34, 37, 40, 43, 46 are pictorial displays of emissions by county, where the darker areas indicate higher emission levels. Figures 35, 38, 41, 44, 47 are three dimensional graphs of each county's contribution to statewide emissions.

TABLE 37

1984 CONNECTICUT DEPARTMENT OF ENVÍRONMENTAL PROTECTION
EMISSIONS INVENTORY BY COUNTY*

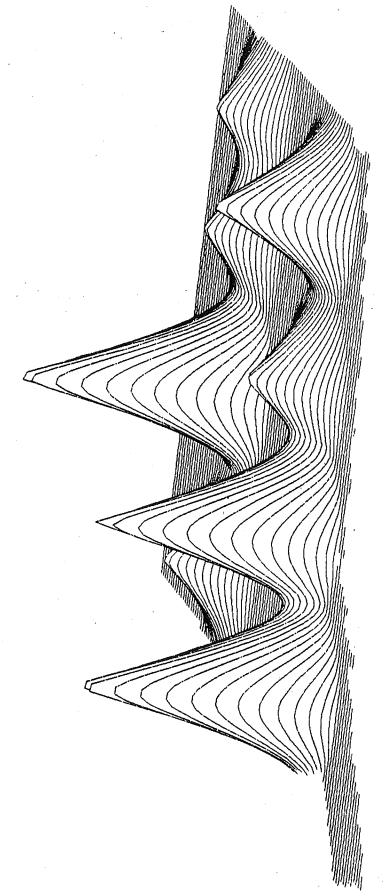
TONS PER YEAR VOC NOX TSP S₀2 CO 28,915.1 4,418.2 159,224.3 34,916.7 Fairfield Area 8,932.5 9,069.8 1,773.9 3,922.3 27,848.0 5,222.4 Point 37,984.9 40,139.1 10,706.4 32,266.2 163,146.6 36,226.0 29,700.8 165,896.7 Hartford 9,776.1 4,472.5 Area 2,999.0 3,594.6 Point 812.8 656.8 3,881.0 40,107.0 32,699.8 10,588.9 8,067.1 166,553.5 5,739.1 Litchfield 2,735.8 901.5 35,178.8 9,421.3 Area 241.3 853.3 632.7 58.8 Point 185.4 5,980.4 2,921.2 1,534.2 35,237.6 10,274.6 5,924.0 Middlesex 2,442.7 33,827.3 8,398.3 898.6 Area 7,874.3 6,069.1 Point 773.6 550.5 872.0 11,993.1 8,772.9 9,270.3 3,216.3 34,377.8 25,015.0 New Haven Area 8,676.5 4,080.1 131,648.3 30,880.9 8,058.6 1,124.5 931.5 5,927.5 Point 25,567.7 9,801.0 33,073.6 29,647.8 132,579.8 36,808.4 10,412.6 New London Area 4,115.3 1,552.8 59,699.3 14,667.1 4,237.2 Point 1,149.9 13,883.5 475.0 1,647.7 5,265.2 15,436.3 60,174.3 16,314.8 14,649.8 5,599.4 Tolland 698.9 31,093.8 7,702.0 Area 2,241.8 Point 116.5 978.3 49.2 135.0 337.8 2,358.3 1,677.2 31,143.0 7,837.0 5,937.2 3,958.0 Windham 2,006.1 24,687.2 6,411.3 557.6 Area 789.2 1,656.7 313.3 Point 238.6 460.1 2,244.7 1,017.7 25,476.4 8,068.0 4,271.3 115,264.1 TOTAL 40,926.8 17,580.1 148,623.7 **AREA** 641,255.8 31,326.0 6,165.1 80,839.2 7,433.2 POINT 20,195.7 168,819.4 146,590.1 47,091.9 98,419.3 648,689.0


^{*} This inventory is based on actual operating data for 1984, such as actual fuel use and actual material throughputs. NOX emissions are expressed as NO2.


