STATE OF CONNECTICUT ANNUAL AIR QUALITY SUMMARY

1983

William A. O'Neill

Governor

Stanley J. Pac Commissioner

(

TABLE OF CONTENTS

(

(.....)

	PAGE
LIST OF TABLES	iii
LIST OF FIGURES	•
I. INTRODUCTION	· 1
A. Overview of Air Pollutant Concentrations in Connecticut	· 1
 Total Suspended Particulates Sulfur Dioxide Ozone Nitrogen Dioxide Carbon Monoxide Lead 	1 1 2 2 2
B. Trends	6
1. TSP 2. SO,	6 7
C. Air Monitoring Network	16
D. Pollutant Standards Index	17
E. Quality Assurance	17
1. Precision	19 19
II. TOTAL SUSPENDED PARTICULATES	21
III. SULFUR DIOXIDE	97
IV. OZONE	114
V. NITROGEN DIOXIDE	129
VI. CARBON MONOXIDE	135
VII. LEAD	142
VIII. ACID PRECIPITATION	169
IX. CLIMATOLOGICAL DATA	185

TABLE OF CONTENTS

		PAGE
X.	ATTAINMENT AND NON-ATTAINMENT OF NAAQS IN CONNECTICUT'S AQCR'S	192
XI.	CONNECTICUT SLAMS AND NAMS NETWORK	195
XII.	EMISSIONS INVENTORY	204
XIII.	PUBLICATIONS	222
XIV	. ERRATA	225

LIST OF TABLES

()

(....)

TABLE NUMBER	TITLE OF TABLE	PAGE
1	Assessment of Ambient Air Quality	3
2	Air Quality Standards Exceeded in Connecticut in 1983 Based Solely upon Measured Concentrations	4
3	TSP Trends, 1968–1983 (Paired <i>t</i> Test)	8
4	SO, Trends from Continuous Data, 1978–1983 (Paired t Test)	10
5	1981–1983 TSP Annual Averages and Statistical Projections	26
6	Confidence of Compliance with Annual TSP Standards during 1983	31
7	1983 Maximum 24-Hour TSP Concentrations	32
8	Summary of the Statistically Predicted Number of Sites Exceeding the 24-Hour TSP Standards	35
9	Quarterly Chemical Characterization of 1983 Hi-Vol TSP	36
10	Monthly Chemical Characterization of 1983 Lo-Vol TSP	78
11	1983 Ten Highest 24-Hour Average TSP Days with Wind Data	80
12	1983 Annual Arithmetic Averages of Sulfur Dioxide at Sites with Continuous Monitors	101
13	1983 Sulfur Dioxide Annual Averages and Statistical Projections	102
14	1983 Maximum 24–Hour Running Average Sulfur Dioxide Concentrations	103
15	Comparisons of 1983 First and Second High Running and Calendar Day 24–Hour SO , Averages	105
16	1983 Maximum Running 3-Hour Sulfur Dioxide Concentrations	106
17	1983 Ten Highest 24-Hour Average SO, Days with Wind Data	108
18	Number of Days on Which the 1-Hour Ozone Standard Was Exceeded in 1983	118
19	Number of Exceedances of the 1-Hour Ozone Standard in 1983	119
20	1983 Maximum 1-Hour Ozone Concentrations	120
21	1983 Ten Highest 1-Hour Average Ozone Days with Wind Data	121

LIST OF TABLES

TABLE NUMBER	TITLE OF TABLE	PAGE
22	1981–1983 Nitrogen Dioxide Annual Averages and Statistical Projections	132
23	1983 Ten Highest 24-Hour Average NO, Days with Wind Data	133
24	1983 Carbon Monoxide Standards Assessment Summary	138
25	1983 Carbon Monoxide Seasonal Features	139
26	1983 Ten Highest 1-Hour Average CO Days with Wind Data	140
27	1983 3-Month Running Average Lead Concentrations	147
28	Atmospheric Deposition Data for the Plainfield Site	172
29	Atmospheric Deposition Data for the Morris Dam Site	174
30	Atmospheric Deposition Data for the Marlborough Site	175
31	1982 and 1983 Climatological Data, Bradley International Airport, Windsor Locks	186
32	1982 and 1983 Climatological Data, Sikorsky International Airport, Stratford	187
33	Connecticut's Compliance with the NAAQS (by AQCR) for 1983	194
34	U.S. EPA Approved Monitoring Methods Used in Connecticut in 1983	198
35	1983 SLAMS and NAMS Sites	199
36	Summary of Probe Siting Criteria	202
37	1983 Connecticut Department of Environmental Protection Emissions Inventory by County	205

LIST OF FIGURES

 $\langle \cdot \rangle$

Figure Number	TITLE OF FIGURE	PAGE
1	Total Suspended Particulate Matter Trend	9
2	Sulfur Dioxide Trend from Continuous Data	11
2A	Annual Geometric Mean Concentration of SO, from 1978-1983	12
2B	The Average of the Annual Geometric Mean SO, Concentrations at 5 Concurrently Operating SO, Sites with Continuous Monitors	13
2C	Three-Year Running Average of the Annual Geometric Mean SO, Concentrations at 5 Concurrently Operating SO, Sites with Continuous Monitors	14
2D	Trend of Annual Geometric Mean Concentrations of SO, at 5 Concurrently Operating Sites from 1978–1983	15
3	Pollutant Standards Index	18
4	Location of 1983 Total Suspended Particulate Matter Instruments	25
5	Location of 1983 Continuous Sulfur Dioxide Instruments	100
6	Location of 1983 Chemiluminescent Ozone Instruments	117
7	Wind Rose for April–September 1982, Bradley International Airport, Windsor Locks, Connecticut	125
8	Wind Rose for April–September 1983, Bradley International Airport, Windsor Locks, Connecticut	126
9	Wind Rose for April-September 1982, Newark International Airport, Newark, New Jersey	127
10	Wind Rose for April-September 1983, Newark International Airport, Newark, New Jersey	128
11	Location of 1983 Nitrogen Dioxide Instruments	131
12	Location of 1983 Carbon Monoxide Instruments	137
13	Statewide Annual Lead Emissions from Gasoline and Statewide Annual Average Lead Concentrations	144

LIST OF FIGURES

FIGURE NUMBER	TITLE OF FIGURE	PAGE
14	Statewide Annual Lead Emissions from Gasoline vs. Statewide Annual Average Lead Concentrations	145
15	Location of 1983 Lead Instruments	146
16	3-Month Running Averages for Lead	148
17	Location of Precipitation Collectors	171
18	Inches of Precipitation, Plainfield Site, 1983	176
19	pH of Precipitation, Plainfield Site, 1983	177
20	Specific Conductance of Precipitation, Plainfield Site, 1983	178
21	Inches of Precipitation, Morris Dam Site, 1983	179
22	pH of Precipitation, Morris Dam Site, 1983	180
23	Specific Conductance of Precipitation, Morris Dam Site, 1983	181
24	Inches of Precipitation, Marlborough Site, 1983	182
25	pH of Precipitation, Marlborough Site, 1983	183
26	Specific Conductance of Precipitation, Marlborough Site, 1983	184
27	Annual Wind Rose 1982, Bradley International Airport, Windsor Locks, Connecticut	188
28	Annual Wind Rose 1983, Bradley International Airport, Windsor Locks, Connecticut	189
29	Annual Wind Rose 1982, Newark International Airport, Newark, New Jersey	190
30	Annual Wind Rose 1983, Newark International Airport, Newark, New Jersey	191
31	Connecticut's Air Quality Control Regions	193
32	State of Connecticut County Map	206
33	1983 Connecticut Department of Environmental Protection Emissions Inventory by County, Total Suspended Particulates	207
34	1983 Total Suspended Particulates, Total Emissions by County	208

LIST OF FIGURES

 \square

(....)

FIGURE NUMBER	TITLE OF FIGURE	PAGE
35	1983 Total Suspended Particulates, Total Emissions by County, Three-Dimensional View of TSP Emissions	209
36	1983 Connecticut Department of Environmental Protection Emissions Inventory by County, Sulfur Dioxide	210
37	1983 Sulfur Dioxide, Total Emissions by County	211
38	1983 Sulfur Dioxide, Total Emissions by County, Three-Dimensional View of SO, Emissions	212
39	1983 Connecticut Department of Environmental Protection Emissions Inventory by County, Carbon Monoxide	213
40	1983 Carbon Monoxide, Total Emissions by County	214
41	1983 Carbon Monoxide, Total Emissions by County, Three–Dimensional View of CO Emissions	215
42	1983 Connecticut Department of Environmental Protection Emissions Inventory by County, Volatile Organic Compounds	216
43	1983 Volatile Organic Compounds, Total Emissions by County	217
44	1983 Volatile Organic Compounds, Total Emissions by County, Three-Dimensional View of VOC Emissions	218
45	1983 Connecticut Department of Environmental Protection Emissions Inventory by County, Nitrogen Oxides (Expressed as NO 2)	219
46	1983 Nitrogen Oxides (Expressed as NO ,), Total Emissions by County	220
47	1983 Nitrogen Oxides (Expressed as NO ,), Total Emissions by County, Three-Dimensional View of NO , Emissions	221

.

I. INTRODUCTION

The 1983 Air Quality Summary of Ambient Air Quality in Connecticut is a compilation of all air pollutant measurements made at the Department of Environmental Protection (DEP) air monitoring network sites.

A. Overview of Air Pollutant Concentrations in Connecticut

The assessment of ambient air quality in Connecticut is made by comparing the measured concentrations of a pollutant to each of two Federal air quality standards. The first is the primary standard which is established to protect public health with an adequate margin of safety. The second is the secondary standard which is established to protect plants and animals and to prevent economic damage. The specific air quality standards are listed in Table 1 along with the time constraints imposed on each.

The following section briefly describes the status of Connecticut's air quality for the year 1983. More detailed discussions of each of the six pollutants are provided in subsequent sections of this Air Quality Summary.

1. Total Suspended Particulates (TSP)

Measured total suspended particulate (TSP) levels did not exceed the primary annual standard of 75 ug/m³ or the secondary annual standard of 60 ug/m³ in Connecticut during 1983. No site exceeded the primary 24-hour standard of 260 ug/m³ in 1983. Nor did any site exceed the secondary 24-hour standard of 150 ug/m³, whereas such exceedances were recorded at two (2) sites in 1982 and at fourteen (14) sites in 1981. Two (2) exceedances of a standard are required at a particular site for the standard to be violated. No site recorded violations of any particulate standard in 1983 (see Table 2).

In general, measured TSP levels in Connecticut were lower in 1983 in terms of annual average concentration values than they were in 1982 (see Table 3).

2. Sulfur Dioxide (SO_2)

None of the air quality standards for sulfur dioxide were exceeded in Connecticut in 1983. Measured concentrations were below the 80 ug/m³ primary annual standard, the 365 ug/m³ primary 24-hour standard, and the 1300 ug/m³ secondary 3-hour standard.

The results of continuous SO_2 monitoring indicate that sulfur dioxide levels were significantly lower in 1983 than 1982. Temperature is an important factor in determining SO_2 emissions. The general decrease in measured SO_2 levels may have been due to the fact that, for coastal Connecticut, 1983 was warmer than 1982. This can be shown by the number of "degree days" : a measure of heating requirement. As the number of degree days increases, the amount of fuel that must be burned to heat buildings also increases (see Tables 28 and 29). Consequently, as more fossil fuel is burned, the emissions of sulfur oxides are proportionately increased.

3. Ozone (O_3)

National Ambient Air Quality Standards – (NAAQS) – On February 8, 1979, the EPA established an ambient air quality standard for ozone of 0.12 ppm for a one-hour average. That level is not to be exceeded more than once per year. Furthermore, in order to determine

compliance with the 0.12 ppm ozone standard, EPA directs the states to record the number of daily exceedances of 0.12 ppm at a given monitoring site over a consecutive 3-year period and then calculate the average number of daily exceedances for this interval. If the resulting average value is less than or equal to 1.0; that is, if the fourth highest daily value in a consecutive 3-year period is less than 0.12 ppm, the ozone standard is considered to be attained. The definition of the pollutant was also changed, along with the numerical value of the standard, partly because the instruments used to measure photochemical oxidants in the air really measure only ozone. Ozone is merely one of a group of chemicals which are formed photochemically in the air and are called photochemical oxidants. In the past, the two terms have often been used interchangeably. This 1983 Air Quality Summary uses the term "ozone" in conjunction with the new NAAQS to reflect the changes in both the numerical value of the NAAQS and the definition of the pollutant.

The primary 1-hour ozone standard was exceeded at all the DEP monitoring sites in 1983 (see Table 2).

The incidence of ozone levels in excess of the 1-hour 0.12 ppm ozone standard increased from 1982 to 1983 (see Tables 18 and 19). Most of this difference is attributable to the changes in meteorological factors which occur from year-to-year. The formation of ozone is facilitated by high temperatures and strong sunlight in the presence of hydrocarbons and oxides of nitrogen. The prevailing southwest wind transports hydrocarbons and nitrogen oxides generated in the New Jersey – New York City Metropolitan Area into Connecticut. Along the way, these chemicals react in the presence of strong sunlight, forming ozone. Consequently, the ozone levels across Connecticut are highest when the prevailing wind flow is out of the southwest (see Table 21). However, there are recorded exceedences of the NAAQS for ozone on non-southwest wind days. This indicates that pollution control programs currently being implemented in this state are needed to protect the public health of Connecticut's citizenry on days when Connecticut is responsible for its own pollution.

4. Nitrogen Dioxide (NO₂)

The method by which the DEP measures NO₂ was changed in 1981. This change was the reason for the incomplete nature of the 1981 data. 1983 was the second full year the DEP used continuous electronic analyzers to measure NO₂ levels. The annual average NO₂ standard, 100 ug/m³, was not exceeded in 1983 at any site in Connecticut.

5. Carbon Monoxide (CO)

The primary eight-hour standard of 9 ppm was exceeded at all five of the carbon monoxide monitoring sites in Connecticut during 1983 (see Table 2). The standard was exceeded once at Bridgeport 004, New Haven 007 and Stamford 020, twice at New Britain 002, and three times at Hartford 012. For comparison, there were two exceedances at Hartford 012 and Stamford 020 and three exceedances at New Britain 002 in 1982.

There were no violations of the primary one-hour standard of 35 ppm.

6. Lead (Pb)

The primary and secondary ambient air quality standard for lead is 1.5 ug/m³, maximum arithmetic mean averaged over three consecutive calendar months. As was the case in 1982, the lead standard was not exceeded at any site in Connecticut during 1983.

A downward trend in measured concentrations of lead has been observed since 1978. This trend is probably due to the increasing use of unleaded gasoline.

AMBIENT AIR QUALITY STANDARDS	SECONDARV STANDARD Ug/m3 ppm	60* 150	1300 0.50	Same as Primary	Same as Primary	Same as Primary	Same as Primary Same as Primary
T AIR QI	PRIMARY STANDARD /m3 ppm		0.03 0.14	0.05	0.12		0 0 0 * *
AMBIEN	PRIN STAI Ug/m3	75 260	80 365	100	235	1.5	4 0 4 0 4 * * *
	STATISTICAL BASE	Annual Geometrig Mean 24-Hour Average	Annual Arithmetic Mean 24-Hour Averagg 3-Hour Average	Annual Arithmetic Mean	1-Hour Average ⁴	Weighted 3-Month Average	8-Hour Average ³ 1-Hour Average ³
	DATA REDUCTION	24-Hour Average	1-Hour Average	1-Hour Average	1-Hour Average	Monthly Composite	1-Hour Average
	SAMPLING	24-Hours Every Sixth Day ¹	Continuous ²	Continuous ²	Continuous ²	24 Hours Every Sixth Day ⁵	Continuous ²
	POLLUTANT	Total Suspended Particulates	Sulfur Oxides (Measured as Sulfur Dioxide)	Nitrogen Dioxide Continuous ²	Ozone	Lead	Carbon Monoxide

EPA assessment criteria require at least 5 samples per calendar quarter, and, if one month has no samples, then the other two months in that quarter must have at least two samples each. EPA assessment criteria require 75% of possible data to compute valid averages. Not to be exceeded more than once per year. Not to be exceeded more than an average of once per year in three years. State of Connecticut assessment criteria require 75% of possible data to compute valid averages. A guide to be ysed in assessing implementation plans to achieve the 24-hour standard. -

* * ហ 4 ល N

Units: ug/m³ = micrograms per cubic meter; mg/m³ = milligrams per cubic meter; ppm = parts per million

TABLE 1

.

		TOTAL SUSPENDED	PARTICUL	-ATES	20	OZONE	CARBON MONOXIDE	DXIDE
		Level Exceeding	Level Ex	U	i .		Level Exce	ceeding
		Secondary Annual Standard	Secondary	24-Hour ard	Level E	Exceeding Standard	21	1-Hour
		Hichert	Hichest	Number		Number	31810810	2
		Observed	Observed	of Times	Observed	of Dave	Dhearved Level	NUMDET
		Level	Level	Standard	Level	Standard	B-Hour / 1-Hour	
TOWN	SITE	(ng/m3)	(ng/m3)	Exceeded	(mqq)	Exceeded	(mdd)	Exceeded
	500	1	ł	ı	×	×	×	×
Bridgeport	100		ł	ı	×	×	×	×
Bridgeport	004		×	×	×	×	9.6/-	-/1
Bridgeport	600	ſ	ŀ	ı	×	×	×	×
Bridgeport	123		1	I	0.208	24	:×	(×
Bristol			ı	·	×		(>	< >
Burlington	100	I	ł	ł	: ×	(>	< >	< >
Danbury	002	1	ı	I	: ×	< >	<>	< >
Danbury	123	1	ł	:	U 224	с С С	<>	< >
East Hartford	003	×	×)		о Ч	< >	< :
East Hartford	004	; 1	()	< 1	207.0	<u>,</u>	< >	< :
Greenwich	008	,	1		< >	< >	< >	<>
Greenwich	017	×	×	×	0 269	< r	< >	<>
Groton	005	×	: ×	(×	0 204	1 40	<>	< >
Groton	006	I	: 1			2	<>	< >
Haddam	002	I	ł	1	: ×	<	<>	< >
Hartford	003	1.	ł	ł	< ×	<	<>	< >
Hartford	012	×	×	×	< ×	<	10 0/-	< `
Hartford	013	I	: 1	()	< >	<>	- 10.21	- / 5
Hartford	014	J	ł	ł	<	< >	<>	< >
Madison	002	×	×	×	0 244	< r 0	<>	<>
Manchester	001	1	1	()	× ×	, ,	< >	< >
Meriden	002		ı	1	<	<>	<>	< >
Meriden	008	ı	ı	ı	``	<>	< >	< >
Middletown	003	ł	ł	1	``	< >	<>	< >
Middletown	007	×	×	×	0 216 0		< >	< :
Milford	002	1	. 1	(1	2. F	2 2	<>	K :
Naugatuck	100	I	ı	ŀ	< >	< >	<>	× :
	002	×	×	×	< >	< >	< `` ;	×
	007	I	: 1	: 1	< >	< >		- 17
	008	I	ı	1	< ×	< >	< >	×
	600	ŧ	ı	ł	<	< >	< >	< :
z	002	I	ı	1	< ×	< >	<>	×
	007	×	×	×	< >	< >	< i c	×
New Haven	013	. 1	: 1	()	< >	< >	- 10.8	-/1
					<	<	ĸ	×

AIR QUALITY STANDARDS EXCEEDED IN CONNECTICUT IN 1983 BASED SOLELY UPON MEASURED CONCENTRATIONS

TABLE 2

CONCENTRATIONS	
983 BASED SOLELY UPON MEASURED C	
UPON	-
SOLELY	
BASED	
1983	
NI	
IN CONNECTICUT I	
EXCEEDED I	
AIR QUALITY STANDARDS EXCEEDED IN CONNECTICUT IN 1983 BASED SOLELY UPON MEASURED CONCENTRATION	
AIR	

TABLE 2, Continued

(_____

		TOTAL SUSPENDED	IDED PARTICULATES	ATES	020	OZONE	CARBON MONOXIDE	XIDE
		Level Exceeding Secondary Annual	Level Exceeding Secondary 24-Hou	ceeding 24-Hour	Level E	Exceeding	Level Exceeding 8-Hour/1-Hour Standard	ding lour r
		Highest	Highest	Number		Number	Highest	Number
		Level Level	Level	Standard	Level	Standard	8-Hour/1-Hour	Standard
TOWN	SITE	(ng/m3)	(ng/m3)	Exceeded	(mqq)	Exceeded	(ppm)	Exceeded
:		;	:	;			:	;
New Haven	123	×	×	×	0.204	27	×	×
Norwalk	100	I	ł	ı	×	×	×	×
Norwalk	005	I	I	1	×	×	×	×
Norwalk	012	1	I	ł	×	×	×	×
Norwich	100	I	1	I	×	×	×	×
Stafford	100	×	×	×	0.197	20	×	×
Stamford	001	1	I	1	×	×	×	×
Stamford	007	1		1	×	×	×	×
Stamford	020	×	×	×	×	×	9.7/-	-/1
Stamford	021	I.	ı	ı	×	×	×	×
Stratford	005	. 1	I	I	×	×	×	×
Stratford	007	×	×	×	0.248	45	×	×
Torrington	100	I .	I	ł	×	×	×	×
Voluntown	100	I	1	4	×	×	×	×
Wallingford	001	I	I		×	×	×	×
Waterbury	005	,	*	1	×	×	×	×
Waterbury	006	t	1		×	×	×	×
Waterbury	007	ł	ı	•	×	×	×	×
Waterbury	123	i	ı	I	×	×	×	×
Waterford	001	ŧ	ı	I	×	×	×	×
Willimantic	002	ł	I	I	×	×	×	×
V. Dollintation too tootilloo								

X: Pollutant not monitored at site -: No violation

-5-

B. Trends

Any attempt to assess statewide trends in air pollution levels must account for the tendency of local changes to obscure the statewide pattern. In order to reach some statistically valid conclusions concerning trends in pollutant levels in Connecticut, the DEP has applied a statistical test called a paired t test (referred to hereafter as the t test) to the annual average data for two pollutants. The t test has been applied to 1968–1983 total suspended particulate (TSP) data and to 1978–1983 continuous SO₂ data.

The t test is a parametric test which can ascertain statistically significant changes (increases or decreases) in the annual average pollutant concentrations at all the monitoring sites in Connecticut. The t test makes it possible to overcome the trend analysis problems which arise due to the changes in the number and location of monitoring sites from year-to-year, as well as problems associated with making equitable comparisons among sites. The annual mean pollutant concentrations for consecutive years are compared at each site; there is no inter-site comparison. Data for two consecutive years are required and the size of the change (increase or decrease) is noted. For example, if a high proportion of sites experienced an increase and/or if the magnitude of the increases at several sites is of much greater importance than the magnitude of the decreases at other sites, the t test will show that the increase was statistically significant for those two years.

The results of the *t* test for TSP and continuous SO₂ data are presented in Tables 3 and 4, respectively. These analyses were performed only on data computed for sites at which the U.S. Environmental Protection Agency (EPA) minimum sampling criteria were met. The years of data that were paired, the number of sites used, and the statewide average and standard deviation of the geometric mean pollutant concentrations at the sites are provided in the first four columns of each table. The statistical significance of any change in the statewide pollutant average is provided in the remaining columns. The significance of a change is indicated by an arrow for each confidence limit, and is also given numerically as the number of chances in 10,000 of *not* occurring under the heading "actual significance of change". For example, the statewide annual average for TSP decreased between 1971 and 1972 from 68.4 to 61.9. This change represented a significant decrease at the 95% confidence level, but it did not represent a significant change at the 99% confidence level. The "actual significance of change" is given as 0.0237, meaning that there are 237 chances in 10,000 that this measured decrease in TSP levels did not occur.

1. TSP

The results of the t test for TSP (see Table 3) show that total suspended particulate levels in Connecticut decreased significantly from 1968 to 1969. From 1969 through 1971 there was no significant change. Then, from 1971 to 1974 TSP levels decreased significantly again, but from 1974 to 1975 this decreasing trend was reversed and TSP levels demonstrated a significant increase. TSP concentrations remained relatively constant from 1975 to 1977, decreased from 1977 to 1978, and remained unchanged from 1978 to 1979. Between 1979 and 1980 there was a significant drop in measured TSP levels. This has been attributed to the elimination of passive sampling error through the use of retractable lids on the hi–vol monitors. TSP levels again fell significantly from 1980 to 1981 – the largest decrease in concentrations since 1973. TSP levels increased from 1981 to 1982 and decreased from 1983.

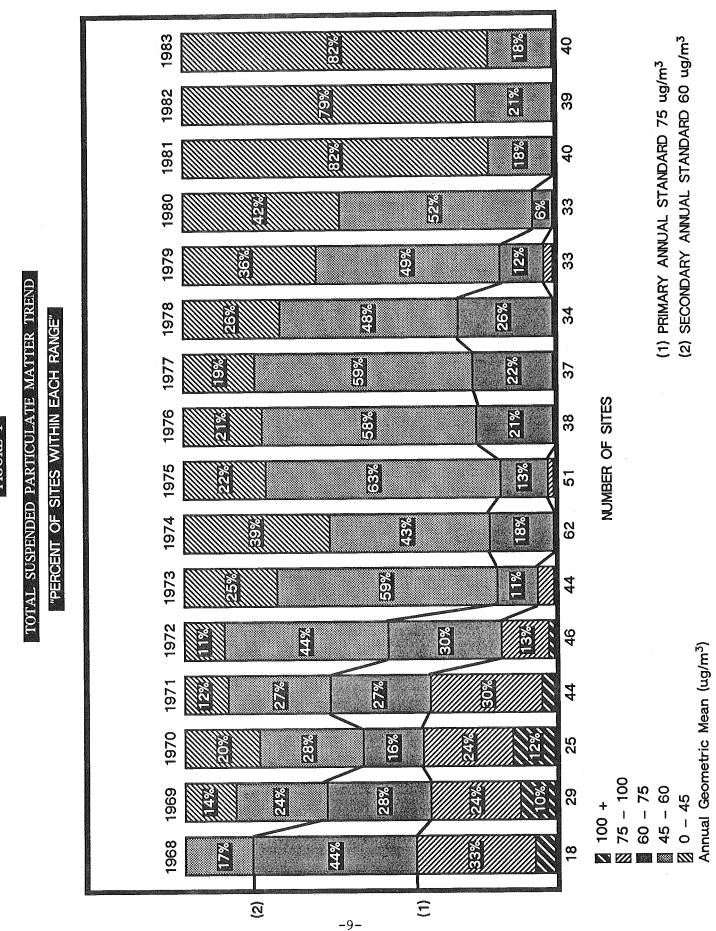
These trend analyses do not account for the uncertainty associated with the individual annual mean computed for each TSP site. Most TSP sampling is conducted only every sixth

day, producing a total of 61 samples per year. Therefore, the *t* test really compares year-to-year averages of the sampled concentrations, not actual annual averages. However, the every-sixth-day sampling schedule is believed to be sufficient to produce representative annual averages. The every-sixth-day schedule for TSP sampling did not start until 1971. Since fewer samples were taken at each site from 1968 to 1970 than during recent years, the test results from the early years are not as conclusive as the results from the later years.