FIGURE 33

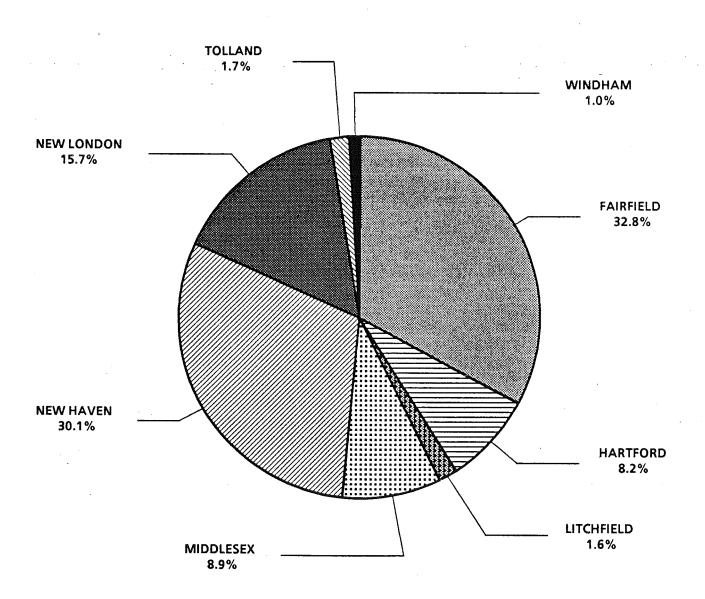
1984 CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION EMISSIONS INVENTORY BY COUNTY TOTAL SUSPENDED PARTICULATES

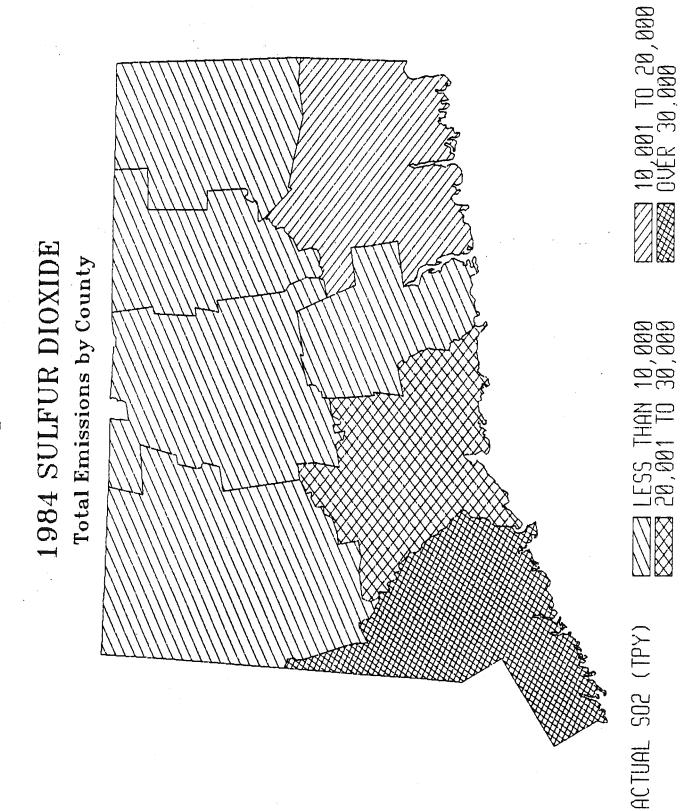
TOTAL TONS PER YEAR - 47,092


1984 TOTAL SUSPENDED PARTICULATES

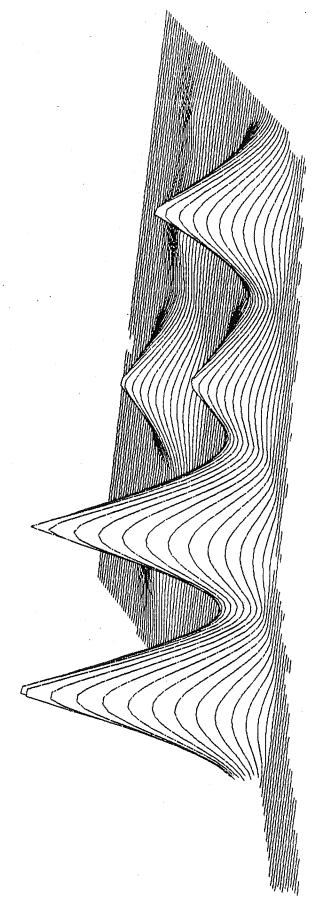
3001 TO 6000

ACTUAL TSP (TPY)