Significant changes in annual TSP levels can also be caused simply by changes of weather, particularly the wind. Such changes may explain most of the decrease in TSP levels observed between 1968 and 1969, the increase observed between 1974 and 1975, and the decrease from 1977 to 1978. The persistent decrease in TSP levels observed from 1971 to 1974, however, can certainly be attributed to the stationary source emission controls implemented by the DEP during those years.

Figure 1 shows the long-term trend of TSP concentrations in Connecticut in graphical form. The trend chart is based on data obtained from high volume sampling devices. High volume sampler data at a site are included only if there was a sufficient number of samples taken in a year to compute a valid annual geometric mean concentration.

2. SO₂


Connecticut has been measuring ambient levels of sulfur dioxide since prior to the inception of the SO₂ standards in 1971. Several monitoring methods have been employed including bubblers, sulfation plates, and various types of continuous instruments. The bubblers became the EPA reference method, but unfortunately the field data have turned out to be very unreliable. The sulfation plates have been in use for 15 years, but they do not measure SO₂ directly. Sulfation rate-derived SO₂ values were thought to be reliable, but recent information has cast doubt on their reliability. Continuous monitors presently yield reliable data, but this has not always been the case. The earliest continuous monitors (conductometric and coulometric) were subject to interference from many chemicals other than SO₂ and also had difficulties with quality control. Later generations of instruments (flame photometric and pulsed fluorescent) alleviated these problems, and there has been a corresponding increase in the reliability of the data, especially since 1978.

In order to perform a valid trend analysis, the data for the period of interest must be adequate, reliable and from similar sampling methods. Up until 1978, the only method which consistently fit these criteria was the sulfation plate. Between 1978 and 1982 there were approximately three times as much sulfation rate data as continuous SO₂ data and the former method was used for the purpose of analyzing SO₂ trends. However, recent information now indicates that sulfation rate-derived SO₂ values may not be as accurate as once thought. Sulfation rate data are dependent on relative humidity and wind speed — being extremely sensitive to the latter — and the precision of the data suffers even under uniform conditions. Furthermore, EPA has requested that DEP use continuous SO₂ data. The data are restricted to the period 1976–1983 because earlier data are judged not to be adequate or reliable. The results are summarized in Table 4 and Figure 2. Table 4 does not present a trend analysis for the period 1976–1977 or the period 1977–1978 because the number of monitors that operated for the duration of each period was 2 and 3, respectively — too few to establish an accurate statewide trend.

In response to the skyrocketing prices of low sulfur fuels in the late 1970's, most states relaxed their sulfur-in-fuel requirements to the full extent the law allows, creating considerable pressure on Connecticut to follow suit. This caused Connecticut to reevaluate TABLE 3

<u>TSP</u>	TRENDS,	<u>1968–1983</u>
(PAIRED	t TEST)

		Average Of Annual	<u>Significance Level</u> Probability				
Paired <u>Years</u>	Number <u>Of Sites</u>	Geometric Means (ug/m³)	Standard Deviation <u>(ug/m³)</u>	95%	nd at 99%	That Change Is Not	
		_		Level*	<u>Level*</u>	<u>Significant</u>	
68 69	16 16	74.9 67.8	21.7 18.7	+	N.C.	0.0118	
69 70	21 21	69.0 71.7	23.0 25.5	N.C.	N.C.	0.2738	
70 71	23 23	67.8 66.2	20.6 18.2	N.C.	N.C.	0.4258	
71 72	40 40	68.4 61.9	22.5 17.3	¥	N.C.	0.0237	
72 73	39 39	59.1 51.9	13.4 10.2	¥	ł	0.0001	
73 74	41 41	51.9 48.3	11.6 10.3	¥	N.C.	0.0077	
74 75	40 40	49.9 52.3	10.7 10.1	\uparrow	N.C.	0.0106	
75 76	29 29	53.3 53.3	9.8 9.5	N.C.	N.C.	0.9588	
76 77	35 35	53.6 53.7	8.8 9.2	N.C.	N.C.	0.8715	
77 78	30 30	54.8 52.7	9.8 9.3	ł	N.C.	0.0216	
78 79	32 32	51.4 49.9	12.1 12.5	N.C.	N.C.	0.1530	
79 80	32 32	49.3 45.4	13.2 10.0	¥	ł	0.0001	
80 81	26 26	45.2 38.0	10.1 8.4	¥	ł	0.0001	
81 82	37 37	38.3 40.5	6.8 8.0	†	†	0.0001	
82 83	36 36	41.3 39.5	7.3 6.7	↓	¥	0.0001	
* Key to	o Symbols: N	🕂 💻 Signif	icant Downw icant Upwar nificant Ch	d Trend			

BIGURE 1

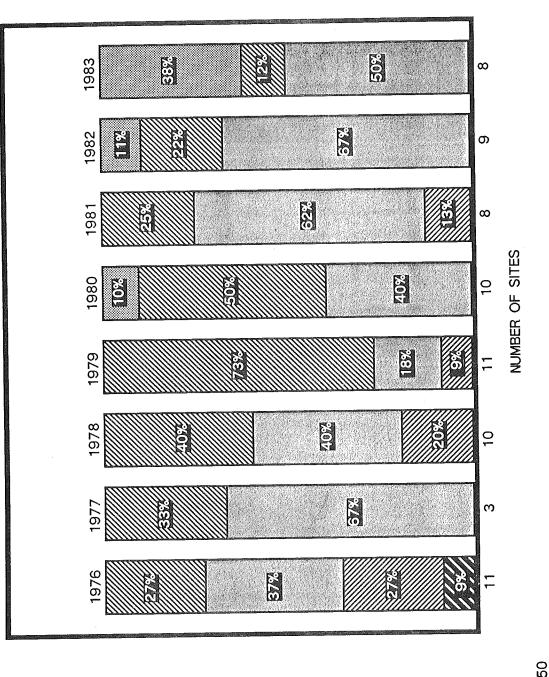
(

T	AB	LE	4

(PAIRED t TEST)									
	Average Of Annual				<u>Significance Level</u> Probability				
Deluced	\$1	Geometric	Standard	Trend at		That Change			
Paired <u>Years</u>	Number <u>Of Sites</u>	Means (ug/m³)	Deviation (ug/m³)	95% _Level*	99% <u>Level*</u>	ls Not <u>Significant</u>			
78 79	9 9	23.8 21.3	6.1 5.3	N.C.	N.C.	0 1000			
			5.5	N.C.	N.C.	0.1238			
79 80	10 10	21.8 19.8	4.5 5.2	¥	N.C.	0.0215			
80 81	8 8	21.1 20.9	4.1 4.4	N.C	N.C.	0.9100			
81 82	8 8	20.9 21.0	4.4 4.5	N.C.	N.C.	0.9522			
82 83	8 8	20.0 18.1	5.0 5.1	↓ ↓	¥	0.0002			

SO2 TRENDS FROM CONTINUOUS DATA, 1978-1983

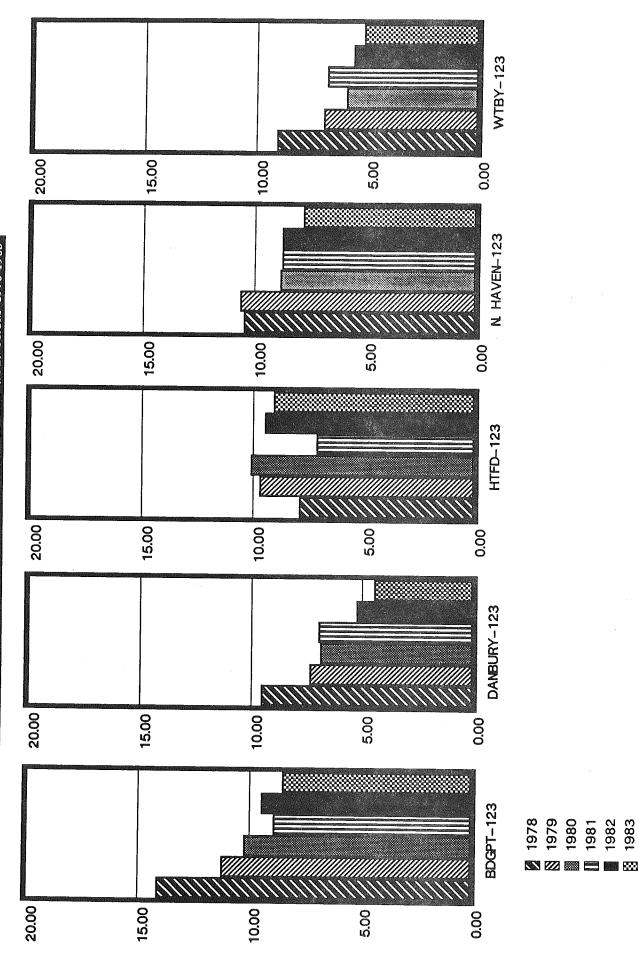
≉ Key to Symbols:


N.C. ¥ ↑

No Significant Change
Significant Downward Trend
Significant Upward Trend

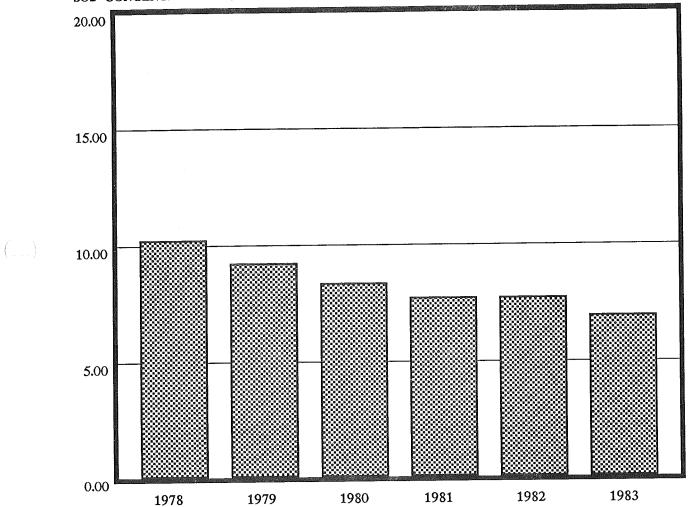
SULFUR DIOXIDE TREND FROM CONTINUOUS DATA

"PERCENT OF SITES WITHIN EACH RANGE"



PRIMARY ANNUAL STANDARD = 80 ug/m^3

50 +
40 - 50
30 - 40
20 - 30
0 - 20
Annual Arithmetic Mean (ug/m³)



-12-

FIGURE 2B

THE AVERAGE OF THE ANNUAL GEOMETRIC MEAN SO2 CONCENTRATIONS AT 5 CONCURRENTLY OPERATING SO2 SITES WITH CONTINUOUS MONITORS

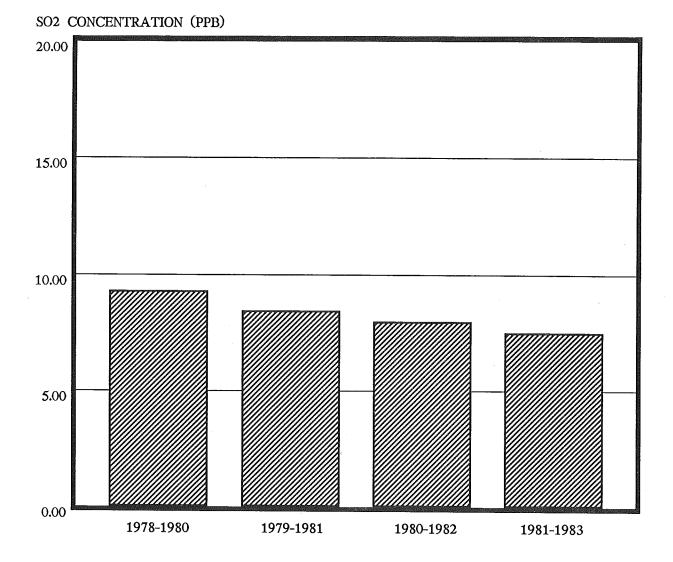

SO2 CONCENTRATION (PPB)

FIGURE 2C

THREE-YEAR RUNNING AVERAGE OF THE ANNUAL GEOMETRIC MEAN

SO2 CONCENTRATIONS AT 5 CONCURRENTLY OPERATING SO2 SITES WITH

CONTINUOUS MONITORS

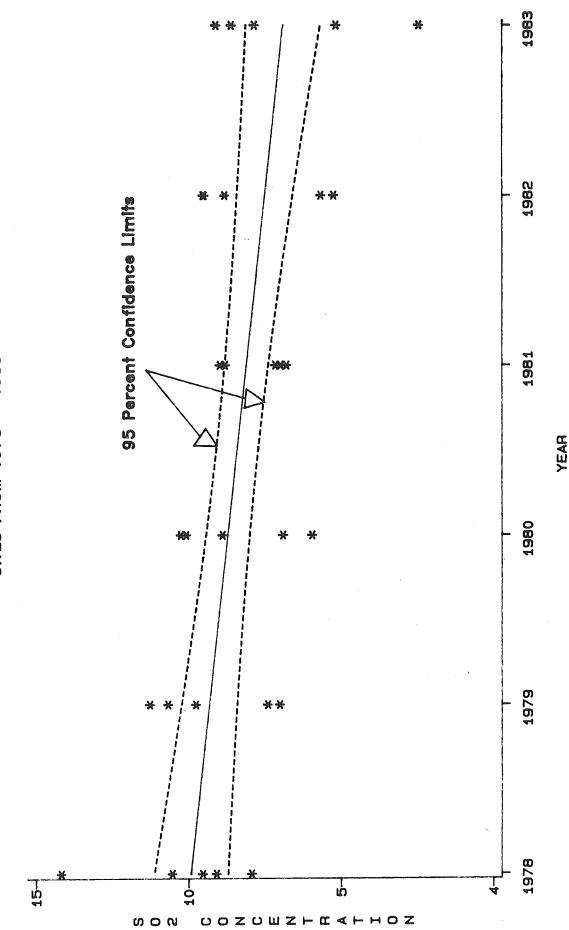


FIGURE 2D

· (...)

TREND OF ANNUAL GEOMETRIC MEAN CONCENTRATIONS OF SO2 (PPB) AT FIVE CONCURRENTLY OPERATING SITES FROM 1978 - 1983

-15-

its philosophy for controlling sulfur oxide emissions in 1981. To meet the challenge of increased costs of fuel in the economy, DEP restructured its air pollution control requirements for fuel burning sources. Under this new "three-pronged" program Connecticut's businesses and industries are (1) now allowed (effective November 1981) to burn a less expensive grade of oil with a higher sulfur content — one percent (1.0%) sulfur oil and (2) are allowed to burn higher sulfur content oil in exchange for reductions in energy use. The third aspect of the program was the repeal of the 24-hour secondary air quality standard for sulfur oxides.

This action increased statewide sulfur oxide emissions by almost 60%. (Sulfur oxide emissions were not doubled by going from 0.5% to 1.0% sulfur-in-fuel since residential fuel users, which account for almost one-third of annual statewide sulfur oxide emissions, use distillate fuel oil with a sulfur content of 0.5%.) One would expect measured SO₂ levels to increase in 1982 and subsequent years, as compared to 1981, due to the use of 1.0% sulfur oil. However, no significant trend was apparent in 1982 and in 1983 SO₂ levels actually declined (see Table 4). This may be attributable to the year-to-year fluctuations in meteorology or the decreased fuel use caused by the increased price of this energy source.

The long-term trend of SO₂ concentrations is shown in graphical form in Figure 2. An improvement in SO₂ levels is demonstrated by the decrease over time of concentrations in excess of 40 ug/m³. Table 4 shows the year-to-year trend in ambient SO₂ levels. Decreases in SO₂ concentrations from 1979 to 1980 and from 1982 to 1983 are evident.

Continuous SO₂ monitors were operated each year at five (5) sites between 1978 and 1983. Based on measurements at these five (5) locations, mean SO₂ levels are depicted in Figures 2A and 2B. Figure 2A shows SO₂ levels decreasing at four (4) sites and exhibiting essentially no trend at the fifth site. Figure 2B shows the average of the mean SO₂ concentrations for all the sites steadily decreasing over the 5-year period. Figure 2D is a linear regression analysis of this data which also shows a downward trend in SO₂ levels since 1978. Using the data presented in Figure 2B, Figure 2C shows the three-year running average of the mean SO₂ concentrations. Three-year running averages tend to smooth out the year-to-year effects of meteorology on pollutant levels. Like Figures 2A and 2B, Figure 2C illustrates again that SO₂ levels are declining even though fuel burning sources have been allowed to use 1% sulfur oil since 1982.

C. Air Monitoring Network

A computerized Air Monitoring Network consisting of an IBM System 7 computer and 20 telemetered monitoring sites was operated in 1983. As many as 12 measurement parameters are transmitted from a site via telephone lines to the System 7 unit located in the DEP Hartford office. The data are then compiled twice daily into 24-hour summaries. The telemetered sites are located in the towns of Bridgeport, Danbury, East Hartford, Greenwich, Groton, Hartford, Madison, Mid-dletown, Milford, New Britain, New Haven, Stafford, Stamford, Stratford and Waterbury.

Continuously measured parameters include the pollutants sulfur dioxide, particulates (measured as the coefficient of haze), carbon monoxide, nitrogen dioxide and ozone. Meteorological data consists of wind speed and direction, wind horizontal sigma, temperature, dew point, pre-cipitation, barometric pressure and solar radiation (insolation).

The real-time capabilities of the System 7 telemetry network have enabled the Air Monitoring Unit to report the Pollutant Standards Index for a number of towns on a daily basis while continuously keeping a close watch for high pollution levels which may occur during adverse weather conditions. The complete monitoring network used in 1983 consisted of:

- 42 Total suspended particulate hi-vol sites (16 are also approved lead sites)
- 2 Total suspended particulate lo-vol sites
- 5 Lead lo-vol sites
- 15 Sulfur dioxide sites (continuous monitors)
- 10 Ozone sites
- 3 Nitrogen dioxide sites
- 5 Carbon monoxide sites

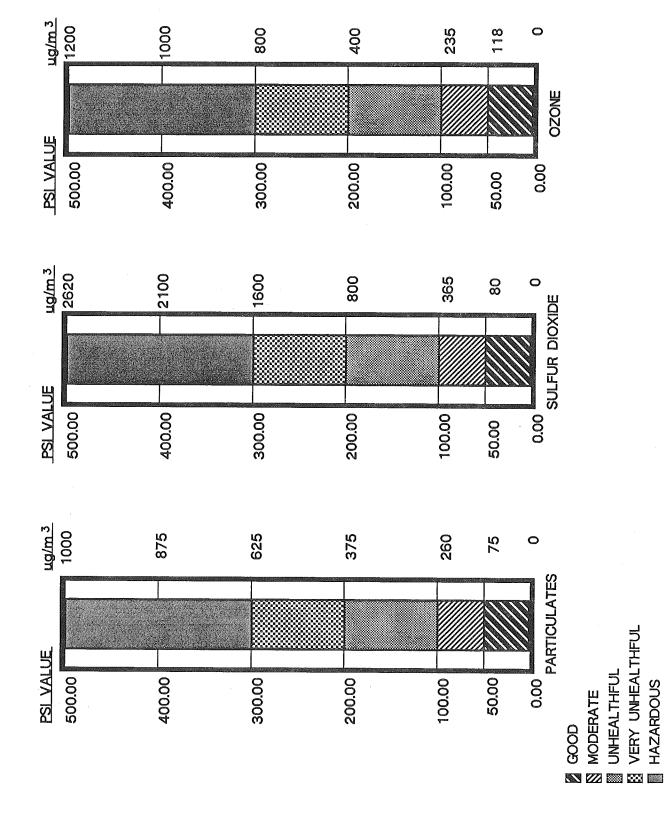
A complete description of all permanent air monitoring sites in Connecticut operated by DEP in 1983 is available from the Department of Environmental Protection, Air Compliance Unit, Monitoring Section, State Office Building, Hartford, Connecticut, 06106.

D. Pollutant Standards Index

The Pollutant Standards Index (PSI) is a daily air quality index recommended for common use in state and local agencies by the U.S. Environmental Protection Agency. Starting on November 15, 1976, Connecticut began reporting the PSI on a 7-day basis, but is currently reporting the PSI on a 5-day basis. The PSI incorporates three pollutants – sulfur dioxide, total suspended particulates and ozone. The index converts each air pollutant concentration into a normalized number where the National Ambient Air Quality Standard for each pollutant corresponds to PSI = 100 and the Significant Harm Level corresponds to PSI = 500.

Figure 3 shows the breakdown of index values for the commonly reported pollutants (TSP, SO_2 , and O_3) in Connecticut. For the winter of 1983, Connecticut reported the PSI for the towns of Hartford, New Haven, Bridgeport, Stamford, Greenwich, Danbury, Waterbury, and New Britain. For the summer, the PSI was reported for the towns of Bridgeport, Danbury, East Hartford, Greenwich, Groton, Madison, Middletown, New Haven, Stafford, and Stratford. Each day the pollutant with the highest PSI value of all the pollutants being monitored is reported for each town, along with the dimensionless PSI number and a descriptor word to characterize the daily air quality.

A telephone recording of the PSI is taped each afternoon at approximately 3 PM, five days a week, and can be heard by dialing 566–3449. Predictions for weekends are included on the Friday recordings. For residents outside of the Hartford telephone exchange, the PSI is now available toll-free from the DEP representative at the Governor's State Information Bureau. The number is 1-800-842-2220. This information is also available to the public during weekday afternoons from the Connecticut Lung Association in East Hartford. The number there is 289-5401.


E. Quality Assurance

Quality Assurance requirements for State and Local Air Monitoring Stations (SLAMS) and the National Air Monitoring Stations (NAMS) which, as part of the (SLAMS) network, are specified by the code of Federal Regulations, Title 40, Part 58, Appendix A.

The regulations were enacted to provide a consistent approach to Quality Assurance activities across the country so that ambient data with a defined precision and accuracy is produced.

POLLUTANT STANDARDS INDEX

A Quality Assurance program was initiated in Connecticut with written procedures covering, but not limited to, the following:

Equipment Procurement Equipment Installation Equipment Calibration Equipment Operation Sample Analysis Maintenance Audits Performance Audits Data Handling and Assessment

Quality Assurance procedures for the above activities were fully operational on January 1, 1981 for all NAMS monitoring sites. On January 1, 1983 the above procedures were fully operational for all SLAMS monitoring sites.

Data precision and accuracy values are reported in the form of 95% probability limits as defined by equations found in Appendix A of the Federal regulations cited above.

1. Precision

Precision is a measure of data repeatability (grouping) and is determined in the following manner:

a. Manual Samplers (TSP and Lead)

A second (co-located) TSP hi-vol sampler is placed alongside a regular TSP network sampler and operated concurrently. The concentration values from the co-located hi-vol sampler are compared to the network sampler and precision values are generated from the comparison.

b. Automated Analyzers $(SO_2, O_3, CO and NO_2)$

All NAMS and SLAMS analyzers are challenged with a low level pollutant concentration (.08 to .10 PPM) a minimum of once every two weeks. The comparison of analyzer response to input concentration is used to generate automated analyzer precision values.

2. Accuracy

Accuracy is an estimate of the closeness of a measured value to a known value (i.e., how close each value is to the "bull's eye").

a. Manual Methods (TSP)

TSP accuracy is assessed by auditing the flow measurement phase of the TSP sampling method. In Connecticut, this is accomplished by attaching a secondary standard calibrated orifice to the hi-vol inlet and comparing the flow rates. A minimum of 25% of the TSP network samplers are audited each quarter.

b. Manual Methods (Lead)

Lead accuracy is assessed by analyzing spiked audit strips and comparing the analyzed results to the known spiked values. A low- and a high-valued spike are analyzed during lead filter processing -- approximately once per month.

c. Automated Analyzers (SO₂, O₃, CO and NO₂)

Automated analyzer data accuracy is determined by challenging each analyzer with three predetermined concentration levels. Accuracy values are calculated for a number of analyzers, in a pollutant sampling network, at each concentration level. Automated analyzer response is audited at three concentration levels and zero. The results for each concentration for a particular pollutant are used to assess automated analyzer accuracy. The audit concentration levels are as follows:

SO_2 , O_3 , and NO_2 (PPM)	CO (PPM)
0.03 to 0.08	3 to 8
0.15 to 0.20	15 to 20
0.35 to 0.45	35 to 45

Statistical computations are performed on the results of the precision and span checks.

II. TOTAL SUSPENDED PARTICULATES

Health Effects

Particulates are solid particles or liquid droplets small enough to remain suspended in air. They include dust, soot, and smoke — particles that may be irritating but are usually not poisonous — and bits of solid or liquid substances that may be highly toxic. The smaller the particles, the more likely they are to reach the innermost parts of the lungs and work their damage.

The harm may be physical: clogging the lung sacs, as in anthracosis, or coal miners' "black lung" from inhaling coal dust; asbestosis or silicosis in people exposed to asbestos fibers or dusts from silicate rocks; and byssinosis, or textile workers' "brown lung" from inhaling cotton fibers.

The harm may also be chemical: changes in the human body caused by chemical reactions with pollution particles that pass through the lung membranes to poison the blood or be carried by the blood to other organs. This can happen with inhaled lead, cadmium, beryllium, and other metals, and with certain complex organic compounds that can cause cancer.

Many studies indicate that particulates and sulfur oxides (they often occur together) increase the incidence and severity of respiratory disease.

Conclusions

Measured TSP levels did not exceed the primary annual standard of 75 ug/m³ or the secondary annual standard of 60 ug/m³ during 1983. No site had a measured value exceeding the primary 24-hour standard of 260 ug/m³. And the 24-hour secondary standard of 150 ug/m³ was not exceeded at any monitoring site in 1983, whereas it was exceeded at 2 sites in 1982. In order for the secondary standard to be violated, the second highest TSP level at a site must exceed 150 ug/m³. No site violated the standard in 1983, which was also the case in 1982.

Sample Collection and Analysis

High Volume Sampler (Hi-vol) – "Hi-vols" resemble vacuum cleaners in their operation, with an 8" x 10" piece of fiberglass filter paper replacing the vacuum bag. Retractable lids have been installed on the hi-vols in order to eliminate the passive sampling error. The samplers operate (from midnight to midnight) every sixth day at most sites and every third day at certain urban stations.

The matter collected on the filters is analyzed for weight and chemical composition. The air flow through the filter is recorded during sampling. The weight in micrograms (ug) divided by the volume of air in cubic meters (m³) yields the pollutant concentration for the day, in micrograms per cubic meter.

The chemical composition of the suspended particulate matter is determined at each hi-vol site as follows. Three standardized strips of every hi-vol filter are cut out and prepared for three different analyses. In the first analysis, a composite sample composed of a strip from each of several filters collected in a quarter-year is digested in acid, and the resulting solution is analyzed for metals by means of an atomic absorption spectrophotometer. The results are reported for each individual metal in ug/m³. In the second analysis, a composite sample is dissolved in water, filtered and the resulting solution is analyzed by means of wet chemistry techniques to determine the concentration of the particular water soluble components. The results are reported for each individual constituent of the water soluble fraction in ug/m³. In the third analysis, total sulfates are determined by means of the same procedure used in the second analysis, but each of several samples collected in the quarter-year is analyzed *individually* and the results from all the samples are averaged. This is the first year that individual, rather than composite, samples have been used to determine total sulfates. Future sulfate analyses will be done in this manner.