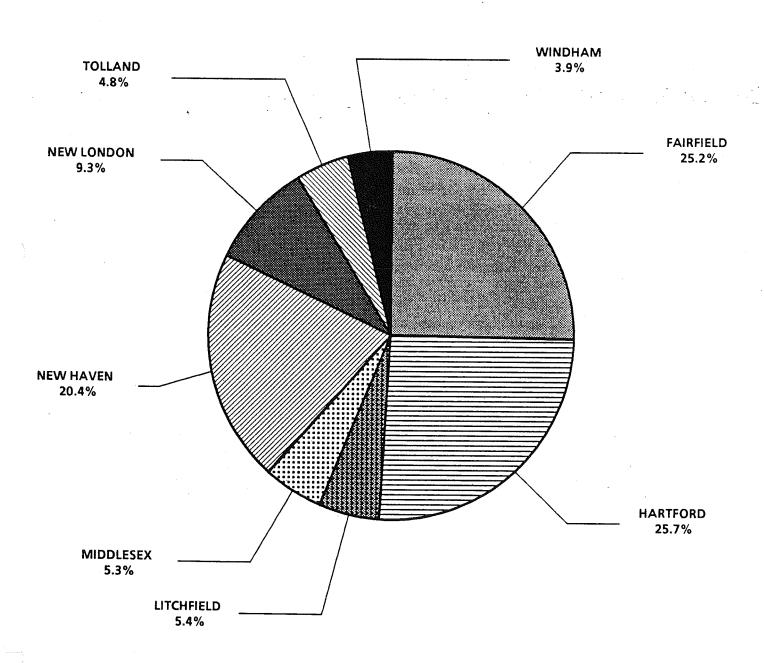

1984 TOTAL SUSPENDED PARTICULATES Total Emissions by County

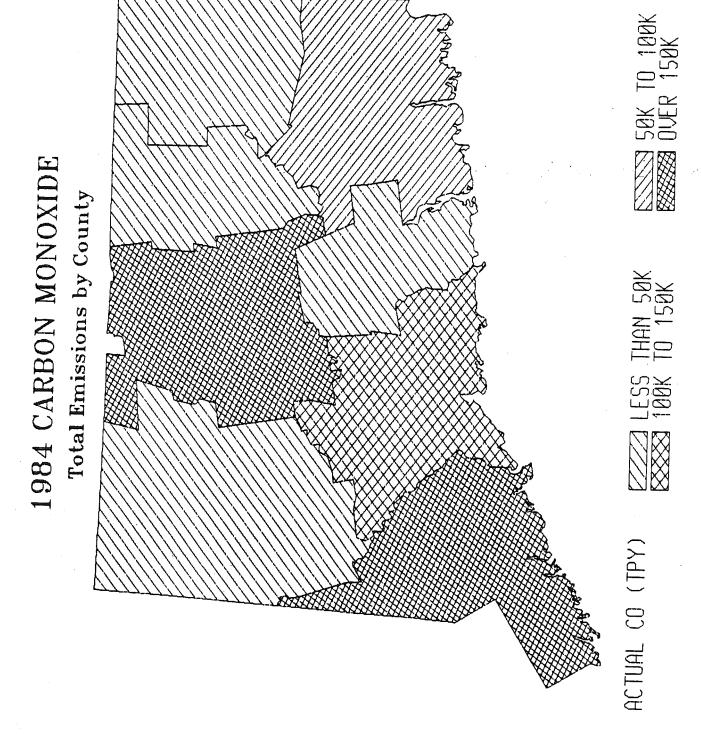


Three Dimensional View of TSP Emissions

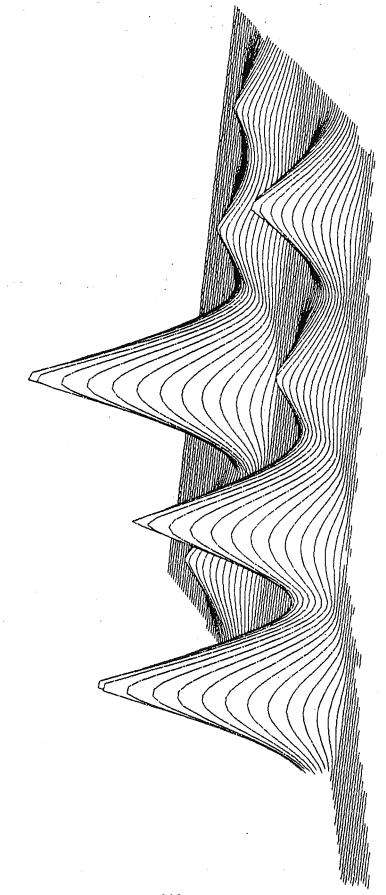

1984 CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION EMISSIONS INVENTORY BY COUNTY SULFUR DIOXIDE

TOTAL TONS PER YEAR - 98,419

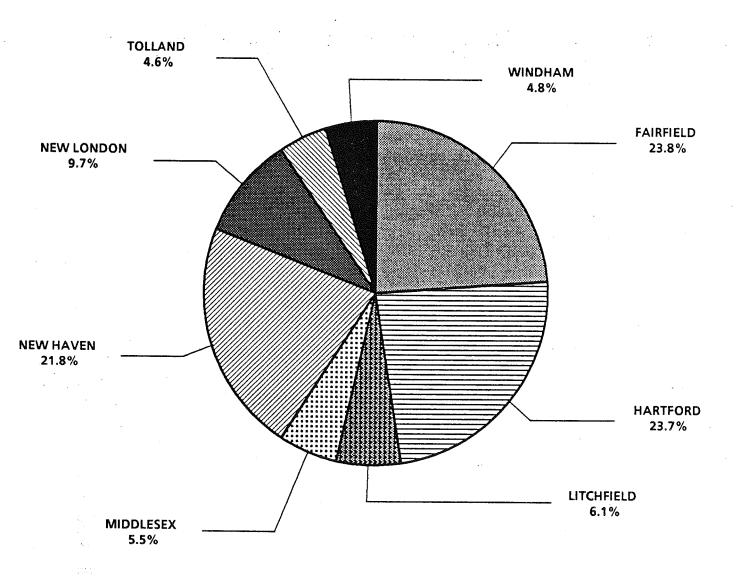