Low Volume Sampler (Lo-vol) – The low-volume sampler is a 30-day continuous sampler. It is enclosed in a shelter similar to a hi-vol, uses the same glass fiber filter paper, but operates at an air sampling flow rate approximately one-tenth that used by a standard hi-vol (i.e., 4 cfm as opposed to 40-60 cfm). The air flow through the lo-vol is measured by a temperature compensating dry gas meter. The lo-vol measurement is essentially an arithmetic average for the 30-day sampling interval. The filters are chemically analyzed in the same manner as those from the hi-vol sampler.

Discussion of Data

Monitoring Network – In 1983 both hi-vol and lo-vol particulate samplers were operated in Connecticut (see Figure 4). Because the Federal EPA does not recognize the lo-vol instrument as an equivalent to the reference (hi-vol) method of sampling for TSP, only hi-vol data are analyzed for compliance with the National Ambient Air Quality Standards (NAAQS).

Precision and Accuracy – Precision checks were conducted at three hi–vol sampling sites which had co–located samplers. On the basis of 168 precision checks, the 95% probability limits for precision ranged from –10% to +20%. Accuracy is based on air flow through the monitor. The 95% probability limits for accuracy, based on 84 audits conducted on the hi–vol monitoring system network, ranged from –6% to +6%. (See section I.F. of this Air Quality Summary for a discussion of precision and accuracy.)

Annual Averages – The Federal EPA has established minimum sampling criteria (see Table 1) for use in determining compliance with either the primary or secondary annual NAAQS for TSP. Using the EPA criteria, one finds that neither the primary annual standard nor the secondary annual standard was exceeded. Of the 36 sites that had valid annual geometric means (as determined by EPA minimum sampling criteria) in both 1982 and 1983, twenty-seven (27) sites had lower annual geometric means when compared to 1982. Of the nine (9) sites whose annual geometric means increased, none increased more than 3 ug/m³ (see Table 5).

Historical Data – A summary of annual average TSP data for 1981–1983 is presented in Table 5. For data going back to 1957, see the 1980 Air Quality Summary. This table also includes an indication of whether the aforementioned EPA minimum sampling criteria were met at each site for each year. If the sampling was insufficient to meet the EPA criteria, an asterisk appears next to the number of samples.

Statistical Projections – The statistical projections presented in Table 5 are prepared by a DEP computer program which analyzes data from all sites operated by DEP. Input to the program includes site location and year, the number of samples (usually a maximum of 61), the annual geometric mean concentration and the geometric standard deviation. The program lists the input and calculates the 95% confidence limits about the mean and the statistical projections of the number of days in each year the primary and secondary 24-hour NAAQS would have been exceeded if sampling had been conducted every day. This analysis, like the ambient standards, is based on the assumption that the particulate data are log-normally distributed.

Because manpower and economic limitations dictate that hi-vol sampling for particulate matter cannot be conducted every day, a degree of uncertainty is introduced as to whether the air quality at a site has either met or exceeded the national standards. This uncertainty for the annual standard can be quantified by determining 95% confidence limits about each of the annual geometric means. For example (see Table 5), in Danbury at site 002 in 1982, 58 samples were analyzed and a geometric mean of 48.7 ug/m³ was then calculated. The columns labeled "95–PCT–LIMITS" show the lower and upper limits for a 95% confidence interval of 43 and 55 ug/m³, respectively. This means that if a larger sample set (i.e., greater than 58 samples) were collected in 1982 at this site there is a 95% chance that the geometric mean would fall between these limits. If the upper limit happened to be greater than 60 ug/m³, the national ambient secondary standard for particulates, then one could not be confident that the secondary standard was met at the site.

In Table 6, one can examine the 1983 monitoring sites for compliance with air quality standards, using the State's hi-vol confidence limit criteria. The table shows with 95% confidence that no sites exceeded the primary annual standard. The table also shows that the DEP is 95% confident that the secondary standard was not exceeded at any site during 1983.

24-Hour Averages – Table 7 presents the 1st and 2nd high 24-hour concentrations recorded at each site. There were no violations of the primary 24-hour standard recorded in Connecticut during 1983. No measured violations of the secondary 24-hour standard were recorded at any site in 1983, which was also the case in 1982. The 2nd high 24-hour average increased at nine of the 36 paired sites which met the minimum EPA sampling criteria in both 1982 and 1983. None of these increases exceeded 20 ug/m³. The 2nd high 24-hour average decreased at 24 of the sites, and ten of these decreases equaled or exceeded 20 ug/m³. The 2nd high decreased 57 ug/m³ at Danbury 002 and 58 ug/m³ at Ansonia 003. At three sites the 2nd high remained the same.

Table 8 summarizes the statistical predictions from Table 5 regarding the number of days exceeding the 24-hour standards. This table shows that, if sampling had been conducted every day in 1983, there would have been no site with a violation of the primary 24-hour standard and two (2) sites with violations of the secondary 24-hour standard. In 1982, no site was predicted to have exceeded the primary 24-hour standard and eleven (11) sites were predicted to have exceeded the secondary 24-hour standard.

Hi-vol Averages – Quarterly and annual averages of fourteen components or characteristics of the particulate matter collected at each hi-vol sampling location have been computed for the year 1983 and are presented in Table 9. The terms and abbreviations used in the table are defined below.

Ammonium - Ammonium ion	Nitrate – Total nitrates				
Be – Beryllium	Pb – Lead				
Cd – Cadmium	pH — Acidity				
Cr – Chromium	Sample count - Number of samples				
Cu – Copper	Sulfate - Total sulfates				
Fe – Iron	TSP – Total suspended particulates				
Mn – Manganese	V – Vanadium				
Ni – Nickel	Z – Zinc				

Lo-vol Averages – For a number of years, the DEP has been experimenting and gathering data with the lo-vol particulate monitor. Lo-vols, which operate continuously for 30-day periods, have three advantages and one disadvantage in relation to hi-vols. First, the lo-vol's continuous operation can provide annual averages which include every day of the year, rather than the fractional portion of the year sampled by hi-vols every sixth day or every third day. Second, the lo-vol needs less frequent servicing (12 times/year) than the hi-vol (61 times/year for every-sixth-day sampling). Therefore, it is more cost-effective to operate. Third, the lo-vol has a higher collection efficiency than the hi-vol, especially for small, respirable particles. The disadvantage of the lo-vol is that it does not provide daily samples for direct comparison to the 24-hour TSP standards (although 24-hour averages can be obtained by statistical interpolation).

The two lo-vol sites are located at rural locations. One site is in Mansfield and the other is in Putnam. The use of the lo-vols made it possible to continue to obtain data on annual average particulate levels at these rural sites.

Monthly and annual averages of the chemical components from the lo-vol TSP monitors have been computed for 1983 and are presented in Table 10. The abbreviations used in Table 10 are identical to those used in Table 9.

10 High Days with Wind Data – Table 11 lists the 10 highest 24-hour average TSP readings with the dates of occurrence for each TSP hi-vol site in Connecticut during 1983. This table also shows the average wind conditions which occurred on each of these dates. The resultant wind direction (DIR, in compass degrees clockwise from north) and velocity (VEL, in mph), the average wind speed (SPD, in mph), and the ratio between the velocity and the speed are presented for each of four National Weather Service stations located in or near Connecticut. The resultant wind direction and velocity are vector quantities and are computed from the individual wind direction and speed readings in each day. The closer the wind speed ratio is to 1.000, the more persistent the wind. Note that the Connecticut stations have local influences which change the speed and shift the direction of the near-surface air flow (e.g., the Bradley Field air flow is channeled north-south by the Connecticut River Valley and the Bridgeport air flow is frequently subject to sea breezes).

On a statewide basis, this table shows that 60% of the high TSP days occur with winds out of the southwest quadrant and most of those days have persistent winds. This relationship between southwest winds and high TSP levels is more prevalent in southwestern Connecticut. However, many of the maximum levels at some urban sites do not occur with southwest winds, indicating that these sites are possibly influenced by local sources or transport from different out-of-state sources. As noted above, a large scale southwesterly air flow is often diverted into a southerly flow up the Connecticut River Valley. At many sites in the Connecticut River Valley most of the highest TSP days occur when the winds at Bradley Airport are from the south.

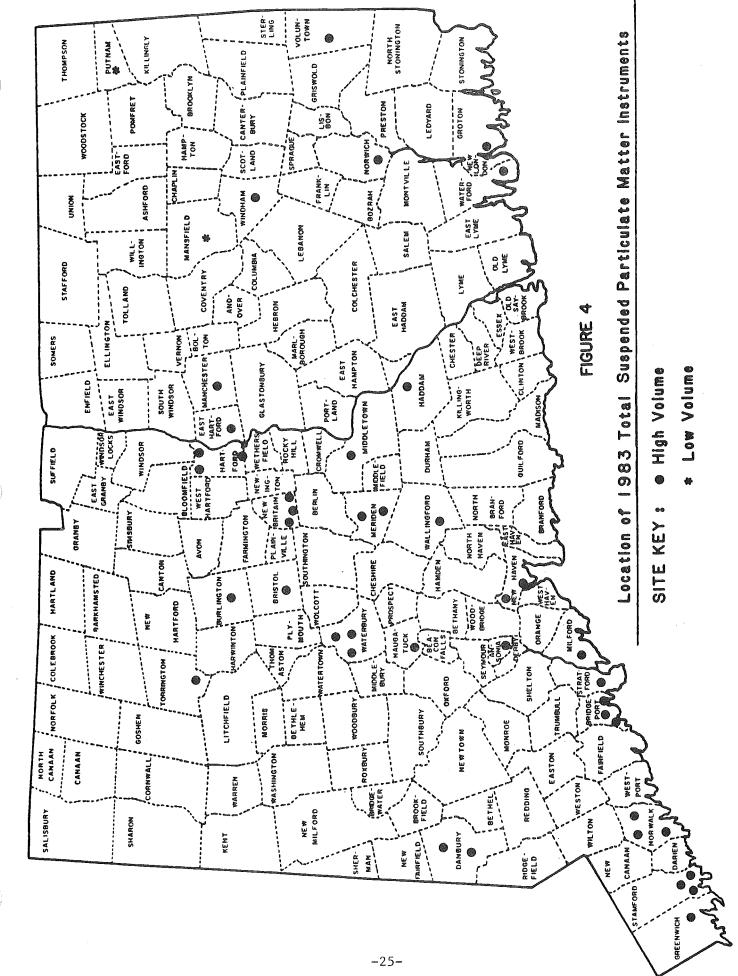


TABLE 5

1981-1983 TSP ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

DISTRIBUTION--LOGNORMAL

	PREDICTED DAYS OVER 260 UG/M3									
	PREDICTED DAYS OVER 150 UG/M3	401	н		ब क(<u>w</u>)			<u>م</u> ت ب	M M H	T
)	STD GEOM DEV	1.701 1.651 1.540	1.556 1.507 1.594	1.551	1.587 1.530 1.530	1.703 1.684 1.528	1.697 1.615 1.797	1.664 1.666 1.509	1.741 1.674 1.590	1.677 1.504
		47 47	44 44 49 95	44 47 47	56 60 60	39 41 36	23 21 23	48 55 49	46 49 89	45 43
	95-PCT-LIMITS LOWER UPPER	40 40 38	36 38 37 37	36 35	4 9 5 3 4 9	30 32 29	20 19 18	37 43 40	35 38 38	26 35
	GEOM MEAN	43.6 43.6 42.2	39.6 42.4 41.0 38 6	39.8 39.1	52.0 56.3 54.1	34.6 36.3 32.2	21.6 19.9 20.3	42.3 48.7 44.6	39.9 43.2 43.1	32.9 38.8
	SAMPLES	119 116 60	60 60 58	61 57	120 115 59	58 58 58	119 117 58	57 58 56	56 58 53	19* 60
	YEAR	1981 1982 1983	1981 1982 1983	1982 1983	1981 1982 1983	1981 1982 1983	1981 1982 1983	1981 1982 1983	1981 1982 1983	1982 1983
	SITE	003 003 003	100 100	600	123 123 123	100 100	100 100	002 002 002	123 123 123	004 004
	TOWN NAME	ANSONIA ANSONIA ANSONIA	BRIDGEPORT BRIDGEPORT BRIDGEPORT BRIDGEPORT	BRIDGEPORT BRIDGEPORT	BRIDGEPORT Bridgeport Bridgeport	BRISTOL Bristol Bristol	BURL INGTON BURL INGTON BURL INGTON	DANBURY Danbury Danbury	DANBURY Danbury Danbury	EAST HARTFORD EAST HARTFORD

(

TABLE 5, CONTINUED

1981-1983 TSP ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

DISTRIBUTION---LOGNORMAL

PREDICTED DAYS OVER 260 UG/M3																										
PREDICTED DAYS OVER 150 UG/M3		Ч							1	2	T			r	2			I			5			ч		
STD GEOM DEV	1.670	1.613	1.513	1.466	1.433	1.614	1.516	1.440	1.536	1.558	1.513	1.591	1.511	1.580	1.691	1.481	1.512	1.683	1.607	1.481	1.827	1.444	1.552	1.677	1.516	1.532
LIMITS UPPER	34	45	48	40	39	30	30	28	50	51	51	41	4 5	48	44	43	4 5	37	40	37	47	49	45 7	43	43	41
95-PCT-LIMITS LOWER UPPER	26	36	39	33	33	24	24	22	44	44	42	33	37	38	34	36	36	29	32	31	35	41	36	30	35	34
GEOM MEAN	29.7	40.2	43.4	36.4	35.8	27.0	26.9	24.7	46.7	47.6	46.3	36.7	40.9	42.8	38.9	39.6	40.3	32.4	35.4	33.7	40.5	44.7	40.6	36.0	38.8	37.2
SAMPLES	59	60	59	46*	59	58	57	28*	118	91*	57	61	59	09	60	09	57	59	60	59	60	57	55	35*	57	59
YEAR	1981	1981	1982	1983	1983	1981	1982	1983	1981	1982	1983	1981	1982	1983	1981	1982	1983	1981	1982	1983	1981	1982	1983	1981	1982	1983
SITE	004	008	008	008	900	002	002	002	003	003	003	013	013	013	014	014	014	100	100	100	002	002	002	008	008	008
TOWN NAME	GREENWICH	GREENWICH	GREENWICH	GREENWICH	GROTON	НАДДАМ	HADDAM	HADDAM	HARTFORD	MANCHESTER	MANCHESTER	MANCHESTER	MERIDEN	MERIDEN	MERIDEN	MERIDEN	MERIDEN	MERIDEN								

TABLE 5, CONTINUED

1981-1983 TSP ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

DISTRIBUTION--LOGNORMAL

(

(

0
ਸ਼੍
IN
N
2
ĥ
Щ
ABI
-

1981-1983 TSP ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

DISTRIBUTION--LOGNORMAL

YEAR
1981 57 1982 57 1983 58
1981 118 1982 113 1983 58
1981 60 1982 60 1983 60
1981 58 1982 58 1983 59
1981 60 1982 60 1983 60
1981 60 1982 57 1983 59
1981 56 1982 59 1983 58
1983 56

TABLE 5, CONTINUED

1981-1983 TSP ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

DISTRIBUTION--LOGNORMAL

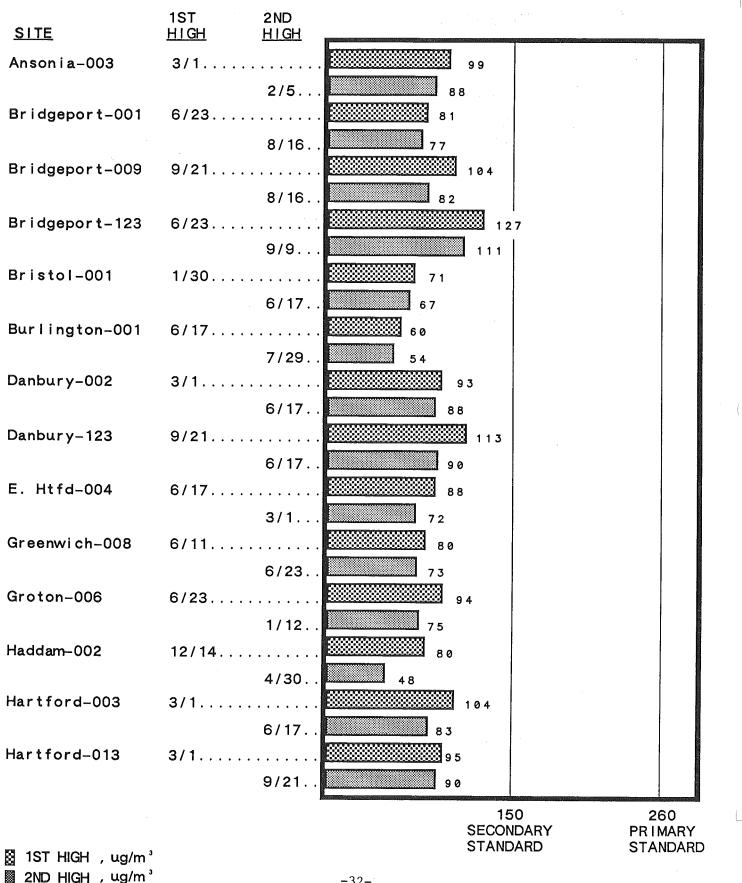
1	PREDICTED DAYS OVER 260 UG/M3				F	ı																	
	PREDICTED DAYS OVER 150 UG/M3)		T	1.5		M	I M	I	7	. 4		Т			T			
	STD GEOM DEV	1_652	1.558	1.624	1.967	1.500	1.512	1.608	1.703	1.488	1.764	1.727	1.523	1.721	1.639	1.472	1.784	1.602	1.646	1.641	1.551	1.505	
	LIMITS UPPER	22	23	27	46	48	45	46	49	42	45	45	38	52	53	52	35	31	29	44	42	39	
	95-PCT-LIMITS LOWER UPPER	19	20	21	34	40	37	36	38	35	34	35	31	44	46	43	26	24	23	35	34	32	
	geom mean	20.8	21.1	23.7	39.6	43.6	40.4	40.3	43.5	38.5	39.1	39.9	34.2	47.9	49.3	47.4	30.1	27.3	25.6	38.9	37.7	35.2	
	SAMPLES	115	117	59	61	58	57	50	61	58	60	90	60	111	117	60	58	56	55	58	60	60	
	YEAR	1981	1982	1983	1981	1982	1983	1981	1982	1983	1981	1982	1983	1981	1982	1983	1981	1982	1983	1981	1982	1983	
	SITE	100	100	100	100	100	100	005	005	005	900	900	900	007	007	007	100	001	100	002	002	002	
	TOWN NAME	VOLUNTOWN	VOLUNTOWN	VOLUNTOWN	WALLINGFORD	MALLINGFORD	MALLINGFORD	MATERBURY	MATERFORD	MATERFORD	MATERFORD	WILLIMANTIC	WILLIMANTIC	WILLIMANTIC									

SAMPLING NOT RANDOM OR OF INSUFFICIENT SIZE FOR REPRESENTATIVE ANNUAL STATISTICS. ≭

(

TABLE 6

 $\left(\right)$


CONFIDENCE OF COMPLIANCE WITH ANNUAL TSP STANDARDS DURING 1983

PRIMARY STANDAR) (75 ug/m³)	<u>SECONDARY STANDARD (60 ug/m³)</u>							
95% Confident Standard Has Been Exceeded	Uncertain Whether Standard Has Been Achieved <u>Or Exceeded</u>	95% Confident Standard Has Been Exceeded	Uncertain Whether Standard Has Been Achieved <u>Or Exceeded</u>						
NO SITES	NO SITES	NO SITES	Bridgeport 123						

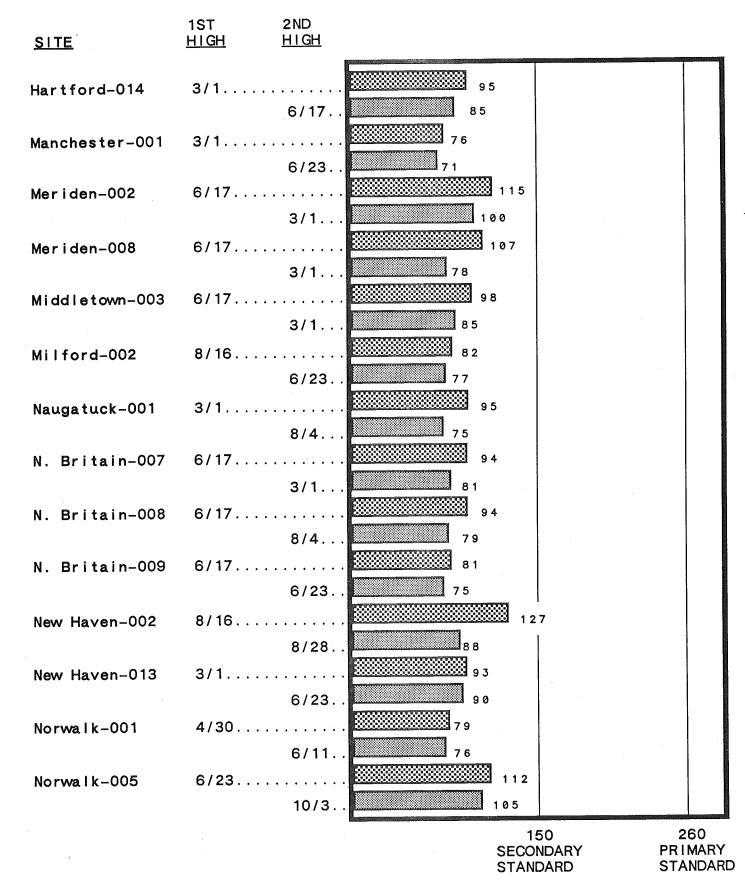

-31-

TABLE 7

1983 MAXIMUM 24-HOUR TSP CONCENTRATIONS

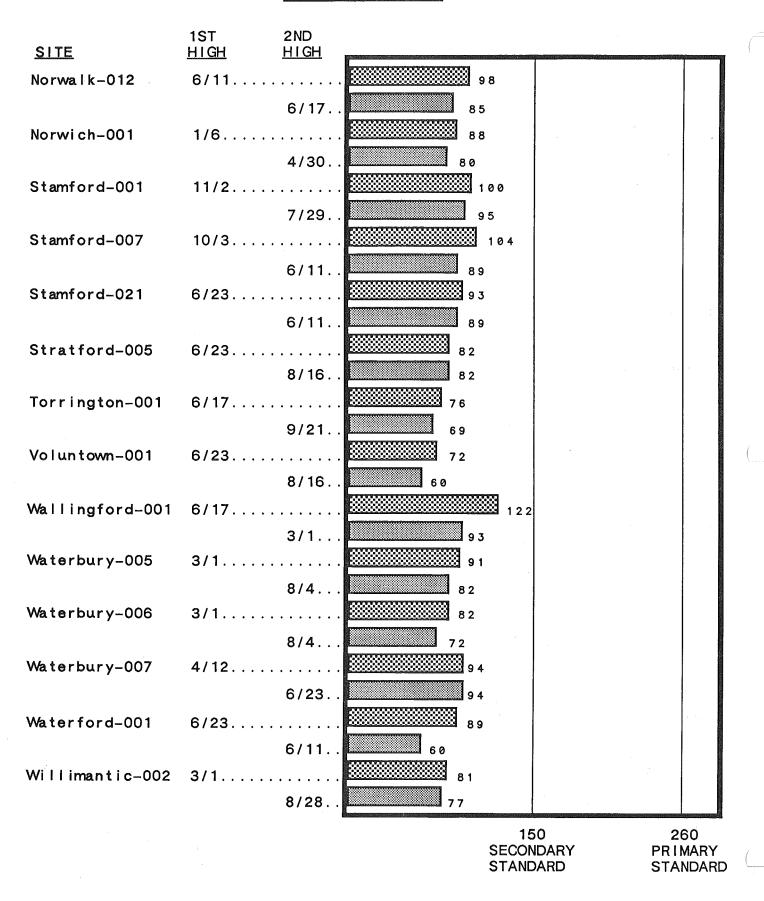


TABLE 7, CONTINUED

3 1ST HIGH , ug/m³ 2ND HIGH , ug/m³

TABLE 7, CONTINUED

📓 1ST HIGH , ug/m '

📓 2ND HIGH , ug/m ³

TABLE 8	
---------	--

YEAR	TOTAL OF HI-VOL SITES ¹		H <u>></u> 2 DAYS HE SECONDARY <u>(150 ug/m³)</u> % of <u>Total Sites</u>	EXCEEDING	H <u>></u> 2 DAYS THE PRIMARY <u>260 ug/m³)</u> % of <u>Total Sites</u>							
1971	44	37	84%	19	43%							
1972	46	43	93%	13	28%							
1973	44	31	70%	11	25%							
1974	62	49	79%	5	8%							
1975	51	38	75%	2	4%							
1976	38	33	87%	1	3%							
1977	37	25	68%	0	0%							
1978	34	20	59%	5	15%							
1979	33	20	61%	2	6%							
1980	33	14	42%	0	0%							
1981	40	14	35%	0	0%							
1982	39	11	28%	0	0%							
1983	40	2	5%	0	0%							

<u>Summary of the Statistically Predicted Number of Sites</u> <u>Exceeding the 24-Hour TSP Standards</u>

¹Only those sites are used which have sufficient data to calculate a valid annual average concentration

-35-

TABLE 9

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT 01	
AGENCY	
SITE 003	
AREA 0008	
TOWN NAME ANSONIA	
VEAR 1983	

	ZN 12167/92 UG/M3	0.49 0.22 0.58 0.58	0.44		SAMPLE COUNT	17 15 15 15	
	V 12164/92 UG/M3	0.04 0.02 0.05 0.05	0.04				
	NI 12136/92 UG/M3	0.014 0.009 0.010 0.011	0.011	TSP	ARITH AV 11101/91 UG/M3	4 2 4 2 0 4 3 4 2 0	47
	MN 12132/92 UG/M3	0.007 0.010 0.014 0.022	0.013	JBLES	91		
	PB 12128/92 UG/M3	0.31 0.19 0.32 0.41	0.31	BENZ SOLUBLES	T0TAL 11103/91 UG/M3		
METALS	•	0.82 0.52 0.73 0.54	0.66				
	CU 12114/92 UG/M3	0.10 0.11 0.07 0.09	0.09		PH 12602/91 PH-UNITS	8.80 9.70 9.30 3.0	9.28
	CR 12112/92 UG/M3	0.003 0.003 0.003 0.003	0.003	S	SODIUM 12184/92 UG/M3		
	CD 12110/92 UG/M3	0.0340 0.0124 0.0101 0.0247	0.0207	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.16 0.16 0.10 0.12	0.14
	BE 12105/92 UG/M3	80L 80L 80L			SULFATE 12403/92 UG/M3	6.67 10.02 5.71 3.67	6.51
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.43 3.48 1.58 0.73	2.34
	QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG
						07	

N.B. For sulfate, the first quarter sample count is 15.