1984 SULFUR DIOXIDE Total Emissions by County

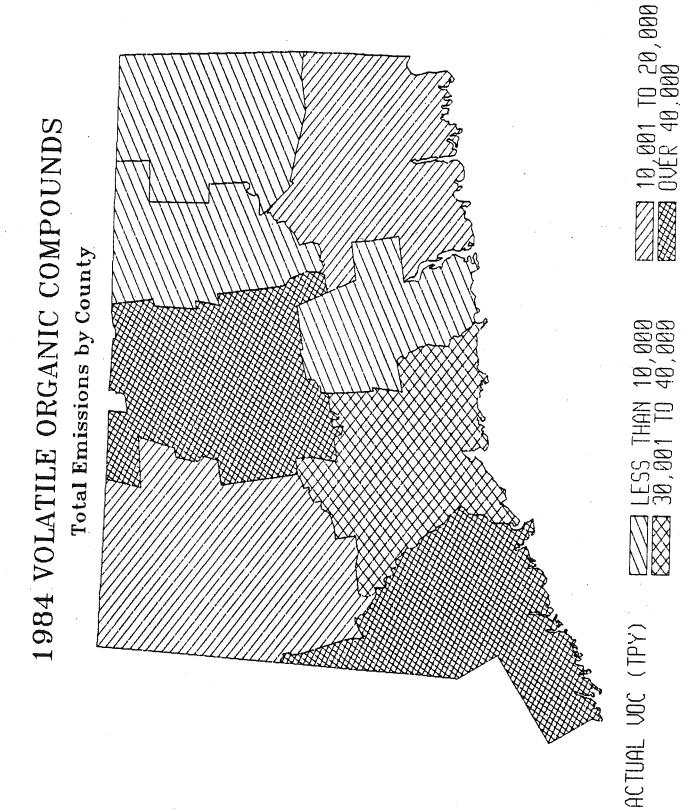


Three Dimensional View of SO2 Emissions

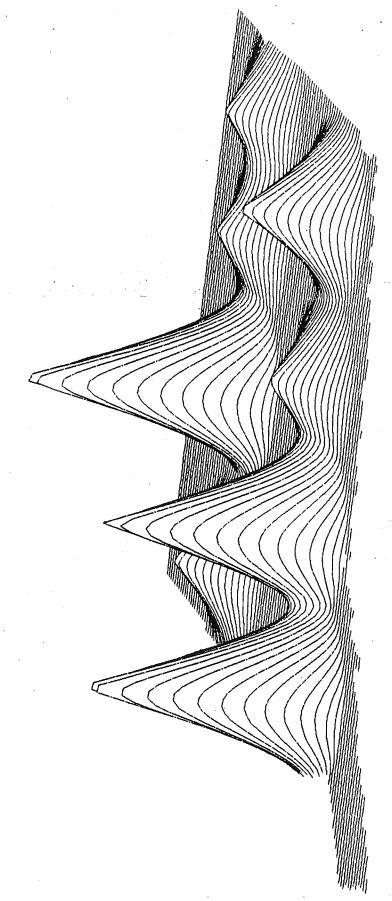

1984 CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION EMISSIONS INVENTORY BY COUNTY CARBON MONOXIDE

TOTAL TONS PER YEAR - 648,689


1984 CARBON MONOXIDE Total Emissions by County



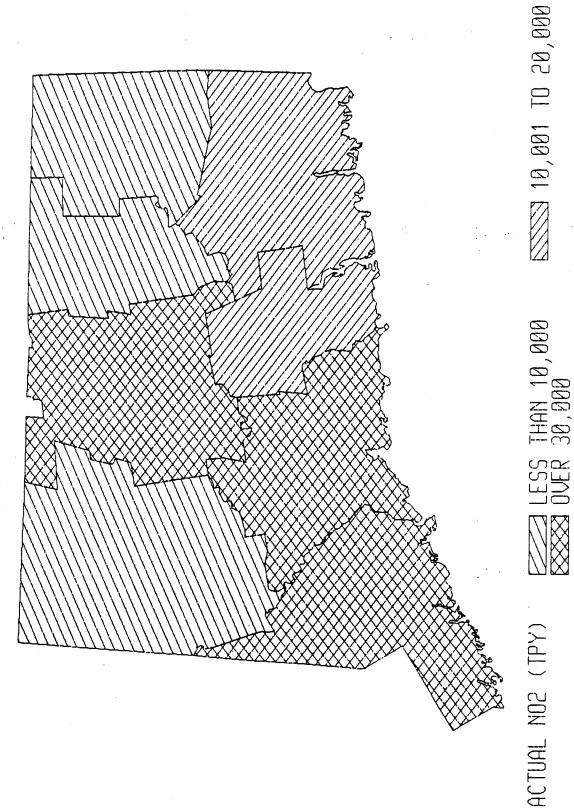
Three Dimensional View of CO Emissions