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT 01

AGENCY

SITE 001

AREA 0060

TOWN NAME BRIDGEPORT

YEAR 1983

	ZN 12167/92 UG/M3	0.06 0.04 0.10	0.06		SAMPLE COUNT	15
			0 03	ł	ŝ	
	NI 12136/92 UG/M3	0.014 0.013 0.010	0.012	TSP	ARITH AV 11101/91 UG/M3	38 39 39 39
	MN 12132/92 UG/M3	0.004 0.014 0.018 0.021	0.014	BLES	0	
	PB 12128/92 UG/M3	0.28 0.22 0.40 0.45	0.34	BENZ SOLUBLES	TOTAL 11103/91 UG/M3	
ALS	•	0.49 0.58 0.82 0.48	0.59			
METALS	CU 12114/92 UG/M3	0.05 0.11 0.11 0.05	0.08		PH 12602/91 PH-UNITS	8.8 9.50 9.40 300
	CR 12112/92 UG/M3	0.002 0.006 0.003 0.003	0.004	S	SODIUM 12184/92 UG/M3	
	CD 12110/92 UG/M3	0.0018 0.0027 0.0023 0.0028	0.0024	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.19 0.19 0.15 0.15
	BE 12105/92 UG/M3	80L 80L 80L		MA	SULFATE 12403/92 UG/M3	8.76 8.24 2.49 4.62
	AL 12101/92 UG/M3		•		NITRATE 12306/92 UG/M3	3.04 3.51 2.03 2.06
	QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH

N.B. For sulfate, the first, second and fourth quarter sample counts are 8, 7 and 14, respectively.

45

9.25

0.17

5.22

2.66

YEAR AVG

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT 01 AGENCY SITE 009 AREA 0060 TOWN NAME BRIDGEPORT YEAR 1983

S	
انـــــــــــــــــــــــــــــــــــــ	
ا∢	
-H	
шı	
Σ	

ZN 12167/92 UG/M3	0.05 0.04 0.07 0.03	0.04		SAMPLE COUNT	113 155 155	
V 12164/92 UG/M3	0.04 0.03 0.03 0.03	0.04	1	0,0		
NI 12136/92 UG/M3	0.013 0.011 0.009 0.011	0.011	TSP	ARITH AV 11101/91 UG/M3	8 5 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	43
MN 12132/92 UG/M3	0.004 0.011 0.019 0.028	0.016	BLES	91		
PB 12128/92 UG/M3	0.21 0.16 0.27 0.34	0.24	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
-	0.33 0.56 0.91 0.55	0.60				
CU 12114/92 UG/M3	0.04 0.04 40.00	0.04		PH 12602/91 PH-UNITS	9.10 9.50 9.50	9.41
CR 12112/92 UG/M3		0.004	S	SODIUM 12184/92 UG/M3		
CD 12110/92 UG/M3	0.0009 0.0036 0.0021 0.0038	0.0026	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.14 0.17 0.13	0.15
BE 12105/92 UG/M3	80L 80L 80L		MA	SULFATE 12403/92 UG/M3	6.20 9.27 4.97 6.16	6.68
AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.57 4.77 1.46 2.91	3.17
QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG

ĺ

(___)

-38-

 $\left(\begin{array}{c} & \\ & \\ & \\ \end{array} \right)$

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

		ZN 12167/92 UG/M3	0.07 0.06 0.14 0.20
		V 12164/92 UG/M3	0.04 0.03 0.05 0.05
		NI 12136/92 UG/M3	0.017 0.017 0.025 0.014
PROJECT 01		MN 12132/92 UG/M3	0.008 0.022 0.037 0.034
AGENCY F		PB 12128/92 UG/M3	0.35 0.28 0.43 0.48
SITE 123	<u>METALS</u>	FE 12126/92 UG/M3	0.73 1.09 1.45 0.86
AREA 0060	MET	CU 12114/92 UG/M3	0.03 0.05 0.05 0.05
TOWN NAME BRIDGEPORT		CR 12112/92 UG/M3	0.004 0.008 0.008 0.006
VEAR 1983		CD 12110/92 UG/M3	0.0027 0.0037 0.0072 0.0028
		BE 12105/92 UG/M3	80L 80L 80L
	بة.	AL 12101/92 UG/M3	

QUARTER

FIRST SECOND THIRD FOURTH

0.11	,	SAMPLE COUNT	11 15 14	
0.04			an San San San Ali	
0.018	TSP	ARITH AV 11101/91 UG/M3	51 64 74 50	59
0.38 0.024	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
1.02			1. - - -	2
0.05		PH 12602/91 PH-UNITS	000,40 0.50 0.50	9.45
0.006	S	SODIUM 12184/92 UG/M3		
0.0040	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.18 0.20 0.20 0.16	0.18
	đ	SULFATE 12403/92 UG/M3	7.96 10.56 4.18 4.98	6.96
		NITRATE 12306/92 UG/M3	3.28 3.64 1,80	3.07
VEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG

N.B. For sulfate, the first and fourth quarter sample counts are both 15.

-39-

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT	10
AGENCY	Ľ
SITE	100
AREA	0010
TOWN NAME	BRISTOL
YEAR	1983

	ZN 12167/92 UG/M3	0.04	0.05		SAMPLE COUNT	ត្តភូតិទ	
	v 12164/92 UG/M3	0.02 0.01 0.02 0.02	0.02	I	CN		
	NI 12136/92 UG/M3	0.010 0.004 0.006 0.006	0.006	TSP	ARITH AV 11101/91 UG/M3	8 8 4 8 8 4 4 8 8 4 4 8	35
	MN 12132/92 UG/M3	0.002 0.009 0.013 0.016	0.010	BLES	91		
	PB 12128/92 UG/M3	0.17 0.13 0.21 0.23	0.18	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
METALS	FE 12126/92 UG/M3	0.31 0.34 0.56 0.35	0.39		•		
	•	0.03 0.05 0.07 0.04	0.05		РН 12602/91 РН-UNITS	9.50 9.20 9.20	9.40
	121 UG	0.002 0.003 0.002 0.002	0.002	S	SODIUM 12184/92 UG/M3		
	CD 12110/92 UG/M3	0.0012 0.0014 0.0018 0.0018	0.0015	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.18 0.14 0.06	0.13
	BE 12105/92 UG/M3	801 801 801 801		M	SULFATE 12403/92 UG/M3	6.02 8.85 2.58 2.58	5.59
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	4.10 3.99 1.07	2.72
	QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG

N.B. For sulfate, the first quarter sample count is 15.

-40-

 $\langle \cdot \rangle$

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT 03

AGENCY F

SITE 001

AREA 0085

TOWN NAME BURLINGTON

YEAR 1983

		ZN 12167/92 UG/M3	0.01 0.02 0.07 0.07	0.04		SAMPLE COUNT	399
			0.0 0.0 10.0	0.01	ľ		
		NI 12136/92 UG/M3	0.005 0.003 0.005 0.005	0.004	TSP	ARITH AV 11101/91 UG/M3	20 316 191
		MN 12132/92 UG/M3	0.001 0.006 0.006	0.005	BLES	6	
			0.07 0.05 0.22 0.09	0.11	BENZ SOLUBLES	TOTAL 11103/91 UG/M3	
	METALS	FE 12126/92 UG/M3	0.20 0.17 0.29 0.15	0.20			2
	MET	CU 12114/92 UG/M3	0.05 0.06 0.08 0.08	0.06		РН 12602/91 РН-UNITS	9.70 9.70 9.70
		CR 12112/92 UG/M3	0.003 0.002 0.001 0.002	0.002	S	SODIUM 12184/92 UG/M3	
		CD 12110/92 UG/M3	0.0004 0.0009 0.0004 0.0007	0.0006	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.11 0.10 0.03 0.14
		BE 12105/92 UG/M3	8DL 8DL 8DL 8DL			SULFATE 12403/92 UG/M3	4.92 6.62 4.36 2.17
		AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	2.54 2.40 0.54 0.68
		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH

N.B. For sulfate, the first quarter sample count is 15.

24

9.57

0.09

4.60

1.59

YEAR AVG

-41--

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT 01	
AGENCV	
SITE 002	
AREA 0175	
TOWN NAME DANBURY	
VEAR 1983	

METALS

ZN 12167/92 UG/M3	0.03 0.03 0.09 0.09	0.05		SAMPLE COUNT	4 6 6 4 4 9 9 7 4	
v 12164/92 UG/M3	0.02 0.03 0.03	0.02	I	00		
	0.011 0.009 0.010 0.007	0,009	TSP	ARITH AV 11101/91 UG/M3	52 52 432	49
MN 12132/92 UG/M3	0.007 0.013 0.014 0.022	0.014	BLES	6		
PB 12128/92 UG/M3	0.25 0.18 0.29 0.36	0.27	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
•	0.75 0.60 0.73 0.62	0.67				
CU 12114/92 UG/M3	0.03 0.08 0.12		-	РН 12602/91 РН-UNITS	9.20 9.60 9.50 9.50	9.48
CR 12112/92 UG/M3	0.005 0.003 0.003		S	SODIUM 12184/92 UG/M3	 	
CD 12110/92 UG/M3	0.0009 0.0009 0.0007		WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.18 0.16 0.21 0.13	0.17
BE 12105/92 UG/M3	80L 80L 80L		MA	SULFATE 12403/92 UG/M3	6.79 10.40 5.20	6.41
AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	2.79 3.25 1.40 2.37	2.45
QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG

N.B. For sulfate, the second quarter sample count is 13.

-42-

(

ĺ

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

	PROJECT 01
	AGENCV F
	SITE 123
	AREA 0175
	TOWN NAME DANBURV
21	VEAR 1983

S	I
	1
∢	ļ
+	ł
ш	1
Σ	ļ

	ZN 12167/92 UG/M3	0.04 0.03 0.08 0.08	0.06	J	Ш
			0		SAMPLE COUNT
	V 12164/92 UG/M3	0.20 0.03 0.02 0.03	0.06		
	NI 12136/92 UG/M3	0.008 0.008 0.013 0.013	0.010	TSP	ARITH AV 11101/91 UG/M3
	MN 12132/92 UG/M3	0.005 0.013 0.017 0.019	0.014	BLES	91
	PB 12128/92 UG/M3	0.26 0.19 0.31 0.41	0.29	BENZ SOLUBLES	T0TAL 11103/91 UG/M3
MELALS	FE 12126/92 UG/M3	0.62 0.59 0.84 0.52	0.65		
	CU 12114/92 UG/M3	0.08 0.14 0.09	0.11		РН 12602/91 РН-UNITS
	CR 12112/92 UG/M3	0.003 0.003 0.004	0.003	S	SODIUM 12184/92 UG/M3
	CD 12110/92 UG/M3	0.0009 0.0010 0.0005 0.0006	0,0007	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3
	BE 12105/92 UG/M3	BDL BDL BDL	ù.	WA	SULFATE 12403/92 UG/M3
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3
	QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG	·	QUARTER

-43-

--

.

15 15 13

41 56 41

9.50 9.50 9.50

0.17 0.18 0.20 0.13

5.53 10.09 6.15 5.25

4.18 4.06 2.65 65

FIRST SECOND THIRD FOURTH 9.52

0.17

6.99

3.00

VEAR AVG

47

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT	10		
AGENCY	ц.,		
SITE	004		AETALS
AREA	0220		M
TOWN NAME	EAST HARTFORD		
YEAR	1983		

	ZN 12167/92 UG/M3	0.05 0.03 0.12 0.10	0.07		SAMPLE COUNT	ច ច ច ច	
	V 12164/92 UG/M3	0.03 0.03 0.02 0.03	0.03	2 I			•
		0.010 0.007 0.013 0.009	0.010	TSP	ARITH AV 11101/91 UG/M3	36 44 39	42
	MN 12132/92 UG/M3	0.006 0.011 0.015 0.017	0.012	BLES	0		
	PB 12128/92 UG/M3	0.25 0.22 0.37 0.40	0.31	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
	-	0.46 0.49 0.72 0.48	0.54				
	CU 12114/92 UG/M3	0.08 0.09 0.14	0.10		РН 12602/91 РН-UNITS	9.40 9.50 9.40	9.42
		0.003 0.004 0.004 0.007	0.004	S	SODIUM 12184/92 UG/M3		
		0.0013 0.0011 0.0015 0.0022	0.0015	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.14 0.11 0.18 0.19	0.15
	BE 12105/92 UG/M3	80L 80L 80L		WA	SULFATE 12403/92 UG/M3	6.51 8.38 2.96 2.78	5.09
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.51 3.60 1.61 2.83	2.89
	QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG

N.B. For sulfate, the first quarter sample count is 12.

(

-44-

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

	ска 13167/92 75167/92 06/M3 26/M3 26/M3	0.09 84MP1-01 500NT 04 15 (94M0 15 (94M0 15 (94M0 15 (94M0 15 (94M0 15 (94M0 15 (94M0	
	12164/92 UG/M3 0.02 0.02 0.02 0.01	0.000 0.0000 0.0000 0.0000 0.0000 0.000000	
	38 31 05 00 00 00 00 00 00 00 00 00 00 00 00	C C C C C C C C C C C C C C C C C C C	
PROJECT 01	12132/92 UG/M3 0.005 0.012 0.012 0.012 0.012 0.012	0.010 3LES 2.012 3.013 9.1795 9.1795 0.1705 1.5195785 2.5195785 2.5195785	
AGENCY	PB 12128/92 16/M3 06/M3 0.200 W3 0.240/W3 0.240/W3 0.240/W3 0.240/W3 0.210/W3 0.210/W3	レアフJ (1010 BENZ SOLUBLES ビッチ ロTAL 1013 ロゴギ ロTAL 1013 ロゴロ3 ロゴロ3 ロゴロ3 ロゴロ3 ロゴロ3 ロゴロ3 ロゴロ3 ロゴ	К.С.К. К.С.К. К.С.К. С.К.
SITE 008	METALS 2 12126/92 2 0.49 0.60 0.81 0.60 0.81 0.58		000 2118 2128
AREA 0330	MET 23.14/92 05.03 05.03 0.03 0.03 0.05 0.03	4 12602¥91 12602¥91 12602¥91 9.40 8 9.40 8 9.43 8 9.43 8 9.43 8 9.43 8 9.43 8 9.43 8 9.44 9 9.44 9 9.44 8 9.44 8	e de la composition de la comp
TOWN NAME GREENWICH	CR 12112/92 UG/M3 0.006 0.002 0.002 0.004	ດ 100k S 0.00k 12184/92 UG/M3 UG/M3	ozo - 1x - 0xx - reke - 1xx - reke
YEAR 1983	、	0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.16	
	12105/92 05/92 05/33 BDE4 BDE4 BDE4 BDE4	WA SULFATE 12403/92 105/M3 0153 2.98 6.32	
	12101/92 UG/M3 UG/M3	NITRATE 12306/92 UG/M3 3.62 3.38 3.38 3.38	
	QUARTER FIRST SECOND FOURTH FOURTH	QUARTER QUARTER FIRST SHGGND FOURTH FOURTH YEAR AVG	

N.B. For sulfate, the second quarter sample count is 13. Seres a constance.

a ke

-45-

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT 01
AGENCV F
SITE 006
AREA 0350
TOWN NAME GROTON
YEAR 1983

FE 12126/0
CU 12114/92

ZN 12167/92 UG/M3	0.04 0.03 0.07 0.11	0.06	÷	SAMPLE COUNT	4 ល ល ល	· · ·
V 12164/92 UG/M3	0.03 0.04 0.03 0.06	0.04		S S S		
NI 12136/92 UG/M3	0.012 0.024 0.019	0.017	TSP	ARITH AV 11101/91 UG/M3	31 31 31 31	38
MN 12132/92 UG/M3	0.005 0.007 0.013 0.015	0.010	BLES	6		
PB 12128/92 UG/M3	0.08 0.08 0.14 0.15	0.11	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
FE 12126/92 UG/M3	0.43 0.32 0.60 .41	0.44				
CU 12114/92 UG/M3	0.07 0.08 0.10 0.06	0.08		РН 12602/91 РН-UNITS	9.40 9.30 9.20 0.20	9.27
CR 12112/92 UG/M3	0000	0.007	S	SODIUM 12184/92 UG/M3	v	
CD 12110/92 UG/M3	0.0004 0.0002 0.0003 0.0003	0.0003	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.18 0.16 0.13 0.13	0.16
BE 12105/92 UG/M3	80L 80L 80L 80L		MA	SULFATE 12403/92 UG/M3	5.59 8.31 4.36 4.36	5.38
AL 12101/92 UG/M3		ø		NITRATE 12306/92 UG/M3	2.83 3.04 1.18 1.95	2.24
QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG

8

-46-

Ć

TSP	PROJECT 02
QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP	AGENCY F
RIZATION OF	SITE 002
CHARACTE	AREA 0380
Y CHEMICAL	TOWN NAME HADDAM
QUARTERL	HAD HAD
	YEAR 1983

		-	
		v 12164/92 UG/M3	
		MN 12132/92 UG/M3	
		PB 12128/92 UG/M3	100
	METALS	FE 12126/92 UG/M3	
	MET	CU FE PB MN NI 12114/92 12126/92 12128/92 12136/92 UG/M3 UG/M3 UG/M3 UG/M3 UG/M3	
		CD 12110/92 UG/M3	
		BE 12105/92 UG/M3	
		AL 12101/92 UG/M3	

QUARTER

ZN 12167/92 UG/M3

	_							
0.01	0.04	0.03					SAMPLE	COUNT
0.01	0.01	0.02						
0.005	0.007	0.006			TSP	ARITH AV	11101/91	UG/M3
0.004	0.009	0.013			UBLES	ل ـ	/91	ю
0.07	0.07	0.12			BENZ SOLUBLES	TOTAL	11103	NG/M
0.14	0.23	0.28						
0.05	0.04	0.03				Нd	12602/91	PH-UNITS
0.004	0.002	0.001			S	SODIUM	12184/92	UG/M3
0.0004	0.0007	0.0004			WATER SOLUBLES	AMMONIUM	12301/91	UG/M3
BDL	BDL	BDL		·	Μ	SULFATE	12403/92	UG/M3
						NITRATE	12306/92	UG/M3
FIRST	SECOND	FOURTH	YEAR AVG				QUARTER	

15

23 28

9.50 9.60 9.20

0.11 0.11 0.06

1.87 2.11 2.29

FIRST SECOND THIRD FOURTH

5.90 7.24 0.85

ø

33

N.B. For sulfate, the second quarter sample count is 7.

•

-47-

YEAR AVG

Ş TMAHC OUADTED! V

TSP	PROJECT 01
F 1983 HI-VOI	AGENCY F
ERIZATION OI	SITE 003
CHARACT	AREA 0420
UARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP	TOWN NAME HARTFORD
<u>1</u> 6	VEAR 1983

	ZN 12167/92 UG/M3	0.03 0.08 0.08			SAMPLE COUNT	15 15 14	
	V 12164/92 UG/M3	0.03 0.02 0.05			0,0		
METALS	NI 12136/92 UG/M3	0.008 0.014 0.010		TSP	ARITH AV 11101/91 UG/M3	58 58 0	
	MN 12132/92 UG/M3	0.014 0.019 0.024		BLES	=		
	PB 12128/92 UG/M3	0.19 0.35 0.43		BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
	FE 12126/92 UG/M3	0.68 0.94 0.73					
	CU 12114/92 UG/M3	0.10 0.07 0.04	et.		РН 12602/91 РН-UNITS	9.50 9.50 9.40	
	CR 12112/92 UG/M3	0.010 0.007 0.008		S	SODIUM 12184/92 UG/M3		
	CD 12110/92 UG/M3	0.0004 0.0009 0.0014		WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.18 0.16 0.13	
	BE 12105/92 UG/M3	BDL BDL BDL		MA	SULFATE 12403/92 UG/M3	8.29 7.35 5.97 2.15	5.45
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	4.06 1.04 1.91	
	QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG

N.B. For sulfate, the first through the fourth quarter sample counts are 8, 7, 13 and 13, respectively.

Ć

-

-48-

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT 01

AGENCY F

SITE 013

AREA 0420

TOWN NAME HARTFORD

YEAR 1983

	<pre> ZN 12167/92 UG/M3</pre>	0.05 0.03 0.07 0.07	0.05	SAMPLE COUNT	15 15 15	
	V 12164/92 UG/M3	0.02	0.03			
	NI 12136/92 UG/M3	0.013 0.009 0.017 0.008	0.012 TSP	ARITH AV 11101/91 UG/M3	8 4 3 8 4 7 8 8 0 7 8	
	MN 12132/92 UG/M3	0.011 0.013 0.023 0.025	0.018 BLES	6		
	PB 12128/92 UG/M3	0.28 0.16 0.30 0.35	0.27 0. BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
METALS	FE 12126/92 UG/M3	0.50 0.59 1.15 0.70	0.73			
MET			0.04	PH 12602/91 PH-UNITS	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
	CR 12112/92 UG/M3	0.006 0.006 0.008 0.010	0.007 S	SODIUM 12184/92 UG/M3		
		0.0018 0.0013 0.0006 0.0007	0.0014 WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.20 0.22 0.21 0.18	
	BE 12105/92 UG/M3	BDL BDL BDL BDL	AW	SULFATE 12403/92 UG/M3	7.06 10.69 5.99 2.93	
	AL 12101/92 UG/M3			NITRATE 12306/92 UG/M3	3.03 3.82 1.82 0.97	
	QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG	QUARTER	FIRST SECOND THIRD FOURTH	

47

9.42

0.20

6.67

2.41

VEAR AVG

-49-

TSP	
HI-VOL	
1983	
Ы	
CHARACTERIZATION	
CHEMICAL	
QUARTERLY	

PROJECT 01	
AGENCY	
SITE 014	
AREA 0420	
TOWN NAME HARTFORD	
VEAR 1983	

	ZN 12167/92 UG/M3	9,95 0,03 0,08 0,08	0.06		SAMPLE COUNT	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	V 12164/92 UG/M3		0.03		0 N O	
	NI 12136/92 UG/M3	0.013 0.008 0.009 0.009	0.010	TSP	ARITH AV 11101/91 UG/M3	4444 440 -
		0.013 0.011 0.015 0.015	0.014	BLES	10	
	PB 12128/92 UG/M3	0.25 0.18 0.31 0.42	0.29	BENZ SOLUBLES	TOTAL 11103/91 UG/M3	
METALS	•	0.52 0.50 0.71 0.47	0.55			
MET	CU 12114/92 UG/M3	0.09 0.15 0.10	0.10		PH 12602/91 PH-UNITS	0000. 4.0.0 0.000
	CR 12112/92 UG/M3	0.004 0.004 0.003 0.003	0.004	S	SODIUM 12184/92 UG/M3	
	CD 12110/92 UG/M3	0.0010 0.0005 0.0012 0.0008	0.0009	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.18 0.19 0.13 0.15
	BE 12105/92 UG/M3	8DL 8DL 8DL		MA	SULFATE 12403/92 UG/M3	6.61 9.47 3.34 3.34
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	2.38 3.48 1.38 2.23
	QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH

-50-

44

9.45

0.16

6.11

2.39

YEAR AVG

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT 01

AGENCY

SITE 001

AREA 0510

TOWN NAME MANCHESTER

VEAR 1983

	ZN 12167/92 UG/M3	0.03 0.02 0.10	0.06		SAMPLE COUNT
	V 12164/92 UG/M3	0.03 0.02 0.02 0.02	0.02		
·	NI 12136/92 UG/M3	0.007 0.006 0.008 0.008	0.007	ŢSP	ARITH AV 11101/91 UG/M3
	MN 12132/92 UG/M3	0.005 0.007 0.009 0.011	0.008	BLES	5
	PB 12128/92 UG/M3	0.16 0.23 0.23	0.18	BENZ SOLUBLES	T0TAL 11103/91 UG/M3
ALS	FE 12126/92 UG/M3	0.44 0.55 0.25 25	0.39		
METALS	CU 12114/92 UG/M3	0.00 0.00 0.00	0.05		PH 12602/91 PH-UNITS
	CR 12112/92 UG/M3	0.003 0.001 0.003	0.002	S	SODIUM 12184/92 UG/M3
	CD 12110/92 UG/M3	0.0003 0.0003 0.0003	0.0006	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3
	BE 12105/92 UG/M3	80L 80L 80L		MA	SULFATE 12403/92 UG/M3
	AL 12101/92 UG/M3		·		NITRATE 12306/92 UG/M3
	QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER

Hd	12602/91	PH-UNITS	9.30	9.50	9.50	9.40	9.43	
SODIUM	12184/92	UG/M3						
AMMONIUM	12301/91	UG/M3	0.13	0.13	0.14	0.15	0.14	
SULFATE	12403/92	NG/M3	6.32	6.99	5.58	2.34	5.29	
NITRATE	12306/92	UG/M3	3.91	2.31	1.54	2.91	2.65	
	QUARTER		FIRST	SECOND	THIRD	FOURTH	VEAR AVG	

4.000

8 8 4 8 8 4 8 7 8 7 8 4 8

36

-51-

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT 01	
AGENCY F	
SITE 002	
AREA 0540	
TOWN NAME MERIDEN	
YEAR 1983	

	ZN 12167/92 UG/M3	0.11 0.12 0.19 0.17	0.15		SAMPLE COUNT	8-8-5
		0.04 0.02 0.02 0.03	0.03	ŗ		
	NI 12136/92 UG/M3	0.011 0.010 0.010 0.010	0.011	TSP	ARITH AV 11101/91 UG/M3	9627 3627
	MN 12132/92 UG/M3	0.012 0.008 0.014 0.015	0.012	BLES	16	
	PB 12128/92 UG/M3	0.18 0.21 0.30 0.40	0.27	BENZ SOLUBLES	TOTAL 11103/91 UG/M3	•
<u>LS</u>	FE 12126/92 UG/M3	0.54 0.50 0.64 0.44	0.54			
METALS	CU 12114/92 UG/M3	0.04 0.07 0.12 0.09	0.08		РН 12602/91 РН-UNITS	0000 000 000 000 000
	CR 12112/92 UG/M3	0.007 0.002 0.006 0.005	0.005	S	SODIUM 12184/92 UG/M3	
		0.0017 0.0018 0.0009 0.0015	0.0014	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.14 0.13 0.13 0.15
	BE 12105/92 UG/M3	801 801 801		WA	SULFATE 12403/92 UG/M3	6.47 7.70 5.32 2.81
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.07 3.53 1.42 2.54
	QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH

44

9.57

0.14

5.73

2.58

YEAR AVG

N.B. For sulfate, the second quarter sample count is 14.