1984 CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION EMISSIONS INVENTORY BY COUNTY VOLATILE ORGANIC COMPOUNDS

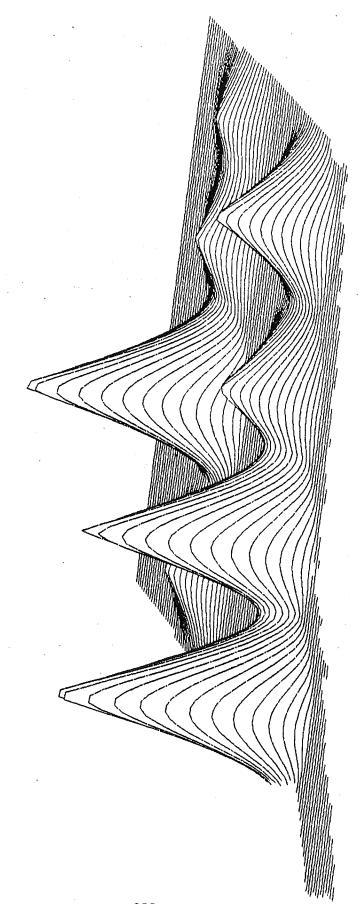
TOTAL TONS PER YEAR - 168,936

1984 VOLATILE ORGANIC COMPOUNDS Total Emissions by County

Three Dimensional View of VOC Emissions


1984 CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION EMISSIONS INVENTORY BY COUNTY NITROGEN OXIDES, EXPRESSED AS NO2