-52-

(____)

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT 01

AGENCY F

SITE 008

AREA 0540

TOWN NAME MERIDEN

VEAR 1983

	20	0.10 0.07 0.27 0.18	0.15		SAMPLE COUNT	ក ខ ខ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ	
	V 12164/92 UG/M3	0.03 0.01 0.03 0.03	0.02				
	NI 12136/92 UG/M3	0.010 0.008 0.013 0.009	0.010	TSP	ARITH AV 11101/91 UG/M3	36 44 37	41
	MN 12132/92 UG/M3	0.008 0.006 0.020 0.016	0.012	BLES	6		
	PB 12128/92 UG/M3	0.17 0.14 0.46 0.42	0.29	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
METALS	FE 12126/92 UG/M3	0.39 0.35 0.85 0.43	0.50			·	
MET	CU 12114/92 UG/M3	0.07 0.07 0.12 0.07	0.08		РН 12602/91 РН-UNITS	9.70 0.70 0.60 0.60	9.65
	CR 12112/92 UG/M3	0.006 0.005 0.006 0.006	0.004	S	SODIUM 12184/92 UG/M3		
	CD 12110/92 UG/M3	0.0005 0.0006 0.0027 0.0013	0.0013	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.18 0.15 0.16 0.16	0.16
	BE 12105/92 UG/M3	80L 80L 80L		WA	SULFATE 12403/92 UG/M3	7.03 7.80 3.60	6.44
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	2.78 4.41 1.58 2.75	2.90
	QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG

-53-

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT 01

AGENCY F

SITE 003

AREA 0570

TOWN NAME MIDDLETOWN

YEAR 1983

		ZN 12167/92 UG/M3	0.06 0.10 0.05 0.06	0.06		SAMPLE COUNT	4488	
			0.15 0.03 0.03 0.03	0.06				
	ì	NI 12136/92 UG/M3	0.041 0.017 0.004 0.007	0.017	TSP	ARITH AV 11101/91 UG/M3	3 4 4 3 3 3 5 8	40
		MN 12132/92 UG/M3	0.011 0.007 0.014 0.015	0.012	BLES		•	
		-	0.25 0.15 0.30 0.36	0.27	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		·
METALS	FE 12126/92 UG/M3	0.50 0.35 0.63 0.38	0.47					
	MET		0.06 0.13 0.09	0.09		РН 12602/91 РН-UNITS	9.8 8.80 9.90 90	8.92
		CR 12112/92 UG/M3	0.005 0.001 0.002 0.003	0.003	S	SODIUM 12184/92 UG/M3		
		CD 12110/92 UG/M3	0.0008 0.0007 0.0006 0.0008	0.0007	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.14 0.16 0.17 0.17	0.16
		BE 12105/92 UG/M3	80L 80L 80L		WA	SULFATE 12403/92 UG/M3	6.44 9.28 7.66 3.16	6.59
		AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	2.78 3.42 1.56 2.49	2.54
		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG

ĺ

-54-

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT 01

AGENCY

SITE 002

AREA 0590

TOWN NAME MILFORD

YEAR 1983

ZN 12167/92 UG/M3	0.028	0.07		SAMPLE COUNT	4 4 4 D	
V 12164/92 UG/M3	0.07 0.03 0.03 0.05	0.05	,	0,0		
NI 12136/92 UG/M3	0.020 0.017 0.011 0.019	0.017	TSP	ARITH AV 11101/91 UG/M3	3 5 4 3 3 8 4 5	44
MN 12132/92 UG/M3	0.009 0.007 0.013 0.017	0.012	JBLES	791 3		
PB 12128/92 UG/M3	0.17 0.15 0.30 0.35	0.24	BENZ SOLL	TOTAL 11103/ UG/M3		
FE 12126/92 UG/M3	0.52 0.35 0.69 0.51	0.52				
CU 12114/92 UG/M3	0.03 0.03 0.02 0.02	0.05		РН 12602/91 РН-UNITS	9.30 9.20 9.30	9.10
.CR 12112/92 UG/M3	0.003 0.001 0.009 0.009	0.004	S	SODIUM 12184/92 UG/M3		
CD 12110/92 UG/M3	0.0024 0.0007 0.0010 0.0010	0.0015	TER SOLUBLE	AMMONIUM 12301/91 UG/M3	0.14	0.16
BE 12105/92 UG/M3	BDL BDL BDL BDL		ΦM	SULFATE 12403/92 UG/M3	6.69 10.24 7.21 3.63	6.94
AL 12101/92 UG/M3		·		NITRATE 12306/92 UG/M3	2.66 3.42 1.44 2.53	2.51
QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG
	AL BE CD CR CU FE PB MN NI V 12101/92 12105/92 12110/92 12112/92 12114/92 12126/92 12138/92 12136/92 12164/92 UG/M3 UG/M3	AL BE CD CR CU FE PB MN NI V 12101/92 12105/92 12110/92 12112/92 12114/92 12126/92 12132/92 12136/92 12136/92 12156/92 12 UG/M3 UG/M3	<pre> I 2101/92 12105/92 12110/92 12112/92 12114/92 12126/92 12126/92 12136/92 12136/92 12164/92 UG/M3 BDL 0.0007 0.003 0.03 0.17 0.009 0.020 0.07 BDL 0.00010 0.001 0.13 0.55 0.117 0.009 0.017 0.03 BDL 0.0010 0.001 0.035 0.17 0.017 0.013 BDL 0.0011 0.003 0.051 0.35 0.117 0.011 0.03 BDL 0.00118 0.004 0.051 0.51 0.35 0.017 0.011 O.03 BDL 0.0013 0.004 0.051 0.35 0.017 0.013 O.011 O.013 BDL 0.0013 0.004 0.051 0.35 0.117 0.013 O.011 O.03 BDL 0.0013 0.004 0.051 0.35 0.117 0.013 O.011 O.03 BDL 0.0013 0.004 0.051 0.35 0.117 0.013 O.013 O.011 O.03 O.011 O.03 O.011 O.03 O.012 O.013 O.011 O.03 O.011 O.01 O.0</pre>	Image: Construction of the state of the	Image: Constraint of the state of	AL 12101/92 IZ105/92 IZ107/92 IZ112/92 IZ165/92 IZ1367/92 IZ1667/93 IUG/M33 UG/M33 UG/M33

N.B. For sulfate, the second quarter sample count is 15.

-55-

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT 01

AGENCY

SITE 001

AREA 0660

TOWN NAME NAUGATUCK

YEAR 1983

		ZN 12167/92 UG/M3	0.08 0.14 0.10	60 .0		SAMPLE COUNT	υ υ υ υ υ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ
		V 12164/92 UG/M3	0.02 0.02 0.01 0.02	0.02	I		
		NI 12136/92 UG/M3	0.008 0.009 0.006 0.006	0.008	TSP	ARITH AV 11101/91 UG/M3	4 4 4 4 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		MN 12132/92 UG/M3	0.012 0.007 0.029 0.021	0.017	BLES	6	
		PB 12128/92 UG/M3	0.30 0.19 0.40 0.48		BENZ SOLUBLES	TOTAL 11103/91 UG/M3	:
	METALS	FE 12126/92 UG/M3	0.68 0.84 1.22 0.73				
	MET	CU 12114/92 UG/M3	0.05	0.06		РН 12602/91 РН-UNITS	9.20 9.50 9.50
		CR 12112/92 UG/M3	0.004 0.002 0.007 0.006	0.005	S	SODIUM 12184/92 UG/M3	• •
		CD 12110/92 UG/M3	0.0021 0.0006 0.0007 0.0017	0.0013	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.18 0.17 0.15 0.13
•		BE 12105/92 UG/M3	BDL BDL BDL BDL		MM	SULFATE 12403/92 UG/M3	6.76 5.85 4.45
		AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	2.97 3.65 1.32 2.80
		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH

N.B. For sulfate, the fourth quarter sample count is 15.

(

44

9.40

0.16

6.86

2.71

YEAR AVG

-56-

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT 01

AGENCY F

SITE 007

AREA 0680

TOWN NAME NEW BRITAIN

YEAR 1983

	ZN 12167/92 UG/M3	0.04 0.03 0.12 0.03	0.05		SAMPLE	17 15 14	
	V 12164/92 UG/M3	0.03 0.01 0.02 0.02	0.02				
	NI 12136/92 UG/M3	0.011 0.012 0.004 0.006	0.008	TSP	ARITH AV 11101/91 UG/M3	34 84 33 33	9 6
	MN 12132/92 UG/M3	0.009 0.007 0.018 0.015	0.012	BLES	-		
	PB 12128/92 UG/M3	0.18 0.13 0.28 0.33	0.23	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
		0.64 0.49 0.80 0.40	0.59				
METALS	CU 12114/92 UG/M3	0.09 0.09 0.12 0.09	0.10		PH 12602/91 PH-UNITS	0000 0000 0000	9.45
	CR 12112/92 UG/M3	0.003 0.001 0.003 0.003	0.003	S	SODIUM 12184/92 UG/M3		
	CD 12110/92 UG/M3	0.0012 0.0002 0.0007 0.0007	0.0007	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.18 0.20 0.14 0.16	0.17
	BE 12105/92 UG/M3	80L 80L 80L 80L		MA	SULFATE 12403/92 UG/M3	6.49 12.03 5.86 3.81	7.05
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	4.09 4.64 1.34 2.62	3.21
	QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG

N.B. For sulfate, the first and fourth quarter sample counts are both 15.

-57-

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

	PROJECT 01	
- Anter Andre .	AGENCY F	
	SITE 008	
	AREA 0680	
	TOWN NAME NEW BRITAIN	
	VEAR 1983	

METALS

ZN 12167/92 UG/M3	0.04 0.102 0.08 0.08	
V 12164/92 UG/M3	0.02 0.02 0.02 0.02	
NI 12136/92 UG/M3	0.004 0.013 0.006 0.006	dST
MN 12132/92 UG/M3	0.008 0.007 0.013 0.015	BLES
PB 12128/92 UG/M3	0.15 0.13 0.27 0.42 0.42	BENZ SOLUBLES
FE 12126/92 UG/M3	0.37 0.33 0.45 0.45	•
CU 12114/92 UG/M3	0.02 0.04 0.11 0.13	
CR 12112/92 UG/M3	0.003 0.001 0.002 0.003 0.003	·
CD 12110/92 UG/M3	0.0009 0.0004 0.0011 0.0013 0.0013 0.0000	WATER SOLUBLES
BE 12105/92 UG/M3	BDL BDL BDL	WA
AL 12101/92 UG/M3		
QUARTER	FIRST SECOND THIRD FOURTH YEAR AVG	

SAMPLE COUNT 15 13 13 15

ARITH AV 11101/91 UG/M3 41

TOTAL 11103/91 UG/M3

48 36

_
_
~
œ
-
-
С
ç
•
-
α
ū.
u.
٤

Hd	12602/91	PH-UNITS	9.60	9.50	9.50	9.50	9.53
SODIUM	12184/92	UG/M3					
AMMONIUM	12301/91	UG/M3	0.18		0.15	0.17	
SULFATE	12403/92	UG/M3	5.69	12.03	9.55	3.56	7.64
NITRATE	12306/92	UG/M3	3.80		1.52	3.01	
	QUARTER		FIRST	SECOND	THIRD	FOURTH	YEAR AVG

(_____]

-58-

TSP	PROJECT	01
QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP	AGENCY	u.
TON OF	SITE	თ
TERIZAT	SI	00
CHARAC	AREA	0680
CHEMICAL	TOWN NAME	NEW BRITAIN
2UARTERLY	TOWN	NEW
	VEAR	1983

	ZN 12167/92 UG/M3	0.04 0.12 0.07	0.07		SAMPLE COUNT	<u>4</u> ω ω ω	
	V 12164/92 UG/M3	0.02 0.02 0.03	0.02	,			
	NI 12136/92 UG/M3	0.006 0.015 0.003 0.003	0.008	TSP	ARITH AV 11101/91 UG/M3	3 4 5 3 8 5 8 6	40
	MN 12132/92 UG/M3	0.008 0.005 0.014 0.015	0.011	BLES	6		
	PB 12128/92 UG/M3	0.14 0.11 24 34	0.21	BENZ SOLUBLES	T0TAL 11103/91 UG/M3	• • •	
METALS	-	0.36 0.40 0.63 0.40	0.45				
MET	CU 12114/92 UG/M3	0.06 0.07 0.09 0.09	0.07		РН 12602/91 РН-UNITS	9.60 9.40 9.50	
	CR 12112/92 UG/M3	0.005 0.001 0.002 0.002	0.003	S	SODIUM 12184/92 UG/M3		
	CD 12110/92 UG/M3	0.0008 0.0006 0.0009 0.0009	0.0007	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.14 0.15 0.15	
	BE 12105/92 UG/M3	BDL BDL BDL BDL		MA	SULFATE 12403/92 UG/M3	5.89 8.20 6.83 3.62	6.14
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.17 1.51 2.37	
	QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG

-59-

(

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

		ZN 12167/92 UG/M3	0.05 0.10 0.09	0.07		
		V 12164/92 UG/M3	0.03 0.02 0.04 0.03	0.03	1	
			0.009 0.018 0.012 0.011	0.012	TSP	
PROJECT 01		MN 12132/92 UG/M3	0.010 0.008 0.027 0.025	0.018	BLES	
AGENCY		PB 12128/92 UG/M3	0.32 0.17 0.47 0.54	0.39	BENZ SOLUBLES	I V FOF
SITE 002	METALS	-	0.74 0.67 1.40 0.84	0.93		
AREA 0700	MET	CU 12114/92 UG/M3	0.05 0.36 0.32	0.20		ЫЦ
TOWN NAME NEW HAVEN		CR 12112/92 UG/M3	0.004 0.002 0.002 0.005	0.004	S	MUTUOS
YEAR 1983		CD 12110/92 UG/M3	0.0009 0.0007 0.0012 0.0012	0.0010	WATER SOLUBLES	SULFATE AMMONTUM
		BE 12105/92 UG/M3	80L 80L 80L		MA	SUI FATE
		AL 12101/92 UG/M3				NITRATE
		QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG		

SAMPLE COUNT 4044 **4** ARITH AV 11101/91 UG/M3 53 TOTAL 11103/91 UG/M3 PH 12602/91 PH-UNITS 9.50 9.50 9.50 9.51 SODIUM 12184/92 UG/M3 AMMONIUM 12301/91 UG/M3 0.16 0.18 0.15 0.15 0.16 SULFATE 12403/92 UG/M3 6.05 10.91 2.87 6.02 5.67 NITRATE 12306/92 UG/M3 3.15 3.78 1.67 3.68 3.02 VEAR AVG FIRST SECOND THIRD FOURTH

N.B. For sulfate, the first and second quarter sample counts are 7 and 6, respectively.

-60-

QUARTER

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL	IS
LY CHEMICAL CHARACTERIZATION OF	107-IH
LV CHEMICAL CHARACTERIZATION O	
QUARTERLY CHEMICAL (ERIZATION O
	QUARTERLY CHEMICAL C

				ZN 12167/92 UG/M3	0.04 0.03 0.08 0.09	0.06			APPROX SAMPLE COUNT	17 13 155					
				v 12164/92 UG/M3	0.04 0.03 0.03 0.03	0.04									
				NI 12136/92 UG/M3	0.013 0.008 0.010 0.014	0.011		TSP	ARITH AV 11101/91 UG/M3	4 2 2 0 6 4 2 3 0 0 6					
L TSP	PROJECT 01			MN 12132/92 UG/M3	0.004 0.007 0.016 0.020	0.012	-	BLES	16						
CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP	AGENCY F			PB 12128/92 UG/M3	0.21 0.17 0.32 0.46	0.29		BENZ SOLUBLES	TOTAL 11103/91 UG/M3						
RIZATION OF	SITE 013		METALS		FE 12126/92 UG/M3	0.60 0.51 0.82 0.62	0.64								
AL CHARACTE	AREA 0700		ME	CU 12114/92 UG/M3	0.06 0.12 0.10	0.09			PH 12602/91 PH-UNITS	9.50 9.50 9.50					
	TOWN NAME NEW HAVEN								CR 12112/92 UG/M3	0.001 0.003 0.002 0.005	0.003	ţ	~	SODIUM 12184/92 UG/M3	
QUARTERLY	YEAR 1983			CD 12110/92 UG/M3	0.0010 0.0008 0.0013 0.0010	0.0010		WAIER SULUBLES	AMMONIUM 12301/91 UG/M3	0.17 0.18 0.15 0.15					
		7 - - 4 -		BE 12105/92 UG/M3	80 80 80 80 80 80 80 80 80 80 80 80 80 8			4 M	SULFATE 12403/92 UG/M3	6.88 11.22 3.68 5.90					
			1, 7, 192 (1	AL 12101/92 UG/M3					NITRATE 12306/92 UG/M3	3.76 4.71 3.04					
		i.		QUARTER	FIRST FECOND THIRD FOURTH	YEAR AVG			QUARTER	FIRST SECOND THIRD FOURTH					

N.B. For sulfate, the first quarter sample count is 14.

48

. 9.47

0.16

6.77

3.23

YEAR AVG

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

TOWN NAME	AREA	SITE	AGENCY	PROJECT
NORWALK	0820	001	F	01

S	
< 1	
+	
111	
-	
~	

ZN 12167/92 UG/M3	0.05 0.06 0.14 0.09	0.08	I	ш
-	0000	0		SAMPLE COUNT
V 12164/92 UG/M3	0.08 0.03 0.04	0.05		
NI 12136/92 UG/M3	0.020 0.008 0.012 0.015	0.014	TSP	ARITH AV 11101/91 UG/M3
MN 12132/92 UG/M3	0.004 0.008 0.016 0.017	0.011	JBLES	6
•	0.15 0.15 0.27 0.47	0.26	BENZ SOLUBLES	TOTAL 11103/91 UG/M3
FE 12126/92 UG/M3	0.38 0.46 0.85 0.44	0.52		
CU 12114/92 UG/M3	0.18 0.27 0.28 0.09	0.20		РН 12602/91 РН-UNITS
CR 12112/92 UG/M3	BDL 0.001 0.010 0.003	0.003	ES	SODIUM 12184/92 UG/M3
CD 12110/92 UG/M3	0.0009 0.0013 0.0007 0.0009	0.0010	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3
BE 12105/92 UG/M3	80L 80L 80L		/M	SULFATE 12403/92 UG/M3
AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3
QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER

N.B. For sulfate, the first quarter sample count is 14.

(_____)

(____

-62-

10110

9.60 9.60 9.60

0.17 0.17 0.18 0.18

7.57 11.53 5.61 6.87

3.58 4.65 1.55 1.80

FIRST SECOND THIRD FOURTH 9.54

0.17

7.94

2.94

VEAR AVG

(=)

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT 01

AGENCY F

SITE 005

AREA 0820

TOWN NAME NORWALK

VEAR 1983

	ZN 12167/92 UG/M3	0.05 0.10 0.10 0.10	0.07		SAMPLE COUNT	<u>ក ក ក ក</u>
	V 12164/92 UG/M3	0.07 0.02 0.03 0.04	0.04			
	NI 12136/92 UG/M3	0.017 0.007 0.009 0.012	0.011	TSP	ARITH AV 11101/91 UG/M3	4 0 0 4 0 4 0 0
	MN 12132/92 UG/M3	0.006 0.011 0.017 0.023	0.014	BLES	6	
	PB 12128/92 UG/M3	0.22 0.20 0.34 0.47	0.31	BENZ SOLUBLES	TOTAL 11103/91 UG/M3	
ALS	FE 12126/92 UG/M3	0.61 0.74 0.87 0.72	0.73			
METALS	CU 12114/92 UG/M3	0.05 0.10 0.12			РН 12602/91 РН-UNITS	0.00 0.00 0.00 0.00 0.00
	CR 12112/92 UG/M3	0.01 0.041 0.010		S	SODIUM 12184/92 UG/M3	
	CD 12110/92 UG/M3	0.0007 0.0007 0.0007		WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0000 1901 1907 1907 1907 1907 1907 1907
	BE 12105/92 UG/M3	BDL BDL BDL		M	SULFATE 12403/92 UG/M3	7.43 10.15 5.59 6.83
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.68 4.70 3.30
	QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH

49

9.62

0.16

7.57

3.38

VEAR AVG

-63-

		ZN 12167/92 UG/M3	0.03 0.04 0.10 0.06	0.06		SAMPLE COUNT	15 15 15 15
		V 12164/92 UG/M3	0.02 0.03 0.03 0.03	0.02	I	0.0	
		NI 12136/92 UG/M3	0,005 0.006 0.011 0.009	0.008	TSP	ARITH AV 11101/91 UG/M3	3 8 9 3 9 3 8 9 3 9 3 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
PROJECT 01		MN 12132/92 UG/M3	0.003 0.011 0.019 0.019	0.013	BLES	- - 0	
AGENCY F		PB 12128/92 UG/M3	0.20 0.17 0.34 0.46	0.29	BENZ SOLUBLES	TOTAL 11103/91 UG/M3	
SITE 012	ALS	FE 12126/92 UG/M3	0.40 0.68 0.96 0.60	0.66			
AREA 0820	ME	CU 12114/92 UG/M3	0.03 0.08 0.08 0.04 0.04	0.06		РН 12602/91 РН-UNITS	9.60 9.70 9.70 9.70
TOWN NAME NORWALK		CR 12112/92 UG/M3	0.001 0.002 0.003 0.003	0.002	S	SODIUM 12184/92 UG/M3	
YEAR 1983		CD 12110/92 UG/M3	0.0006 0.0006 0.0006 0.0011	0.0007	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.19 0.20 0.18 0.17
		BE 12105/92 UG/M3	80L 80L 80L		M	SULFATE 12403/92 UG/M3	7.11 10.76 5.81 6.49
		AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.06 3.98 1.55 2.66
		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

-64-

46

9.67

0.18

7.54

2.81

VEAR AGE

Ć

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT 01

AGENCY F

SITE 001

AREA 0840

TOWN NAME NORWICH

YEAR 1983

	ZN 12167/92 UG/M3	0.02 0.02 0.07	0.04		SAMPLE COUNT	1 1 1 5 7 5 7 5 7 5 7 5 7 7 5 7 5 7 7 5 7 5
	v 12164/92 ÚG/M3	0.03 0.03 0.03 0.03	0.03		1.	
	NI 12136/92 UG/M3	0.004 0.008 0.008 0.008	0.007	TSP	ARITH AV 11101/91 UG/M3	8 4 4 8 8 9 4 5
	•	0.001 0.006 0.012 0.012	0.008	BLES	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
	20	0.12 0.11 0.19 0.30	0.18	BENZ SOLUBLES	TOTAL 11103/91 UG/M3	
METALS	FE 12126/92 UG/M3	0.32 0.41 0.77 0.39	0.47			
MET	92	0.00 0.06 0.07 40.0	0.05		PH 12602/91 PH-UNITS	9.60 9.20 9.10
	CR 12112/92 UG/M3	0.001 0.001 0.003 0.003	0.002	S	SODIUM 12184/92 UG/M3	
	CD 12110/92 UG/M3	0.0003 0.0005 0.0002 0.0008	0.0005	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.13 0.13 0.18 0.17
	BE 12105/92 UG/M3	80L 80L 80L		d M	SULFATE 12403/92 UG/M3	6.43 8.71 4.02 5.39
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.51 4.28 1.33 2.66
	QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH

42

9.23

0.15

6.17

2.97

YEAR AVG

-65-

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT 01

AGENCY F

SITE 001

AREA 1080

TOWN NAME STAMFORD

YEAR 1983

	ZN 12167792 1167M3	0.05 0.03 0.08 0.09	0.06			SAMPLE COUNT	ខ្លួលខ្លុ ស្ព្រល្អ ស្ត្រ	
	V 12164/92 UG/M3	0.03 0.02 0.03	0.02					
	NI 12136/92 UG/M3	0.009 0.008 0.008 0.011	0.009		TSP	ARITH AV 11101/91 UG/M3	ດ ຊີ ຊີ ຊີ ຊີ ຊີ ຊີ ຊີ ຊີ	
	MN 12132/92 UG/M3	0.004 0.010 0.025 0.025	0.016		IBLES	10		
	PB 12128/92 UG/M3	0.20 0.17 0.30 0.34	0.25		BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
METALS	FE 12126/92 UG/M3	0.43 0.57 1.26 0.61	0.72					
ΨE	CU 12114/92 UG/M3	0.04 0.08 0.11 0.10	0.08			РН 12602/91 РН-UNITS	8.80 00.00 00.80 00.80 00.80 00.80	
	CR 12112/92 UG/M3	0.001 0.002 0.005 0.003	0.003	·		SODIUM 12184/92 UG/M3		
	CD 12110/92 UG/M3	0.0010 0.0003 0.0006 0.0006	0.0007	WATER SOLUBLES		AMMONIUM 12301/91 UG/M3	0.17 0.15 0.09 0.15	
	.BE 12105/92 UG/M3	80L 80L 80L 80L		ΦM		SULFATE 12403/92 UG/M3	8.58 8.66 4.39 5.77	
	AL 12101/92 UG/M3					NITRATE 12306/92 UG/M3	3.61 4.34 2.79 2.96	
	QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG			QUARTER	FIRST SECOND THIRD FOURTH	

N.B. For sulfate, the first and second quarter sample counts are 8 and 7, respectively.

(____)

-66-

50

9.11

0.14

6.27

3.43

YEAR AVG FOURTH

()

· (_____)

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

		ZN 12167/92 UG/M3	0.07 0.04 12 0.12	0.09		SAMPLE COUNT	តតតត
		V 12164/92 UG/M3	0.03 0.02 0.03 0.02	0.02			
		NI 12136/92 UG/M3	0.007 0.008 0.013 0.009	0.009	TSP	ARITH AV 11101/91 UG/M3	36 52 47
PROJECT 01		MN 12132/92 UG/M3	0.003 0.008 0.020 0.021	0.013	BLES	6	
AGENCY F		PB 12128/92 UG/M3	0.15 0.11 0.26 0.28	0.20	BENZ SOLUBLES	TOTAL 11103/91 UG/M3	
SITE 007	MEIALS	FE 12126/92 UG/M3	0.35 0.43 0.87 0.60	0.56			
AREA 1080	Σ	CU 12114/92 UG/M3	0.04 0.05 0.06 0.03	0.04		РН 12602/91 РН-UNITS	9.30 9.60 9.60 0.60
TOWN NAME STAMFORD		CR 12112/92 UG/M3	0.002 0.002 0.006 0.003	0.003	S	SODIUM 12184/92 UG/M3	
YEAR 1983		CD 12110/92 UG/M3	0.0017 0.0008 0.0012 0.0013	0.0012	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.17 0.19 0.14
		BE 12105/92 UG/M3	80L 80L 80L		ΜA	SULFATE 12403/92 UG/M3	6.67 9.78 5.74 6.38
		AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.19 4.17 1.51 2.68
		QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH

-67-

48

8.92

0.16

7.14

2.89

VEAR AVG

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT 01

AGENCY F

SITE 021

AREA 1080

TOWN NAME STAMFORD

YEAR 1983

	ZN 12167/92 UG/M3	0.04 0.03 0.08 0.05	0.05		SAMPLE COUNT	ថ្មីថា ចាប់
	v 12164/92 UG/M3	0.03 0.02 0.02 0.02	0.02			
	NI 12136/92 UG/M3	0.009 0.008 0.008 0.008	0.008	TSP	ARITH AV 11101/91 UG/M3	39 51 77
	MN 12132/92 UG/M3	0.005 0.008 0.019 0.023	0.014	BLES	91	
	PB 12128/92 UG/M3	0.18 0.13 0.28 0.31	0.22	BENZ SOLUBLES	T0TAL 11103/91 UG/M3	
METALS	-	0.42 0.43 0.87 0.68	0.60			
MET	CU 12114/92 UG/M3	0.05 0.10 0.07	0.07		РН 12602/91 РН-UNITS	9.30 9.00 9.00
	CR 12112/92 UG/M3	0.005 0.001 0.007 0.004	0.004	S	SODIUM 12184/92 UG/M3	
	CD 12110/92 UG/M3	0.0011 0.0003 0.0008 0.0010	0.0008	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.16 0.19 0.14
	BE 12105/92 UG/M3	BDL BDL BDL		MA	SULFATE 12403/92 UG/M3	7.95 10.81 3.07 5.43
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.73 4.40 1.57 4.93
	QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH

N.B. For sulfate, the first quarter sample count is 14.

-68-

49

00.00

0.16

6.79

3.66

VEAR AVG

• (=____)

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT 01

AGENCY F

SITE 005

AREA 1110

TOWN NAME STRATFORD

YEAR 1983

	ZN 12167/92 UG/M3	0.06 0.04 0.09 0.09	0.07		SAMPLE COUNT	4 v v 4	
	v 12164/92 UG/M3	0.03 0.02 0.03 0.03	0.03		0.0		
	NI 12136/92 UG/M3	0.008 0.006 0.009 0.011	0.008	TSP	ARITH AV 11101/91 UG/M3	4 4 0 4 0 7 1 0	47
	MN 12132/92 UG/M3	0.004 0.006 0.015 0.018	0.011	BLES	6		
	PB 12128/92 UG/M3	0.25 0.24 0.33 0.44	0.31	BENZ SOLUBLES	TOTAL 11103/91 UG/M3	×	
METALS	FE 12126/92 UG/M3	0.64 0.62 0.67 0.49	0.61				
MET	CU 12114/92 UG/M3	0.05 0.07 0.10	0.07		РН 12602/91 РН-UNITS	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8.95
	121	0.008 0.002 0.008 0.008	0.005	S	SODIUM 12184/92 UG/M3		
	CD 12110/92 UG/M3	0.0021 0.0002 0.0014 0.0017	0.0013	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.15 0.01 0.14 0.11	0.10
	BE 12105/92 UG/M3	8DL 8DL 8DL 8DL		MA	SULFATE 12403/92 UG/M3		6.71
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.53 4.64 3.13 3.13	3.22
	QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG

-69-

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

ZN 12167/92 UG/M3	0.02 0.02 0.07 0.07	0.04		SAMPLE COUNT	- 5 5 5 5 5 5	
V 12164/92 UG/M3	0.02 0.01 0.01 0.02	0.01				
NI 12136/92 UG/M3	0.007 0.005 0.004 0.006	0.005	TSP	ARITH AV 11101/91 UG/M3	43 37 39	40
MN 12132/92 UG/M3	0.014 0.006 0.015 0.016	0.013	BLES	91		
PB 12128/92 UG/M3	0.29 0.37 0.27 0.29	0.31	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
FE 12126/92 UG/M3	0.16 0.40 0.76 0.48	0.47				
CU 12114/92 UG/M3	0.04 0.05 0.05	0.05		РН 12602/91 РН-UNITS	9.40 8.90 0.00 00	9.02
CR 12112/92 UG/M3	0.014 0.001 0.005 0.005	0.005	S	SODIUM 12184/92 UG/M3		
CD 12110/92 UG/M3	0.0012 BDL 0.0009 0.0006		WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.12 0.12 0.15 0.15	0.14
BE 12105/92 UG/M3	80L 80L 80L 80L		WA	SULFATE 12403/92 UG/M3	6.26 8.01 2.79 5.21	5.52
AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	1.88 3.56 1.25 1.43	2.04
QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG

(____

(_____.)

TSP	PROJECT 03
1983 HI-VOL	AGENCY
RIZATION OF	SITE 001
CHARACTE	AREA 1205
QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP	TOWN NAME VOLUNTOWN
0	YEAR 1983

	ZN 12167/92 UG/M3	0.01 0.01 0.03 0.03	0.02		SAMPLE COUNT	15 15 15	
	v 12164/92 UG/M3	0.010.010101010101010101010101010101010	0.01	ł	S C		
	NI 12136/92 UG/M3	0.003 0.004 0.003 0.003	0.003	TSP	ARITH AV 11101/91 UG/M3	30 30 30 30 30 30 30 30 30 30 30 30 30 3	27
	MN 12132/92 UG/M3	BDL 0.002 0.007 0.006		BLES	6		
	•	0.30 0.03 0.08	0.12	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
METALS	FE 12126/92 UG/M3	0.01 0.15 0.35 0.16	0.17				
MET	CU 12114/92 UG/M3	0.04 0.05 0.09	0.06		РН 12602/91 РН-UNITS	9.70 9.50 9.50	9.58
	CR 12112/92 UG/M3	0.002 BDL 0.001		S	SODIUM 12184/92 UG/M3		
	CD 12110/92 UG/M3	0.0004 0.0003 0.0001 0.0001	0.0003	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.12 0.13 0.03	0.08
	BE 12105/92 UG/M3	80L 80L 80L		ΜA	SULFATE 12403/92 UG/M3	3.64 4.61 2.99 2.85	3.53
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	2.47 2.68 1.38	2.08
	QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG

-71-

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT 01	
AGENCY F	
SITE 001	
AREA 1210	
TOWN NAME WALLINGFORD	
YEAR 1983	

S	
_	
<	
H-	
ш	
ΣI	

		0.06		SAMPLE
V 12164/92 UG/M3	0.03 0.01 0.02 0.03	0.02		
NI 12136/92 UG/M3	0.010 0.008 0.008 0.008	0.009	TSP	ARITH AV 11101/91 UG/M3
MN 12132/92 UG/M3	0.002 0.003 0.031 0.017	0.014	JBLES	6
PB 12128/92 UG/M3	0.24 0.12 0.28 0.37	0.26	BENZ SOLL	TOTAL 11103/91 UG/M3
		0.46		
CU 12114/92 UG/M3	0.08 0.04 0.03	0.04		РН 12602/91 РН-UNITS
CR 12112/92 UG/M3	0.003 0.001 0.005 0.005	0.003	S	SODIUM 12184/92 UG/M3
CD 12110/92 UG/M3	0.0007 0.0002 0.0006 0.0008	0.0006	TER SOLUBLE	AMMONIUM 12301/91 UG/M3
BE 12105/92 UG/M3	BDL BDL BDL		ΜM	SULFATE 12403/92 UG/M3
AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3
QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG		QUARTER
	AL BE CD CR CU FE PB MN NI V 12101/92 12105/92 12110/92 12112/92 12114/92 12126/92 12128/92 12132/92 12136/92 12164/92 UG/M3 UG/M3	AL UG/M3 BE UG/M3 CD UG/M3 CR UG/M3 CU UG/M3 FE UG/M3 PB UG/M3 M UG/M3 NI UG/M3 NI UG/M3	I 2101/92 12105/92 12110/92 12112/92 12114/92 12126/92 12126/92 12136/92 12136/92 12164/92 12 UG/M3 UG/M3	I 12101/92 12105/92 12110/92 12112/92 12115/92 121136/92 12136/92 12136/92 12164/92 I2164/92 I2164/92

PH 12602/91 PH-UNITS	00.00 00.00 00.00 00.00	9.52
SODIUM 12184/92 UG/M3		
AMMONIUM 12301/91 UG/M3	0.13 0.18 0.11 0.18	0.15
•,	7.77 9.98 6.89 5.23	7.41
NITRATE 12306/92 UG/M3	1.92 2.15 1.64 1.59	1.82
QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG

ຕ <u>4</u> ຕ ຕ

440 470 470 470

(------)

(_____

-72-

· (_____)

			v 12164792 UG/M3
			NI 12136/92 UG/M3
TSP	PROJECT 01		MN 12132/92 UG/M3
1983 HI-VOL	AGENCY F		PB 12128/92 UG/M3
RIZATION OF	SITE 005	METALS	FE 12126/92 UG/M3
L CHARACTE	AREA 1240	MET	CU 12114/92 UG/M3
UARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP	TOWN NAME WATERBURY		CR 12112/92 UG/M3
QUART	VEAR 1983		CD 12110/92 UG/M3
			BE C 12105/92 1211 UG/M3 UG/
			AL 12101/92 1 UG/M3

ZN 12167/92 UG/M3

QUARTER

0.17 0.06 0.14 0.16	0.13		SAMPLE COUNT	4 Ω Ω 4
0.03 0.01 0.02 0.02	0.02			
0.008 0.009 0.010 0.008	0.009	TSP	ARITH AV 11101/91 UG/M3	4 3 3 4 4 4 3 3 4 4 4 4 4 4 4 4 4 4 4 4
0.003 0.005 0.015 0.018	0.010	UBLES	۲ 91 3	
0.18 0.13 0.29 0.42	0.25	BENZ SOLUBLES	TOTAL 11103/91 UG/M3	
0.44 0.32 0.69 0.49	0.49			
0.06 0.07 0.07 0.06	0.07		РН 12602/91 РН-UNITS	8.30 9.50 9.50 9.51
0.006 0.004 0.020 0.010	0.010		SODIUM 12184/92 UG/M3	
0.0015 0.0008 0.0011 0.0017	0.0013	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.17 0.17 0.15 0.16 0.16
801 801 801		WA	SULFATE 12403/92 UG/M3	6.70 7.39 6.15 6.15 5.87
			NITRATE 12306/92 UG/M3	3.88 3.25 1.41 2.07 2.64
FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH YEAR AVG

N.B. For sulfate, the first and second quarter sample counts are 8 and 7, respectively.

-73-

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

		V 12164/92 UG/M3	
		NI 12136/92 UG/M3	
PROJECT 01	·	MN 12132/92 UG/M3	
AGENCY F		PB 12128/92 UG/M3	0.14
SITE 006	METALS	FE 12126/92 UG/M3	0.37
AREA 1240	MET	CU 12114/92 UG/M3	0.06
TOWN NAME WATERBURY		CR 12112/92 UG/M3	0.004
YEAR 1983		CD 12110/92 UG/M3	0.0013
		BE 12105/92 UG/M3	BDL
		AL 12101/92 UG/M3	

QUARTER

ZN 12167/92 UG/M3

	0.04 0.09 0.09	0.09		SAMPLE COUNT	Ľ.	15	15 15	
	0.02 0.02 0.02	0.02						
1	0.011 0.004 0.007 0.006	0.007	co F	ARITH AV 11101/91 UG/M3	32	00	4 6 2 0	36
	0.002 0.004 0.012 0.013	0.008	IBI F.S	- 				
	0.14 0.11 0.24 0.25	0.18	BENZ SOLL	TOTAL 11103/91 UG/M3				
	0.37 0.22 0.53 0.31	0.36						
	0.06 0.08 0.11 0.06	0.08		РН 12602/91 РН-UNITS	9.40	9.60 9.50	9.50	9.50
	0.004 0.003 0.011 0.005	0.006	S	SODIUM 12184/92 UG/M3				
	0.0013 0.0004 0.0010	0.0010	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.18	0.15	0.16	0.17
	80L 80L 80L		M	SULFATE 12403/92 UG/M3	6.40	3.12	5.47	5.77
				NITRATE 12306/92 UG/M3	4.91 2 05	1.54	2.96	3.26
+00+0	FLKS SECOND THIRD FOURTH	VEAR AVG		QUARTER	FIRST	THIRD	FOURTH	YEAR AVG

(_____)

-74-

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT 01	
AGENCY F	
SITE 007	
AREA 1240	
TOWN NAME WATERBURY	
VEAR 1983	

	ZN 12167/92 UG/M3	0.18 0.12 0.25 0.23	0.19	-	SAMPLE COUNT	17 15 15	
		0.03 0.02 0.03	0.03	I	νυ		
	NI 12136/92 UG/M3	0.012 0.005 0.008 0.010	0.009	TSP	ARITH AV 11101/91 UG/M3	46 57 45	51
		0.005 0.010 0.019 0.021	0.013	BLES	0		
	PB 12128/92 UG/M3	0.27 0.22 0.46 0.50	0.36	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
METALS	FE 12126/92 UG/M3	0.45 0.58 0.86 0.58	0.61				
	CU 12114/92 UG/M3	0.05 0.09 0.11 0.06	0.08		РН 12602/91 РН-UNITS	9.50 9.50 9.60 9.60 9.50	9.52
	CR 12112/92 UG/M3	0.006 0.006 0.012 0.009	0.008	S	SODIUM 12184/92 UG/M3		
	CD 12110/92 UG/M3	0.0016 0.0010 0.0024 0.0032	0.0020	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.18 0.21 0.16 0.16	0.18
	BE 12105/92 UG/M3	80L 80L 80L		M	SULFATE 12403/92 UG/M3	7.33 8.67 5.38 6.19	6.89
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.82 4.19 1.59 2.61	3.08
	QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG

N.B. For sulfate, the first quarter sample count is 15.

-75-

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

		ZN 12167/92 UG/M3	0.06 0.01 0.05 0.08	0.05	
		V 12164/92 UG/M3	0.02 0.02 0.01 0.02	0.02	I
		NI 12136/92 UG/M3	0.007 0.005 0.006 0.007	0.006	TSP
PROJECT 02		MN 12132/92 UG/M3	0.004 0.004 0.012 0.008	0.007	BLES
AGENCY F		PB 12128/92 UG/M3	0.05 0.09 0.15 0.12	0.10	BENZ SOLUBLES
SITE 001	METALS	.FE 12126/92 UG/M3	0.12 0.23 0.56 0.21	0.26	
AREA 1260	MET	CU 12114/92 UG/M3	0.01 0.01 0.09 0.09	0.04	
TOWN NAME WATERFORD		CR 12112/92 UG/M3	0.003 0.003 0.009 0.002	0.004	S
YEAR 1983			0.0010 0.0005 0.0011 0.0007	0.0008	WATER SOLUBLES
		BE 12105/92 UG/M3	80L 80L 80L 80L		WA
		AL 12101/92 UG/M3	i.		
		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG	

	/91 ITS		10
	РН 12602/91 РН-UNITS	9.20 9.20 9.20 9.20	9.25
ES	SODIUM 12184/92 UG/M3		
WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.09 0.10 0.07 0.06	0.08
M	SULFATE 12403/92 UG/M3	4.15 5.74 4.26 4.93	4.80
	NITRATE 12306/92 UG/M3	1.90 2.18 1.21 1.30	1.68
	QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG

SAMPLE COUNT

ARITH AV 11101/91 UG/M3

T0TAL 11103/91 UG/M3 5 <u>1</u> 1 5

242 242 242

28

(....

-76-

(-)

Ċ

TABLE 9, Continued

QUARTERLY CHEMICAL CHARACTERIZATION OF 1983 HI-VOL TSP

PROJECT	10
AGENCY	ш
SITE	002 ,
AREA	1410
TOWN NAME	WILLIMANTIC
YEAR	1983

METALS

ZN 12167/92 UG/M3	0.02	0.05		SAMPLE COUNT	ត ច ច ច	
	0.05 0.02 0.03 0.03	0.03	I	0,0		
NI 12136/92 UG/M3	0.019 0.020 0.013 0.013	0.016	TSP	ARITH AV 11101/91 UG/M3	0 0 0 0 0 0 0 0 0	38
MN 12132/92 UG/M3	0.002 0.002 0.012 0.012	0.007	BLES	61		
PB 12128/92 UG/M3	0.17 0.11 0.22 0.25	0.19	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
FE 12126/92 UG/M3	0.45 0.26 0.53 0.30	0.38				
CU 12114/92 UG/M3	0.04 0.05 0.05 0.05	0.05		PH 12602/91 PH-UNITS	9.99.90 9.60 9.60 0.40	9.47
121 UG	0.005 0.004 0.008 0.008	0.004	S	SODIUM 12184/92 UG/M3		
CD 12110/92 UG/M3	0.0004 0.0005 0.0009 0.0053	0.0018	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.12 0.12 0.09	0.12
BE 12105/92 UG/M3	801 801 801 801		WA	SULFATE 12403/92 UG/M3	6.17 6.32 3.93 4.09	5.13
AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	2.02 2.76 1.25	1.77
QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG

-77-

TABLE 10

PROJECT 01 MONTHLY CHEMICAL CHARACTERIZATION OF 1983 LO-VOL TSP AGENCY F SITE 001 AREA 0520 TOWN NAME MANSFIELD VEAR 1983

V 12164/92 UG/M3	0 000000000000000000000000000000000000	
NI 12136/92 UG/M3	0.005 0.008 0.008 0.006 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008	TSP
MN 12132/92 UG/M3	0.004 0.005 0.005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	LES
PB 12128/92 UG/M3	0.000000000000000000000000000000000000	BENZ SOLUBLES
FE 12126/92 UG/M3	0.334 0.334 0.2334 0.24 0.256 0.19 0.19 0.31 0.31 0.31 0.31	
CU 12114/92 UG/M3	80 0.01 80 0.01 0.01 0.01 0.01 0.01 0.01	
CR 12112/92 UG/M3	0.003 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.005 00000000	ĒS
CD 12110/92 UG/M3	0.0006 0.0000 0.00000 0.00000 0.000000	WATER SOLUBLES
BE 12105/92 UG/M3	801 801 801 801 801 801 801 801 801 801	×
AL 12101/92 UG/M3		
MONTH	JANUARY FEBRUARY MARCH APRIL ADVE JUNE JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER VEAR AVG	
	AL BE CD CR CU FE PB MN 12101/92 12105/92 12110/92 12112/92 12114/92 12126/92 12132/92 12136/92 UG/M3 UG/M3 UG/M3 UG/M3 UG/M3 UG/M3 UG/M3 UG/M3 UG/M3 UG/M3	^{AL} 12101/92 ^{BL} 12101/92 ^{CR} 12101/92 ^{CR} 12101/92 ^{CR} 12101/92 ^{CR} 12101/92 ^{CR} 12101/92 ^{CU} 12101/92 ^{FE} 12101/92 ^{PB} 12101/92 ^{NI} 12101/92 ^{NI} 12106/92 ^{NI} 12132/92 ^{NI} 12332/92 ^{NI} 12336/92 ^{NI} 12336/92 ^{NI} 12336/92 ^{NI} 1236/92

	SAMPLE COUNT	********	
TSP	ARITH AV 11101/91 UG/M3	3 - 1 3 3 6 0 0 8 5 7 3 8 3 - 1 2 4 3 0 0 0 8 7 3 7 1 8 3 - 1 3 0 0 0 0 8 7 3 7 1 1 8	32
BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
	РН 12602/91 РН-UNITS	88889999999999999999999999999999999999	9.17
S	SODIUM 12184/92 UG/M3		÷
WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.07 0.08 0.08 0.10 0.10 0.10 0.10 0.10 0.10	0.09
MA	SULFATE 12403/92 UG/M3	8.40 4.93 5.04 8.97 6.35 8.97 7.65 8.97 7.42 7.22 8.01 8.01 8.01	6.24
	NITRATE 12306/92 UG/M3	1.45 1.86 2.03 2.03 2.19 2.09 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03	1.64
	MONTH	JANUARY FEBRUARY MARCH APRIL APRIL JUUN JUUN JUUN AUGUST SEPTEMBER OCTOBER NOVEMBER	VEAR AVG

ZN 12167/92 UG/M3

0.03 0.03 0.01 0.02 0.02 0.02 0.03 0.03 0.03

0.03

(- -)

 $\left(\begin{array}{c} & & \\ & & \\ & & \end{array}\right)$

MONTHLY CHEMICAL CHARACTERIZATION OF 1983 LO-VOL TSP

PROJECT 01
AGENCY
SITE 002
AREA 0900
TOWN NAME PUTNAM
YEAR 1983

2			
ZN 12167/9 UG/M3	0.000000000000000000000000000000000000	0.04	L E
V 12164/92 UG/M3	0.000000000000000000000000000000000000	0.02	SAMPLE COUNT
NI 12136/92 UG/M3	00000000000000000000000000000000000000	0.020 TSP	ARITH AV 11101/91 UG/M3 47
MN 12132/92 UG/M3	0.0000000000000000000000000000000000000	0.009 JLES	5
		0.12 Benz Solue	TOTAL 11103/91 UG/M3
FE 12126/92 UG/M3	0.000000000000000000000000000000000000	0.46	
CU 12114/92 UG/M3	0.01 800 800 800 800 800 800 800 800 800 8		РН 12602/91 РН-UNITS 8.20
CR 12112/92 UG/M3	0.0033355700.00333355700.00333557700.00333557700.00333557700.00333557700.003355575555555555	0.004 ES	SODIUM 12184/92 UG/M3
CD 12110/92 UG/M3	0.0003 0.0003 0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0005005 0005005 0005005 00050000000	0.0004 Ater Solubl	AMMONIUM 12301/91 UG/M3 0.07
BE 12105/92 UG/M3		×	SULFATE 12403/92 UG/M3 6.16
AL 12101/92 UG/M3			NITRATE 12306/92 UG/M3 4.32
MONTH	JANUARY FEBRUARY MARCH MARIL MAY JUNE JUNE JULV AUGUST SEPTEMBER OCTOBER NOVEMBER	YEAR AVG	MONTH
	AL BE CD CR CU FE PB MN NI V 12101/92 12105/92 12110/92 12112/92 12114/92 12126/92 12128/92 12132/92 12136/92 12164/92 UG/M3 UG/M3	AL UG/M3 BE UG/M3 CD UG/M3 CD UG/M3 CD UG/M3 CD UG/M3 CD UG/M3 CU UG/M3 FE UG/M3 PB UG/M3 MN NI VI V UG/M3 VI VII VIII VIIII	A ^L B ^E CD CR CU FE PB MM NI VI VI <th< td=""></th<>

٠ 9.17 0.09 33.208 65 . م 2.21 FEBRUARY MARCH APRIL MAV JUNE JUNE AUGUST SEPTEMBER NOVEMBER DECEMBER YEAR AVG

TABLE 11

1983 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH WIND DATA

0.461 240 1.7 5.2 0.332
669.0 210 9.4 10.1 0.937
0.453 240 5.2 0.453 0.453
0.982 30 5.8 0.853 0.853
0.657 3.7 0.657
0.922 240 7.0 0.922
5.6 5.6 0.971
0.997 0.997
0.00 2.00 3.9 0.851
190 12.0 12.4 0.969
DIR (DEG) VEL (MPH) SPD (MPH) RATIO
METEOROLOGICAL SITE C BRADLEY V S F
SITE DIR (DEG) RADIEV VEL (MDH)

Ć

1983 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH WIND DATA

UNITS : MICROGRAMS / CUBIC METER 60 1.5 6.2 6.2 80 80 1.2 1.2 0.508 9.6 10 9/21/83 190 190 12.8 12.4 12.4 190 11.6 0.959 0.979 0.979 0.979 0.979 0.979 0.979 0.979 6/23/83 5240 5240 6.8 6.8 6.8 6.5 0.922 6.5 0.922 0.922 0.973 0.973 0.973 0.973 0.973 210 8.4 9.1 9.1 0.927 7.4 7.5 0.987 92 7 δ 0/3/83 230 8.3 8.3 8.3 8.3 8.3 0.95.6 0.929 0.929 0.929 0.929 0.959 0.959 0.972 0.41.0 0.41.0 0.41.0 0.41.0 0.41.0 0.41.0 0.582 0.572 0.582 0.572 0.5 230 8.1 8.3 0.970 280 9.0 9.1 0.992 ω 11.4 11.8 0.971 30 3.2 6.9 0.461 96 ~ 6/11/83 210 6.2 6.2 6.2 6.2 755 0.755 0.755 0.455 8.1 8.1 0.970 9.1 0.970 0.922 0.922 80 5.0 7.6 0.898 120 2.9 0.680 7 9 7 1/30/83 1/30/83 1/30/83 1/30/83 1/30/83 1/30/83 1/30/83 1/30/83 1/30/83 1/30/83 0.973 0.973 0.973 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.071 0.0 4/30/83 170 170 170 171.7 111.7 112.5 190 190 8.5 0.959 0.959 0.959 0.956 0.956 0.956 0.956 0.956 0.956 230 7.8 8.1 8.1 0.973 270 9.4 9.4 ŝ 7 63 6711/83 6.22 6.22 6.22 8.240 8.1 8.1 0.455 8.1 8.1 0.453 8.1 0.280 9.1 0.970 9.1 0.972 240 7.2 7.2 7.8 0.929 2260 7.3 7.3 7.5 0.959 7 4 7 4/30/83 170 170 171.7 170 172.5 0.934 190 190 8.5 0.959 0.959 0.959 0.959 0.956 0.959 0.956 0.956 0.959 0.9566 0.956 0.956 0.956 0.956 0.95666 0.95666 0.9566 0.9566 0.95666 0.95666 0.9566 0.9566 0 8/ 44 220 220 220 220 3.7.9 0.86.3 0.86.3 0.86.8 0.944 0.944 0.944 0.944 0.944 0.944 0.944 200 2.7 4.6 0.582 250 6.3 0.974 7 ŝ 7 6/17/83 6/17/83 6.2 6.2 6.2 7.2 7.2 7.2 7.2 0.978 6.3 0.978 6.3 0.978 6.3 0.942 3.3 3.3 0.857 200 5.6 0.973 5.7 0.973 280 5.7 0.974 7 N 0.963 0.927 0.927 0.927 0.922 0.922 0.922 0.922 0.922 0.923 0.923 0.923 0.923 0.963 71 71 7130/83 70 70 3.2 70 3.4 70 70 0.97 0.973 0.973 1.1 3.6 300 200 11.4 11.6 0.979 210 210 11.3 11.9 0.950 ----DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) VEL (MPH) SPD (MPH) RATIO DIR (DEC VEL (MPH) SPD (MPH) SPD (MPH) VEL (MPH) VEL (MPH) SPD (MPH) RATIO VEL (MPH) SPD (MPH) SPD (MPH) SPD (MPH) RATIO VEL (MPH) SPD (VEL (MPH) SPD (MPH) RATIO VEL (MPH) VEL (MPH) SPD (MPH) 58 DATE (DEG) (MPH) (MPH) SAMPLES 59 DATE DIR METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE BRIDGEPORT 123 TOWN / SITE BRISTOL 001

-81-

9

CONTINUED	
11,	
TABLE	

1983 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH WIND DATA UNITS : MICROGRAMS / CUBIC METER