TOTAL TONS PER YEAR - 146,590


1984 NITROGEN OXIDES

(Expressed as Nitrogen Dioxide)
Total Emissions by County

1984 NITROGEN OXIDES

(Expressed as Nitrogen Dioxide)
Total Emissions by County

Three Dimensional View of NO2 Emissions

- 27. Wolff, G.T., P.J. Lioy, and G.D. Wight, "An Overview of the Current Ozone Problem in the Northeastern and Midwestern U.S.," In: Proceed. Mid-Atlantic States APCA Conf. on Hydrocarbon Control Feasibility, p. 98, New York, N.Y., April, 1977.
- 28. Wolff, G.T., P.J. Lioy, G.D. Wight, R.E. Meyers, and R.T.Cederwall, "An Investigation of Long-Range Transport of Ozone Across the Midwestern and Eastern U.S.," Atmos. Environ. 11:797 (1977).

-258-

las in edije og entemetskil Ingilios

sa dinore es e griscolo de de es sa dinores el esta de esta de

XIV. ERRATA

During the preparation of this document, a number of errors were discovered and corrected. In order to prevent any confusion in the mind of the reader over conflicting data presented in this and previous editions of this document, the errors and corrections are presented below:

- Regarding the 1983 Air Quality Summary,
 - 1. In Section IV, on page 116, in the second paragraph, the last sentence should say that the largest increase is 0.096 ppm, not 96 ppm.
 - 2. In Section XI, Table 35 should be amended as follows:
 - a. Under ozone, the urban area for the town of Stafford should be "none";
 - b. Under total suspended particulates, the urban area for the town of New Britain should be New Britain; for the town of Milford should be Bridgeport; and for the town of Willimantic should be "none"; and
 - c. Under ozone, total suspended particulates and lead, the urban area for Middletown should be Hartford.
- Regarding previous Air Quality Summaries, Table 33 in the 1981 Summary and Table 32 in the 1982 Summary should be amended as specified in item 2 above.

Errata reported in the 1983 Air Quality Summary

- Regarding 1968 TSP data, all references to site Greenwich 003 should be ignored. This site had insufficient data for a valid annual average concentration.
- Regarding 1969 TSP data, the annual geometric mean concentration for site Naugatuck 001 has been changed from 92.6 to 92.5 ug/m.
- Regarding 1971 TSP data, the annual geometric mean concentration for site Norwalk 001 has been changed from 57.0 to 57.1 ug/m.
- Regarding 1972 TSP data,
 - 1. The annual geometric mean concentration for site New Haven 001 has been changed from 54.8 to 54.9 ug/m³, and
 - 2. All references to site Enfield 003 should be ignored. This site was not part of the official particulate sampling network.
- Regarding 1968-1972 TSP data, all references to the following monitoring sites should be ignored: Bridgeport A 001, Hartford A 001, New Haven A 001, and Waterbury A 001. Questions about the handling of the sample filters are serious enough to invalidate all data from these sites.

- Regarding 1980 TSP data, the following corrections have been made:
 - 1. Bridgeport 001: The number of samples for the year has been changed from 57 to 58, and the annual geometric mean concentration has been changed from 47.8 to 47.6 ug/m³.
 - 2. Bridgeport 123: the annual geometric mean concentration has been changed from 64.2 to 63.8 ug/m³.
 - 3. Greenwich 016: All references to this site should be ignored. This site is considered to have been unsuitably located for acceptable particulate monitoring.
 - 4. Morris 001: The standard deviation of the sampling data has been changed from 1.567 to 1.557.
- Regarding 1981 TSP data, the following corrections have been made:
 - 1. Bristol 001: The number of samples for the year has been changed from 55 to 58, and the annual geometric mean concentration has been changed from 34.1 to 34.6 ug/m.³
- Regarding TSP data for the years 1975 through 1981, all references to sites Torrington 123 and Waterbury 123 should be ignored. These sites are now considered to have been unsuitably located for acceptable particulate monitoring.
- The above corrections, where relevant, are implicit in Table 2 and Table 8 of the 1982 Air Quality Summary. Accordingly, versions of these tables found in post-1974 (and pre-1982) editions of this document contain erroneous information and should be ignored or appropriately footnoted.
- Regarding Table 2, some of the earlier editions of this document have contained versions of this table which appeared to present annual "arithmetic" mean data. This is incorrect. All versions of this table contain annual "geometric" mean data.