				C	/									(Y	\mathcal{A}							~)	
C METER	0	40	6/23/83 240 6.8 7 3	0.927 240	0.2 0.2		0.973	0.40	9.8	(NW)	05 01 5/83	, 320 18.6	500	222	13.	240	<u>1</u> 22	λw	15.0	- 7	-10	•	· いす	2.3 5.2 0.453
MS / CUBI	of w	14	11/20/83 140 5.6	200	•• • L	•	5.6 0.898 120	N •	٠œ	>	66 6123183	240		0.921 240	0 ~ 0	230	8.1 272	0.973 270	9.8 06.8	•	90	ю.	363	5.8 6.8 0.865
MICROGRAMS	80	41 1,100	220 220 2.4 0.1	0.261	3.7 6.0 6.1		0.430	2 2 2 1 1 1 1	0.711		ω α	180	- <u>0</u> -	0-27	- 7. ;	00	- 90	⇒ ∞ †	2.3 7.3 7.8	, ,	4 1	\sim ·	-10.	0.5 3.7 0.142
UNITS :	~	43 (00,00	8/22/83 220 6.0	· \o \vee	• • 0				۰œ		90		14(14(ς Γ	ç	~ ~	0.000	~ 6	3.6		$\sim \infty$	- t	$- \sigma$	4.6 4.6 0.997
	6	44 14	1/30/83 110 2.6	· m -	0 3.14 N 0 3.14 N 0 3.14 N		8.2 0.973	· ~	3.0 0.300	7	68 11/30/83	, t-	- 20	190	220	200	0 00 0	~ 2 c	10.4 10.4	1<	3/ 1/83	11.3 11.5	$\infty \infty$	5.8 6.8 0.853
	n j	46 446	8/4/83 220 7.9 0.2	0.863	0.5 3.7 11/2	525.	6.8 0.944	4 4 7 7 7	4./ 0.943		68 1/ 6/83	330	;	U. 039 360 5	0.0 0.8 0.8		000	0.944 10 7	0.0 6.8 828	· ·	$\sim \infty$	ユ・	する	6.5 7.0 0.922
	#	448	0/11/83 210 6.2 8.2	· ທີ່ສີ	•••	•	• [~ 0	ນ •	• UN	NE)	3125183	15 8 10	201	0. /00 10	14.1		<u>1</u>	0. 430 10	15.2	:15	1/24/83	<u>ه</u>	- M O	5.1 6.0 0.843
		~ ~ ~	4/30/83 170 11.7 12.5	0.934	10.7 11.1 0 065	•	0.959	10.0	0.966	7	85 11/2/83	5		0.410 190		200		0.284 250	0.2 6.3 0 071	•	~ 0	~ •	· m 0	10.7 11.1 0.965
	2	5.	1/29/83 220 13.3	. 0 -		210 8.4	• OI 0	γ	• 00		88 6/17/83	150	0.9	180	7.3	06	0.90	200	0.5 3.9 857		o.∼	<u>с</u> .	50	7.2 7.3 0.978
	۲	60	6/11/83 150 6.2 6.5	0.954	7.2 7.3 0.078	06 00 0.9	$6.3 \\ 0.942 \\ 0.000$	3.3	0.857	NE)	3/ 1/83	`	11.5	0.982 30 50	0.0 6.8	0.030 30	11.8	30	5.9 0.161	•	113 9/21/83	190 10.2 8	0.797	12.0 12.4 0.969
	SAMPLES	58	DIR (DEG) VEL (MPH) SPD (MPH)		VEL (MPH) SPD (MPH) RATIO		SPD (MPH) RATIO		SPU (MFH) RATIO		56 DATF	DIR (DEG) VFL (MPH)	SPD (MPH)	DIR (DEG)	VEL (MPH) SPD (MPH) BATIO	DIR (DEG)	VEL (MPH) SPD (MPH)	DIR (DEG)			53 DATE	DIR (DEG) VEL (MPH) SPD (MPH)	-	VEL (MPH) SPD (MPH) RATIO
	TOWN / SITE	BURLINGTON 001	METEOROLOGICAL SITE		BRADLEY	METEOROLOGICAL SITE BRIDGEPORT	1 F - 0	MELEUKULUGICAL SITE WORCESTER			DANBURY 002	METEOROLOGICAL SITE		METEOROLOGICAL SITE		METEOROLOGICAL SITE		METEOROLOGICAL SITE				METEOROLOGICAL SITE NEWARK		BRADLEY

ĺ

1983 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH WIND DATA

9/21/83 190 190 190 12.4 12.4 17.0 190 11.6 0.979 0.979 0.979 0.979 0.979 0.970 0.979 59 9/83 0.77.8 0.77.5 0.77.5 0.77.5 0.738 0.738 0.738 0.738 0.738 0.738 0.756 0.738 0.756 0.738 0.756 UNITS : MICROGRAMS / CUBIC METER 230 8.1 8.3 0.970 280 9.0 9.1 0.992 10 6/ 4/83 350 8.7 9.2 9.2 10 5.6 5.6 0.828 61 δ > 8/

 0.962

 12/26/83

 12.86

 12.86

 12.86

 13.1

 0.960

 0.960

 0.989

 0.989

 11.5

 0.983

 11.5

 0.982

 0.983

 11.5

 0.982

 0.983

 0.983

 0.983

 0.983

 0.982

 0.982

 0.982

 0.982

 0.982

 0.982

 0.982

 0.982

 0.982

 0.982

 0.982

 0.982

 0.982

 0.982

 0.982

 0.982

 0.983

 0.983

 0.983

 0.983

 0.983

 0.983

 0.983

 0.983

 0.984

 0.985

 0.985

 0.985

 0.985

 0.985
 < 220 6.4 6.8 6.8 7.4 7.7 0.943 ω 7/29/83 7/29/83 7/29/83 7/29/83 7/29/83 7/29/83 7/29/83 7/29/83 1/20/83 1/20/83 0.9299 0.550 0.9299 0.9299 0.9299 0.9299 0.9299 0.9259 0.9556 0.9556 0.9559 0.95566 0.95566 0.95566 0.95566 0.95566 200 2500 250 250 0.974 0.974 Ľ \sim 1/ 59 140 0.41.6 0.41.6 0.41.6 0.997 0.997 0.974 0.582 0.974 0.974 0.974 4/18/83 250 250 250 250 25.2 0.795 4.8 0.795 0.722 0.722 0.722 0.722 0.722 0.722 0.722 0.722 0.722 0.722 30 11.4 11.8 0.971 30 3.2 0.461 7 3 9 4/30/83 170 12.5 12.5 190 190 190 200 8.9 0.959 0.959 0.959 0.956 0.956 0.959 0.956 0.956 0.956 0.956 0.956 0.956 0.966 0.966 230 7.8 8.1 8.1 0.973 9.4 9.4 0.963 60 7 7 ŝ 0/3/83 230 8.3 8.3 8.3 8.3 8.3 7.8 0.95 8.6 0.971 0.979 0.929 0.929 0.929 0.929 0.959 0.959 $\begin{array}{c} 1/368\\ 1/30/83\\ 2.6\\ 2.6\\ 110\\ 2.6\\ 3.4\\ 3.2\\ 3.2\\ 3.2\\ 3.2\\ 3.2\\ 0.333\\ 0.973\\ 0.973\\ 0.300\\ 0.300 \end{array}$ 270 9.2 9.6 0.957 280 280 11.5 0.918 7 4 71 6/17/83 150 6.2 6.2 7.2 7.2 7.2 7.2 7.2 0.978 6.0 6.0 6.3 0.942 6.3 3.3 857 0.857 6/23/83 240 240 6.8 6.8 6.5 6.5 6.5 6.5 6.5 6.5 7.0 0.922 7.8 0.922 7.8 0.922 7.8 0.973 0.973 0.963 200 8.5 0.959 10.4 0.966 ŝ 7 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.461 73 6/23/83 5240 5240 6.8 6.5 6.5 6.5 6.5 7.20 0.922 7.3 0.922 7.3 0.922 7.3 0.922 7.3 0.922 7.3 0.973 0.973 0.963 0.942 0.942 3.3 0.857 7 N 88 6/17/83 150 6.2 6.2 7.2 7.2 7.2 7.2 7.3 7.2 7.3 0.954 6.0 6.0 6.3 3.3 3.3 0.942 0.978 0.942 0.978 0.942 0.942 0.978 0.978 0.978 0.978 0.978 0.977 0.978 0.977 0.978 0.977 0.978 0.977 0.978 0.978 0.977 0.978 0.977 0.978 0.977 0.978 0.977 0.978 0.977 0.978 0.977 0.978 0.977 0.977 0.978 0.977 0.978 0.977 0.978 0.977 0.978 0.977 0.978 0.978 0.977 0.978 0.977 0.978 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.978 0.977 6/11/83 210 210 210 8.2 0.755 240 25.2 0.455 240 0.453 280 0.920 0.920 0.922 0.992 200 11.4 11.6 0.979 210 210 11.3 11.3 0.950 60 DIR (DGC) VEL (MPH) VEL (MPH) VEL (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH) VEL (MPH) SPD (MPH) SPD (MPH) VEL (MPH) SPD (MPH) SPD (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) VEL (MPH) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) RATIO RATIO RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO VEL (DEG) VEL (MPH) SPD (MPH) RATIO 46 DATE (DEG) (MPH) (MPH) SAMPLES VEL SPD METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE WORCESTER NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE EAST HARTFORD 004 GREENWICH 008 TOWN / SITE

C

و

1983 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH WIND DATA UNITS : MICROGRAMS / CUBIC METER

~ ~)	-t-	Contraction of the second
• a ~ a a a a a a a a a a a a a a a a a	0.00	12/26/8 12/26/ 12.60 13.40 2.40 2.40 2.40 6.7 6.7 82.8 13.1 13.1 0.989 0.989	$0 \cdot \cdot \infty \neg \cdot \nabla = \cdot \cdot \cdot \nabla \cdot \cdot \cdot \nabla$
9 9 8/28/83 180 14.7 10.2 0.461 240	0.512 0.512 0.512 0.513 0.5248 0.5248 0.527 0.5248 0.527 0.577 0.577 0.577 0.577 0.577 0.577 0.577 0.577 0.577 0.577 0.57777 0.57777 0.57777 0.57777 0.57777 0.57777 0.577777 0.57777777777	5/ 28 320 320 320 320 320 10.12 4.4 4.4 4.4 4.4 7.5 2.9 0.559 2.9 0.559 2.8 0.559 2.8 0.559 2.8 0.550 0.5200 0.5200 0.5200 0.5200 0.5200 0.5200 0.5200 0.5200 0.52000 0.520000000000	5.20 6.29 8/22/83 220 6.00 220 6.52 0.562 6.55 0.655 0.655 0.655
a > www · · ~ 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4/18/83 250 250 250 250 252 5.2 5.2 5.2 5.2 6.6 6.6 0.795 0.7750 0.7750 0.7750 0.7750 0.7750 0.7750 0.7750000000000	0.820 0.870 0.870 0.870 0.870 0.682 0.662 0.662 0.662 0.662 0.662 0.662 0.662 0.662 0.662 0.662 0.670 0.8700 0.8700 0.8700 0.8700 0.8700 0.8700 0.8700 0.8700 0
9/ 56 9/ 3/83 9/ 3/83 9/ 3/83 0.778 0.778	0 0 0 0 0 0 0 0 0 0 0 0 0 0	7/12/83 1/12/83 13.00 14.4 14.4 14.4 14.4 14.4 14.4 14.4 1	6.00 -000.00
<u>000000000</u>	0.86.9 0.855 0.92.7 0.85.8 0.92.7 0.92.8 0.92.8 0.92.7 0.92.8 0.92.7 0.92.8 0.92.7 0.92.8 0.92.7 0.0	12/ 29 250 250 250 10.1 10.956 6.0 6.3 0.956 6.3 0.956 8.3 0.947 8.8 0.987 0.987	$0 \cdot \cdot \pi $ $0 \cdot \cdot \pi $
	0.888 0.888 0.888 0.888 0.888 0.8986 0.898 0.898 0.898 0.898 0.898 0.8986 0.898 0.898 0.898 0.8986 0.8986 0.8986 0.8986 0.8986 0.8986 0.8986 0.8986 0.8986 0.8986 0.8986 0.8986 0.8986 0.8986 0 0.8986 0.8986 0.8986 0 0 0.8986 0 00000000000000000000	1/30/30 2.6 2.6 3.2 3.2 0.638 3.4 0.638 3.4 0.931 8.2 0.973 0.973	90 3.66 0.306 1.1 3.06 0.306 1.1 13.3 0.955 0.955 9.4 0.955 0.937
キ / のトト・・ひょ	0.992 0.9230 0.9230 0.9230 0.9233 0.9220 0.92000 0.92000 0.92000 0.92000 0.92000 0.92000 0.920000000000	4/ 5/83 14/ 6/83 2.9 2.9 2.9 160 1.0 1.0 1.0 1.0 1.0 1.0 0.248 0.248 0.248 0.248 0.250 0.259 0.959	290 3.4 4.3 14.3 0.793 190 190 190 12.8 12.4 12.4 12.4 0.969
3 6 6 11.3 11.3 11.5 0.982 0.982 0.982	0.97.88 0.97.8 0.97.8 0.97.8 0.97.8 0.97.8 0.96.9 0.96.9 0.66.9 0.920018 0.96.9 0.96.9 0.96.9 0.97.8 0.07.8 0.07.90.0000000000000000000000000000000	3/ 1/83 1/83 11.3 11.3 11.3 5.8 0.953 0.853 0.853 11.4 11.4 0.971	30 3.2 5.9 6.9 1.61 8/ 4/83 7.9 7.9 7.9 7.9 7.9 7.9 0.142 0.142
2 1/12/83 11/12/83 11/12/83 11/12/83 11/12/83 11/12/83 11/12/83 11/12/83 11/12/83 11/12/83 11/12/83	0.90.900	4/30/83 4/30/83 170 17.7 12.5 190 190 10.7 11.1 0.965 8.5 8.5 8.5 0.959	
1 94 6/23/83 6/8 6.8 0.927 0.927	0.922 0.922 0.973 0.973 0.963 0.963 0.963	2/ 0.	0.853 0.853 0.853 0.853 0.853
SAMPLES SAMPLES 59 DATE DATE DATE DATE MPH) SPD (MPH) SPD (MPH) SPD (MPH) SATIO	VEL (MPH) SPD (MPH) SPD (MPH) VEL (MPH) VEL (MPH) VEL (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH)		DIR (DEG) VEL (MPH) SPD (MPH) RATIO 57 DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH)
	METEOROLOGICAL SITE RADLEY BRIDGEPORT BRIDGEPORT METEOROLOGICAL SITE R	SITE NEWARK SITE RADLEY SITE SITE GEPORT	METEOROLOGICAL SITE HARTFORD 003 METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE METEOROLOGICAL SITE

(

ĺ

24 HOUR AVERAGE TSP DAYS WITH WIND DATA 1983 TEN HIGHEST

8/16/83 190 5.5 UNITS : MICROGRAMS / CUBIC METER 200 2.7 4.6 0.582 250 6.3 0.974 68 0 6/23/83 240 240 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.923 0.923 0.923 0.923 0.923 0.923 0.953 0.963 6/11/83 210 85.2 85.2 85.2 0.75.2 0.453 0.453 0.970 0.970 0.970 0.920 0.922 0.922 180 2.7 6.5 0.417 210 1.6 1.6 0.385 70 59 2 δ $\begin{array}{c} 1/2/83\\ 1/2/83\\ -140\\ -140\\ -190\\ -190\\ -190\\ -190\\ -200\\ -200\\ -258\\ -200\\ -258\\ -200\\ -258\\ -200\\ -258\\ -200\\ -258\\ -200\\ -258\\ -200\\ -258\\ -200\\ -258\\ -200\\ -$ 8/16/83 9/16/83 190 5.5 0.871 3.9 0.871 0.871 0.871 0.973 0.973 0.973 0.973 0.974 0.974 210 2.2 5.2 5.2 0.421 300 7.9 7.9 8.8 0.898 Ω 8/22/83 220 220 10.56 0.552 0.520 0.66.5 0.699 0.417 0.417 0.417 0.385 0.385 7/29/83 220 220 220 355 0.955 9.4 0.955 8.4 0.927 0.927 0.927 0.927 0.927 0.987 200 5.6 5.8 0.973 280 5.7 0.914 77 ~ $\begin{array}{c} 1/30/83\\ 1/30/83\\ 2.6\\ 2.6\\ 1.10\\ 3.2\\ 3.2\\ 3.4\\ 3.2\\ 3.2\\ 3.2\\ 3.2\\ 0.538\\ 0.973\\ 0.973\\ 0.973\\ 0.300\\ 0.300 \end{array}$ 6 0 . 7/29/83 220 220 220 13:3 0.955 0.955 0.957 0.957 0.927 0.927 0.927 0.927 0.927 0.927 0.987 12/26/83 260 260 260 13.44 0.960 6.7 6.7 6.7 0.881 13.1 0.989 11.3 0.989 0.982 0.982 0.982 0.982 210 8.4 9.1 9.1 0.927 230 7.4 7.5 0.987 ŝ 8/ 4/83 220 220 9.7.9 0.86.2 170 0.86.8 0.86.4 0.944 0.944 0.944 0.944 0.943 8/ 4/83 220 7.9 7.9 7.9 7.7 0.86.8 6.142 6.142 6.142 0.944 4.5 0.944 4.5 0.944 0.944 200 11.4 11.6 0.979 210 210 11.3 11.3 0.950 89 4 220 6.4 6.8 0.944 7.7 14.7 0.943 ŝ 9/21/83 190 190 10.2 12.8 12.4 190 190 11.6 0.979 0.979 0.979 0.979 0.979 0.979 0.979 0.970 0.970 90 6.3 6.3 6.3 200 3.3 3.3 0.857 Ś N 95 3/ 1/83 20 0.982 0.982 0.982 0.853 0.853 0.971 0.971 0.461 0.461 111.44 111.84 11.84 11. 3.2 6.9 NR HZ) **~**~~ DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEC) VEL (MPH) SPD (MPH) SPD (MPH) DIR (DEG) VEL (MPH) SPD (M DÁTE DÁTE (DEG) (MPH) (MPH) DIR (DEG) VEL (MPH) SPD (MPH) DRATIO VEL (MPH) VEL (MPH) SPD (MPH) SPD (MPH) VEL (MPH) SPD (MPH) VEL (MPH) VEL (MPH) 60 DATE (DEG) (MPH) (MPH) SAMPLES 57 DIR (D VEL (M SPD (M RATIO SITE METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER NL SITE BRADLEY METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT CAL SITE WORCESTER METEOROLOGICAL SITE WORCESTER NEWARK METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE METEOROLOGICAL **METEOROLOGICAL METEOROLOGICAL** HARTFORD 013 HARTFORD 014 TOWN / SITE

INED	
CONTINUED	
•	
3LE 11	
TABLE	

1983 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH WIND DATA UNITS : MI

5 57 6/11/83 210 6.2 8.2 0.755 9/21/83 190 190 12.0 12.4 190 190 190 11.6 0.979 0.979 0.979 0.979 0.979 0.979 0.979 : MICROGRAMS / CUBIC METER 240 5.3 453 10 $\begin{array}{c} 1/35/83\\ 1/30/83\\ 110\\ 2.6\\ 4.0\\ 10\\ 3.2\\ 3.2\\ 3.2\\ 3.2\\ 3.2\\ 0.331\\ 0.973\\ 0.973\\ 0.300\\ 0.300 \end{array}$ $\begin{array}{c} 1/30/83\\ 1/30/83\\ 2.6\\ 2.6\\ 110\\ 3.2\\ 3.2\\ 3.2\\ 3.2\\ 3.2\\ 3.2\\ 0.333\\ 0.300\\ 0.300\end{array}$ 8/16/83 190 5.5 0.871 3.00 3.00 3.9 0.851 7 δ ω 61 8/4/83 220 7.9 0.863 0.863 170 0.142 0.142 7/29/83 220 12:20 13:3 13:3 13:3 0.955 0.957 0.957 0.927 0.927 0.927 0.927 0.987 0.987 7 ~ 8/ 59 59 220 520 520 96.2 0.3:7 0.3:7 0.3:7 0.3:7 0.3:7 0.3:7 0.944 0.944 0.944 0.943 6/11/83 210 210 210 210 2240 2240 2240 8.3 8.1 8.1 0.453 8.1 0.453 8.1 0.970 9.1 0.970 9.1 0.922 61 61 170 170 11.7 12.5 0.934 190 10.7 11.1 0.965 3 > 9 64 1/ 2/83 140 2.2 0.416 190 4.6 4.6 0.997 6/11/83 6.2 6.2 6.2 6.2 6.2 8.3 0.455 8.3 0.455 8.3 8.1 0.950 9.1 0.970 0.970 0.922 6/5/83 260 2.50 2.50 2.50 2.50 0.919 0.815 0.815 0.815 0.815 64 6/23/83 240 6.8 7.3 0.927 6.5 7.0 0.922 0.922 6/23/83 240 240 6.8 0.927 0.922 0.922 0.922 0.973 0.973 0.973 0.973 0.963 6/17/83 150 150 6.2 6.2 7.2 7.2 7.2 7.3 7.2 7.3 0.954 0.942 0.942 0.942 3.3 0.857 0.857 8/10/83 10/83 10.4.8 1.0.445 0.445 0.575 0.575 0.545 0.245 0.245 0.583 0.683 0.683 1/30/83 110 2.6 4.0 0.638 10 3.2 3.4 931 6/23/83 6/2240 6.8 6.8 6.922 6.5 6.5 6.5 6.5 6.5 6.5 7.00 2.703/ 1/83 3/ 1/83 11.5 0.982 5.8 5.8 0.853 J. 107 6/17/83 150 6.2 6.5 0.954 7.3 0.978 115 6/17/83 150 6.2 6.5 0.954 180 1/83 20 L. 2) 11.311.5 0.982 30 5.8 6.8 11.4 11.8 0.971 3.2 3.2 0.461 $\begin{array}{c} 7.2\\ 7.3\\ 0.978\\ 90\end{array}$ 6.0 942 200 3.3 3.3 857 . . DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) SPD (MPH) VEL (MPH) DIR (DEG) VEL (MPH) SPD (MPH) DIR (DEG) VEL (MPH) VEL (MPH) SPD (M DIR (DEG) VEL (MPH) SPD (MPH) RATIO VEL (MPH) SPD (MPH) SPD (MPH) 59 DATE (DEG) (MPH) (MPH) 59 DATE (DEG) (MPH) (MPH) SAMPLES 55 DATE (DEG) (MPH) (MPH) - SITE NEWARK METEOROLOGICAL SITE WORCESTER . SITE NEWARK METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE BRIDGEPORT **METEOROLOGICAL METEOROLOGICAL** MANCHESTER 001 MERIDEN 008 TOWN / SITE MERIDEN 002

983 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH WIND DATA

9/ 3/83 260 260 2.4 2.4 2.4 2.4 0.332 2.4 0.332 2.4 0.332 2.4 0.332 2.4 0.352 0.949 0.949 53 6/11/83 6.2 6.2 6.2 8.2 0.455 8.3 0.455 8.3 0.455 8.3 0.970 9.10 9.10 0.970 UNITS : MICROGRAMS / CUBIC METER 230 8.1 8.3 0.970 280 9.0 9.1 0.992 10 11/20/83 5.6 0.929 150 0.657 0.657 0.657 0.657 0.898 0.680 0.680 0.680 200 5.6 0.973 280 5.7 0.914 54 9 80 5.0 0.898 0.898 120 2.9 0.680 62 7 ω $\begin{array}{c} & 1/30/83 \\ & 1/30/83 \\ & 2.6 \\ & 2.6 \\ & 2.6 \\ & 10 \\ & 3.2 \\ & 3.2 \\ & 3.2 \\ & 3.2 \\ & 0.931 \\ & 0.973 \\ & 0.973 \\ & 0.300 \\ & 0.300 \\ \end{array}$ 7/29/83 220 220 13.3 13.3 13.3 13.3 0.955 0.955 0.955 0.957 0.957 0.957 0.927 0.927 0.987 0.987 220 6.4 6.8 6.8 0.944 4.7 1.7 0.943 \sim 67 230 230 230 8.3 8.3 8.3 5.6 0.95 1.8 0.929 0.929 0.929 0.929 0.959 0.959 8/16/83 16/83 0.87190 0.87190 0.871 0.9733 0.9733 0.9733 0.9733 0.9733 0.9733 0.9733 0.9733 0.9733 0.9733 0.9733 0.975 0.875 0.785 0.785 0.755 200 8.5 8.5 8.9 8.9 210 10.4 0.966 59 7 7 9 8/28/83 180 180 180 180 180 10.240 1.7 1.7 0.332 0.332 0.248 0.248 0.248 200 2.7 4.6 0.582 250 6.3 0.974 80 1.2 2.3 508 > ŝ 7/29/83 220 13.3 13.3 13.3 13.3 0.955 0.955 0.955 0.955 0.957 0.957 0.927 0.987 0.987 0.987 75 210 210 8.2 8.2 0.752 0.455 2.40 2.40 2.40 8.3 0.455 8.3 0.455 8.3 0.455 8.3 0.455 8.3 0.457 0.970 9.0 0.992 230 7.8 8.1 8.1 0.973 9.4 9.4 9.8 7 7 4 0. 0.756 0.757 0.9273 0.9273 0.9273 0.9273 0.9273 0.9238 0.9273 0.9238 0.9273 0.9238 0.9238 0.9273 0.9238 0.9238 0.9238 0.9238 0.9273 0.9273 0.9238 0.9273 0.9273 0.9273 0.9273 0.9273 0.9273 0.9273 0.9273 0.9273 0.9273 0.9273 0.9273 0.9273 0.9273 0.9273 0.9277 0.9273 0.9273 0.9273 0.9273 0.9273 0.9277 0.9273 0.9277 0.9273 0.9773 0.9273 0.9273 0.9273 0.9273 0.9273 0.9273 0.9273 0.9273 0.9273 0.9273 0.9273 0.9273 0.9273 0.9273 0.9277 0.9773 0.9775 0.7755 70 8.0 8.2 973 90 1.1 1.1 ŝ 7 77 240 240 6.3 6.8 6.3 6.5 6.5 6.5 7.3 6.5 7.3 7.8 0.922 7.3 0.922 7.3 0.922 7.3 0.922 7.3 0.922 0.973 0.973 0.963 Z N 6/17/83 150 150 6.2 6.2 150 150 17.2 180 180 180 0.954 0.942 0.942 3.3 0.857 0.857 8/16/83 190 190 190 5.5 0.851 0.851 0.851 0.973 0.973 0.973 0.973 0.973 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.977 90 6.0 942 942 3.3 3.3 857 ----7 0 $\overline{\mathbf{O}}$ DIR (DEG) VEL (MPH) SPD (MPH) RATIO VEL (DEG) VEL (MPH) SPD (MPH) RATIO RATIO DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) VEL (MPH) SPD (MPH) SPD (MPH) VEL (MPH) VEL (MPH) SPD (MPH) SPD (MPH) DIR (DEC) VEL (MPH) SPD (MPH) BRT10 VEL (MPH) VEL (MPH) SPD (MPH) SPD (MPH) VEL (MPH) SPD (MPH) VEL (MPH) VEL (MPH) 57 DATE (DEG) (MPH) (MPH) 58 DATE (DEG) (MPH) (MPH) SAMPLES RATIÒ DIR VEL SPD DIR VEL SPD METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE BRIDGEPORT MIDDLETOWN 003 MILFORD 002 TOWN / SITE

9

9

1983 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH WIND DATA UNITS : MICROGRAMS / CUBIC METER

			.	10				~	5			ŝ	2
C METER	P	11 /20 /02	5.6	95-99,	$n \infty \cdot \cdot c$	2.9 2.9 4.3 0.680		6/23/8 240 6.8 7.3	•	-	0.963 0.963	11/20/8 5.6	0.929 150 2.5 3.7 0.657
4S / CUBI	6	00	13.00	10.95 10.95	$\gamma - \cdot \cdot c$	iurro.	78.	22.130	2601 2601	00 • • •	0.966	7000.	9.1 250 251 5.8 0.362
MICROGRAMS	8	54	5-130	110.93	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	210 210 10.0 0.966	5	/16 5.			0.914 5.7 0.914	· ENO ~	0.416 190 4.6 0.997
UNITS :	NE	³ O ²	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	75 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	、 ± ・ • c	9.6 0.929	1 10	2.54	- 6	20.12 20.04	0.950 6.2 6.3 0.974	~ > > 062 · <	13.9 0.955 210 9.4 10.1 0.937
	6	, 17 / B	0. + • •		201-00	0.963	10	33.22	62266		0.987 7.4 0.987	, o ² 0, (12.8 0.797 190 12.0 12.4 0.969
	5	72		.63 		0.300 0.300 0.300	75	25 27 9			0.944 240 4.5 4.7 0.943	· 702 ·	12.5 0.934 190 11.1 0.965
	ţ	225	- 6 • •		6.00	0.857 0.857	2	/30 11 11 130	.63 		0.300 3.6 0.300	72 1/30/83 110 2.6	4.0 0.638 3.2 3.4 0.931
	m	5	1/ 2/83 140 5.2 5.2		6.03 - 1	0.902 250 6.2 0.974		9/21/83 190 12.8	0.797 190 12.0	0.969 200 11.4	0.979 210 11.3 0.950	3/ 1/83 20 11.3	0.982 5.8 6.8 0.853
	N	75	8/ 4/83 1 220 7.9 9.2	0.863 170 3.7	0.142 220 6.8	0.944 0.943 0.943	BI SI	3/ 1/83 20 11.3 11.5	0.982 5.8 6.8	0.853 11.4 11.8	0.971 30 3.2 6.9 0.461	- ろちく -	0.863 170 0.5 3.7 0.142
	(Lu	95	3/ 1/83 20 11.3 11.5	0.982 30 5.8 6.8	0.853 30 11.4 11.8	0.461 30 6.9 0.461	46	6/17/83 150 6.2 6.5	0.954 180 7.2	•	0.857 0.857	94 6/17/83 150 6.2	0.954 180 7.2 0.978
	SAMPLES	59	UALE (DEG) (MPH) (MPH)	(DEG) (MPH) (MPH)	о (DEG) (MPH) (MPH)	KALLU DIR (DEG) VEL (MPH) SPD (MPH) RATIO		$\cap \smile \smile \smile \smile$		RATIO DIR (DEG) VEL (MPH) SPD (MPH)	KATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	58 DATE DIR (DEG) VEL (MPH)	SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO
	/ SITE	NAUGATUCK 001	METEOROLOGICAL SITE D NEWARK V S	R METEOROLOGICAL SITE D BRADLEY V S	R METEOROLOGICAL SITE [,] D BRIDGEPORT V S	METEOROLOGICAL SITE D WORCESTER V S R	BRITAIN 007	ICAL SITE NEWARK	R METEOROLOGICAL SITE D BRADLEY V S	R METEOROLOGICAL SITE D BRIDGEPORT V S	METEOROLOGICAL SITE D WORCESTER V S R	BRITAIN 008 METEOROLOGICAL SITE NEWARK	
	TOWN	NAUG					NEW					NEW	

(______

 $\left(\begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right)$

 $\langle - - \rangle$

(

1983 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH WIND DATA

)	0	(J.
		$\begin{array}{c} \begin{array}{c} & & & & & & & & & & & & & & & & & & &$
4.6 4.6 200 2.7 2.7 4.6	9 0.210 0.815 0.815 0.815 0.412 140 815 815 815 815 815 815 815 815 815 815	0.582 0.582 0.582 0.952 0.973 0.973 0.974 0.974 0.974 0.974 0.974 0.974 0.977 0.949 0.9777 0.97777 0.9777 0.97777 0.97777 0.97777 0.97777 0.97777 0.97777 0.97777 0.977777777 0.9777777777777777777777777777777777777
0.851 5.6 5.6 5.6 5.6 5.8	8 2500 200 2	0.944 0.942 0.973 0.973 0.972 0.944 0.944 0.942 0.944 0.9420 0.9420 0.9420 00000000000000000000000000000000000
9.4 10.1 210 8.4 9.1	210 8.4 9.1 7.29 7.5 0.987 7.220 13.3 0.955 9.4	$\begin{array}{c} \begin{array}{c} & 0.927\\ & 0.927\\ & 1.4\\ & 1.4\\ & 1.4\\ & 1.5\\ & 0.881\\ & 0.881\\ & 0.881\\ & 0.881\\ & 0.881\\ & 0.881\\ & 0.888\\ & 0.898\\$
0.5 3.7 0.142 6.4 6.8	0.950 0.979 0.979 0.979 0.979 0.950 0.95500 0.95500 0.95500 0.95500 0.95500 0.95500 0.95500 0.95500 0.95500 0.95500 0.95500 0.955000 0.955000 0.955000 0.955000 0.9550000 0.9550000000000000000000000000000000000	$\begin{array}{c} 0.922\\ 0.$
0.587.	2 200 8.5 8.5 210 210.4 10.4 10.4 0.966 0.966 0.968 11.4 11.6 0.281 10.5	0.300 0.00 0.00
<u>,</u>	4 70 8.0 8.2 0.973 1.90 1.1 1.0 2.6 0.300 0.4.0 0.638 0.638 0.638	$\begin{array}{c} 0.973\\ 0.973\\ 1.11\\ 1.11\\ 1.12\\ 0.336\\ 0.756$
11.356.	3 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
· · NM · ·	2220 6.4 6.4 6.240 75 6.23783 6.23783 0.943 6.23783 0.943 6.5 0.927 6.5	0.508 0.973 9.44 9.44 9.48 120 0.963 120 0.963 120 0.248 0.522 0.548 0.522 0.248 0.248 0.522 0.248 0.248 0.522 0.248 0.248 0.248 0.248 0.508 0.508
6.3 6.3 6.3 6.3	1 6.0 6.3 0.942 3.3 3.9 3.3 3.9 3.3 3.9 3.9 150 6.2 6.2 0.954 7.2	0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.975 0.9720 0.9720 0.9720 0.9720 0.9720 0.9720 0.9720 0.9720 0.9720 0.9720 0.9720 0.9720 0.9720 0.9720 0.97200 0.97200 0.97200 0.97200000000000000000000000000000000000
(мрн) (МРН) (МРН) (МРН)	(MPLES) (DEG) (MPH) (MPH) (MPH) (MPH) (MPH) (MPH) (MPH) (MPH) (MPH) (MPH) (MPH) (DEG) (MPH)	C MPH) C MPH)
	IOWN / SIIE METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER WORCESTER METEOROLOGICAL SITE METEOROLOGICAL SITE METEOROLOGICAL SITE METEOROLOGICAL SITE METEOROLOGICAL SITE	
BK. METEOROLOGICAL 3 BRIDGI	METEOROLOGI METEOROLOGI E METEOROLOGI METEOROLOGI METEOROLOGI	METEOROLOG

1983 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH WIND DATA

0/3/83 230 8.33 8.33 8.33 8.33 8.33 0.956 0.978 0.978 0.979 0.979 0.959 0.959 0.959 8/ 4/83 220 7.9 0.863 0.863 3.7 0.142 9/ 61 5-40 5-40 0.756 0.756 0.756 0.756 0.756 0.756 0.755 0.756 0.756 0.756 0.886 0.886 0.936 0.936 : MICROGRAMS / CUBIC METER 7 0 9/ 83 2 83 2 860 2 850 0 85.2 0 8552 0 949 0 949 0 949 0 949 9/27/83 290 5.0 7.3 0.681 320 3.20 3.55 0.662 NW δ 11/20/83 5.6 0.929 0.657 0.657 0.657 0.898 0.898 0.898 0.680 0.680 0.680 9/ 63 260 260 6.378 0.778 0.63.24 0.63.22 0.63.22 0.63.22 0.63.22 0.949 0.949 70 4/30/83 170 12.5 0.934 110.1 0.965 a in 4/30/83 170 170 170 12.5 190 190 190 8.5 8.5 8.5 8.5 8.5 0.959 0.959 0.956 0.956 65 67 240 240 6.8 6.5 6.5 6.5 6.5 0.922 0.922 0.973 0.973 0.973 0.973 0.973 0.963 74 11/2/83 140 2:2 0.416 190 4.6 0.97 UNITS ž 7 8/28/83 180 180 1461 1.7 1.7 1.7 1.7 0.522 0.528 0.508 0.508 11/ 2/83 11/ 2/83 140 5.22 190 4.6 0.997 2.2 0.997 0.582 0.974 0.974 0.974 7/29/83 220 13.3 13.9 0.955 0.955 210 210 10.1 2 1/ 8/83 220 1.7 1.7 0.377 2.10 3.11 3.11 0.718 11/ 2/8 140 5.2 0.416 190 190 0.416 0.416 0.290 0.582 0.582 0.582 0.571 0.571 0.572 0 ŝ 8/16/83 190 5.5 0.871 0.871 0.871 0.873 0.873 0.873 0.973 0.914 0.914 8/16/83 9/16/83 9/16/83 9/16/83 0.871 0.871 0.9873 0.9873 0.9873 0.9873 0.9873 0.9873 0.9872 0.9873 0.9875 0.9875 0.9875 0.9875 0.9875 0.9875 0.9875 0.9875 0.9875 0.9875 0.9875 0.9875 0.9875 0.9875 0.99755 0.9975 0.9975 0.9975 0.9 75 7 6/11/83 6/11/83 6.2 0.755 0.755 2.3 0.755 0.453 6/11/83 210 210 8.2 8.2 0.453 8.1 0.453 8.1 0.453 8.1 0.970 0.970 0.992 6/23/83 240 240 6.8 6.8 7.3 6.5 0.922 7.8 0.922 7.8 0.922 7.8 0.922 7.8 0.922 7.8 0.922 7.8 0.973 0.973 0.963 6/11/83 210 8.2 0.755 0.755 0.453 0.453 8.1 0.950 8.3 0.970 0.922 0.922 107 230 8.6 0.964 5.6 5.6 5.6 5.6 0.971 > 112 6/23/83 240 6.8 6.8 7.3 0.927 6.5 0.922 0.922 93 1/83 20 E) 11.3 0.982 30 5.82 0.853 11.4 11.4 11.4 0.971 0.971 0.971 0.461 > 7 DIR (DEC) VEL (MPH) SPD (MPH) SPD (MPH) DIR (DEC) VEL (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH) VEL (MPH) SPD (MPH) SPD (MPH) SPD (MPH) DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) VEL (MPH) SPD (M 58 DATE DATE DATE DATE NEL (MPH) SPD (MPH) RATIO VEL (MPH) SPD (MPH) SPD (MPH) 58 DATE (DEG) (MPH) (MPH) 58 DATE (DEG) (MPH) (MPH) SAMPLES . SITE NEWARK METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT **METEOROLOGICAL** NEW HAVEN 013 TOWN / SITE NORWALK 005 NORWALK 001

9

Da

 $\left(\underline{ \left(\begin{array}{c} \\ \end{array} \right)} \right)$

1983 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH WIND DATA

								~							2	and the second sec		
C METER	10	6.52	0.944 240 4.5	• 4	63	Á.	0.723		0.787 100 6.3	0.913 60		(M/M)		~ o ·	0.681	· 0- ·	· N O	• • • •
MS / CUBIC	6	200	0.421 300 7.9 8	· 6	63	°. °. °.	83.	ور مى	0.865 350 8.7			νN	56	-0.	0.797 190	-206.	1. 21	• • •
MI CROGRAMS	8	8.0	9660 210 10.0	.96	68 11/2/02	, 9 9 0 1 0	0.416	ーココ	0.997 200 2.7	0.582	1000	0.9/4	56	2 N N	0.955 210 9.4	· m - ·	• N 👳	• • ∞
UNITS :	٢	ここはこ	ωu ·	トン	68 8/16/02	5.5 5.5	0.871	107	0.851 200 5.6	0.973 280	n n o c	+ <u>}</u>	58	000	0.960 240 6.7	· ~ / ·	3. 26	• • ∞
	9	0000	Nm ·	· ∞)	、 \o c	202	-9-	<u>10</u> 0	0.937 210 8.4	• N M		ο	8	0 (1) + 10 (0)	0.377		$\cdot \sim \infty$	• • • • •
	5	10 t N	N co +	· `	~ c			-95 -	0.965 200 8.5	· 50 m	• • • •	2	59	- n ·	0.954 180 7.2	· 1 6 ·	6.3 200 200	• • •
	4	30 11.4 11.8	0.9/1 30 3.2 6.0	N. N. N.	31 1/83	11.3	- 86 "	وم. 	0.853 30 11.4	-76	3.2	o ≯ t	69	-0.0%	0.755 240 2.3 5.3	· ഗ സ ·	· h~ 60	• • • •
	ŝ	$\sim \infty \infty \alpha$	~ 00 ·	·o >	5 1 1	240 240 6.8	• <\\ <i>=</i>	10-0	0.922 230 7.8	· ~ ~			80	240 240 6.8	0.927 240 6.5	• <	· ~ ~	• • •
	5	240 7.2 7.8	0.929 260 7.3	0.959	~ ~	150	۰un «		0.978 90 6.0 6.3	• - 		\dot{s} >	80	4/ 30/03 170 11.7	0.934	- ഗ ഗ ത	8.9 0.959 210	10.0 10.4 0.966
	-	230 7.8 8.1		<u>.</u>	98 6/11/83	0	0.755		0.453 230 8.1 8.1	0.970	9.0	•	88	~~~E	0.839 360 5.8	0.865 350 8.7	9.2 0.944 10	$ \begin{array}{c} 5.6\\ 6.8\\ 0.828 \end{array} $
2	SAMPLES	VEL (MPH) SPD (MPH)	ALLO IR (DEG) EL (MPH) PD (MPH)	-0-	60 DATF	IR (DEG) EL (MPH) PD (MPH)		PD (MPH)	KALLO DIR (DEG) VEL (MPH) SPD (MPH)	AT 10 AT 10 IR (DFG)	EL (MPH) PD (MPH) Atio		59 111	IR (DEG) EL (MPH) PD (MPH)	RATIO DIR (DEG) VEL (MPH)		PD (MPH) ATIO IR (DEG)	VEL (MPH) SPD (MPH) RATIO
	TOWN / SITE	METEOROLOGICAL SITE D BRIDGEPORT VI	METEOROLOGICAL SITE D WORCESTER VI		NORWALK 012	METEOROLOGICAL SITE D NEWARK VI SI		RADLEY	METEOROLOGICAL SITE D BRIDGEPORT VI		CESTER		NORWICH 001	METEOROLOGICAL SITE D NEWARK VI SI	R METEOROLOGICAL SITE D BRADLEY VI	METEOROLOGICAL SITE D BRIDGEPORT VI	METEOROLOGICAL SITE D	

9

E

1983 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH WIND DATA UNITS :

20 3/ 1/83 : MICROGRAMS / CUBIC METER 20 11.3 0.982 5.8 0.853 0.853 69 72 230 8.3 8.3 0.964 5.6 5.8 0.971 11/ 2/83 140 5:22 0.416 190 190 0.974 0.582 0.582 0.582 0.974 0.974 200 11.5 11.5 11.5 0.85 0.85 1.3 0.97 0.97 0.461 7 7/29/83 220 220 13.3 13.9 0.955 210 210 10.1 4/83 220 7.9 9.2 0.863 8 72 6/17/83 150 6.2 6.5 0.954 180 7.3 0.978 8/16/83 190 5.5 6.5 6.5 7.5 0.871 0.871 0.871 0.873 0.973 0.973 0.973 0.974 0.974 77 6/23/83 5.40 6.8 6.8 6.5 6.5 6.5 7.0 0.922 7.8 0.922 7.8 0.922 7.8 0.922 7.8 0.922 7.8 0.973 0.973 0.963 76 11/2/83 2.2 5.2 0.416 4.6 4.6 0.997 Ż 7 Ś 78 3/ 9/83 240 5.8 0.756 0.756 4.0 1.738 0.738 8/28/83 180 180 180 180 190 240 1.7 0.522 0.522 0.522 0.522 0.528 0.508 6/11/83 210 8.2 0.755 0.755 0.755 0.453 8.1 0.453 8.1 0.970 0.920 0.992 89 8/16/83 190 5.5 0.871 200 9/ 79 240 240 240 240 25.8 0.756 4.0 230 0.738 6.0 0.738 6.0 0.738 6.0 0.738 0.738 0.738 0.738 0.738 0.738 0.738 0.738 0.736 0.738 0.738 0.738 0.738 0.738 0.738 0.738 0.738 0.736 0.736 0.736 0.736 0.756 0.736 0.7576 0.757676 0.75776 0.75776 0.75776 0.75776 0.757777777777777777777 90 6/17/83 150 6.2 6.2 7.2 7.2 7.2 7.2 7.3 7.2 0.954 6.0 6.0 6.0 6.3 0.942 3.3 857 0.857 $\frac{3.9}{4.6}$ 0.851 78 4 79 4/30/83 170 11.7 12.5 0.934 190 8/16/83 190 5.5 0.871 0.871 0.871 0.871 0.873 0.873 0.973 0.973 0.973 93 6/23/83 240 6.8 6.8 6.5 6.5 6.5 6.5 7.0 7.8 7.8 7.8 7.8 7.8 0.973 9.4 9.4 0.973 0.963 10.7 11.1 0.965 7/29/83 220 220 13.3 13.3 13.3 0.955 0.957 0.927 0.927 0.927 0.927 0.927 0.927 0.927 0.987 6/11/83 210 210 210 8.2 0.455 240 280 0.453 8.1 0.453 8.1 0.922 0.922 0.992 89 6/11/83 6.2 6.2 6.2 6.2 6.2 0.755 2.3 0.453 95 7 N 100 140 5.2 0.416 10/ 3/83 230 230 8.3 8.3 8.3 8.3 8.3 0.954 0.971 0.979 0.979 0.959 0.959 93 6/23/83 240 6.8 6.8 7.3 0.927 7.0 240 7.0 0.922 0.997 2.190 2.14.6 2.200 2.582 0.5582 6.3 0.5582 0.574 6.3 60 DATE 10/? R (DEG) 2 čL (MPH) on (MPH) 11/ DIR (DEG) VEL (MPH) SPD (MPH) BRT10 VEL (MPH) VEL (MPH) SPD (MPH) SPD (MPH) VEL (MPH) VEL (MPH) SPD (MPH) VEL (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) VEL (MPH) VEL (MPH) SPD (MPH) RATIO VEL (MPH) RATIO VEL (MPH) SPD (MPH) SPD (MPH) 59 DIR DATE VEL (MPH) SPD (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) VEL (MPH) RATIO RATIO (DEG) (MPH) (MPH) SAMPLES 59 DATE RATIÒ DIR VEL SPD DIR VEL SPD - SITE NEWARK METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE WORCESTER NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE BRIDGEPORT SITE **METEOROLOGICAL** METEOROLOG I CAL STAMFORD 001 STAMFORD 007 STAMFORD 021 FOWN / SITE

1983 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH WIND DATA

0.971 0.971 0.971 0.971 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.976 0.976 0.976 0.976 0.977 0.977 0.975 0.976 0.976 0.977 0.977 0.975 0.975 0.976 0.977 0.976 0.976 0.977 0.977 0.976 0.977 0.976 0.977 0.977 0.976 0.977 0.976 0.977 0.976 0.976 0.976 0.976 0.977 0.976 0.976 0.976 0.976 0.977 0.976 0.976 0.976 0.977 0.975 0.9767 0.9767 0.976 0.976 0.976 0.976 0.976 0.976 0.976 : MICROGRAMS / CUBIC METER 10 8/28/83 180 1828/83 180 1461 1.7 1.7 1.7 1.7 1.7 0.512 0.248 0.248 0.248 0.248 0.508 56 6/11/83 6.2 6.2 6.2 755 0.755 0.755 0.755 8.1 0.755 8.1 0.970 9.1 0.970 9.1 0.970 240 7.2 7.8 0.929 260 7.3 7.5 0.959 δ 1/ 57 220 220 220 210 210 2118 211 2280 2118 210 2118 2280 0.377 2280 0.377 0.218 0.377 0.726 0.718 0.726 0.718 0.729 0.718 0.729 0.718 0.729 0.718 0.720 7/29/83 220 220 13:3 13:3 13:3 13:3 13:3 13:3 13:4 0.955 0.955 0.957 0.957 0.927 0.927 0.927 0.987 0.987 210 8.4 9.1 0.927 230 7.4 7.5 0.987 ω 4/30/83 170 170 171.7 170 170.8 190 8.5 0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.985 0.956 0.955 0.9566 0.9566 0.956 0.956 0.956 0.956 UNITS 90 6.3 6.3 6.3 7200 3.3 3.3 0.857 11.4 11.8 0.971 30 3.2 6.9 0.461 7 2 0.955 Q 0/ 57 230 8.3 8.3 8.3 8.3 8.3 7.8 0.956 0.929 0.929 0.929 0.929 0.959 0.959 220 6.8 0.886 5.3 0.936 0.936 3 ŝ $\begin{array}{c} & 0.550 \\ & 5.$ Ľ 4 1/30/83 110 2.6 4.0 0.638 3.2 3.2 3.1 0.931 70 200 8.5 8.5 8.9 959 0.959 10.0 10.0 8.0 8.2 973 90 90 1.1 1.1 3.6 ŝ 8/16/83 190 5.5 0.871 0.871 0.871 0.871 0.873 0.973 0.973 0.914 9/21/83 190 10.22 12.28 12.00 122.4 122.4 122.0 2069 111.4 111.5 0.979 0.979 0.950 230 8.1 8.3 0.970 9.0 9.1 0.992 > \sim 6/23/83 240 240 6.8 6.8 6.5 7.0 7.0 7.0 7.1 0.922 7.8 7.8 0.922 7.8 0.922 9.4 0.973 0.963 6/17/83 150 150 6.2 6.2 150 150 180 180 180 17.2 180 180 0.978 0.978 0.978 0.978 0.942 0.978 0.942 0.942 0.857 230 7.8 8.1 8.1 0.973 270 9.4 9.8 0.963 2 DIR (DEG) VEL (MPH) SPD (MPH) RATIO VEL (MPH) VEL (MPH) SPD (MPH) RATIO 58 DIR (DGF) VEL (MPH) VEL (MPH) VEL (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) 56 DIR (DATE DATE DATE DATE DATE MPH) SPD (MPH) SPD (MPH SAMPLES VEL (N SPD (M RATIO - SITE NEWARK METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE BRIDGEPORT **METEOROLOGICAL** FORRINGTON 001 STRATFORD 005 TOWN / SITE

_ _ _ ^

1983 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH WIND DATA

6.0 58 0/ 3/83 230 8.3 8.6 0.964 5.8 5.8 0.971 3/ 1/83 MICROGRAMS / CUBIC METER も(が) 64 8/28/83 180 4.7 10.2 0.461 1.46 1240 1240 1240 0.332 40 8/28/83 180 6 117/83 6/23/83 240 240 6.8 6.8 6.5 6.5 6.5 6.5 6.5 6.5 7.8 0.922 7.8 0.922 7.8 0.973 9.4 0.973 0.963 7/29/83 220 13.3 13.3 13.9 0.955 0.955 0.955 0.955 0.955 0.859 0.859 0.772 0.875 0.875 0.875 0.829 0.829 0.829 0.823 0.823 0.823 7 7 •• 2/5/83 320 320 320 320 320 19.6 17.5 12.5 12.5 12.6 12.7 0.992 15.6 15.6 0.992 15.6 0.974 8/16/83 9/16/83 5.5 6.5 0.871 0.871 0.871 0.873 0.873 0.973 0.973 0.973 0.974 0.974 4/30/83 170 11.7 12.5 0.934 190 110.7 0.965 UNITS NW Ľ 1/30/83 1/30/83 2.6 4.0 0.638 3.4 0.931 9 69 6/11/83 6.2 6.2 6.2 6.2 6.2 0.755 2.40 2.40 5.2 0.453 52 4/83 7 ŝ 8 71 11/ 2/83 140 2.2 5.2 0.416 1/30/83 2.6 110 2.6 4.0 10 3.4 3.4 0.931 0.931 0.973 0.973 190 4.6 4.6 0.997 $3.6 \\ 0.300$ 7 t 75 6/17/83 6.2 6.5 0.954 7.2 7.3 0.978 12/26/83 260 260 13.4 13.4 0.960 6.7 6.7 6.7 6.7 6.7 13.1 13.1 13.1 13.1 0.989 0.989 0.982 6/11/83 6.11/83 6.2 6.2 6.2 8.2 0.45.2 8.3 0.45.2 8.3 0.45.2 8.1 0.970 9.1 0.970 0.953 0.954 0.954 0.954 0.954 0.954 0.955 0. 8/ 4/83 220 7.9 9.2 0.863 170 0.5 0.5 0.142 8/16/83 190 5.5 0.871 0.871 0.871 0.871 0.871 0.871 0.973 0.974 0.974 N 6/23/83 240 6/23/83 6/23/83 6/3 6/5 6/5 6/5 6/5 7/3 0/9/2 0/9/3 0.963 NF 3/ 1/83 11.5 0.982 30 5.8 0.853 0.853 DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) VEL (MPH) VEL (MPH) SPD (MPH) RATIO VEL (MPH) SPD (MPH) SPD (MPH) VEL (MPH) SPD (MPH) VEL (MPH) SPD (MPH) VEL (MPH) DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) DIR (DEG) VEL (MPH) SPD (MPH) RATIO VEL (MPH) SPD (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO NR (DEG) VEL (MPH) SPD (MPH) RATIO 58 DATE DATE DATE DATE MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH) 57 DATE (DEG) (MPH) (MPH) SAMPLES 59 DATE (DEG) (MPH) (MPH) . SITE NEWARK - SITE NEWARK METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL **METEOROLOGICAL** WALLINGFORD 001 WATERBURY 005 VOLUNTOWN 001 TOWN / SITE

 $\left(\begin{array}{c} \end{array}\right)$

 $(\overline{})$

ĺ

1983 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH WIND DATA

			al		٩
C METER	10	240 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	11/20/83 5.6 0.929 150 2.5 2.5 0.657 5.0 5.0	0.898 2.6 2.9 2.9 2.9 4.3 4.3 6.3 6.1 73 6.2 6.2 6.2 6.2 6.2 6.2 6.2 73 6.2 73 73 73 75 75 75 75 75 75	240 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3
MS / CUBIC	6	0.508 0.508 0.508 0.508 0.508	71/ 58 71/ 2/83 71/40 7.2/83 7	MIC N ~ N N	
M1 CROGRAMS	80	210 8.4 8.9 7.32 7.4 0.987	7,30/83 1/30/83 110 2.66 10 3.26 10 3.28 0.931 8.00 8.00	0.973 1.1 1.1 0.300 11/2/83 2.2 2.2 2.2 2.2 2.2	0.997 0.997 0.997 0.997 0.982 0.582 0.974 0.974
UNITS :	7	200 8.5 8.9 8.9 9.959 10.0 10.4 0.966	9/21/83 190 190 12.2 12.8 190 12.0 112.0 269 269 200	0.979 210 210 11.3 11.3 0.950 0.950 1.10 110 110 110 2.6 2.6 2.6 2.6	• • • •
WIND DATA	9	0.300 3.6 0.300 0.300	62 6/11/83 210 8.2 8.2 0.755 0.455 0.455 0.453 0.453 8.1	080'0000 ELEGO	0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.966
DAYS WITH	ъ	230 8.1 970 280 9.1 0.922	4/30/83 170 170 170 170 12.5 12.5 12.5 134 134 190 190 11.1 10.7 10.7 10.7 10.7 10.7 10.7 10.		0.978 7.2 7.2 7.3 7.2 7.2 7.2 90 200 200 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3
TSP	4	200 250 250 250 252 0.91 252 0.92 250 252 252 252 252 252 252 252 252 25	2/11/83 19.0 19.5 19.5 19.5 19.5 19.4 12.4 12.4 12.4 12.4 14.6	06. 06. 06. 06. 06. 06. 06. 06. 06. 06.	0.287 2210 2210 2210 2210 2210 2210 2210 221
HOUR AVERAGE	ŝ	90 6.0 6.3 0.942 3.3 3.3 3.9 0.857	71 6/17/83 6.2 6.5 0.954 180 180 7.2 0.978 0.978		0.944 0.9444 0.9447 0.94444 0.9444 0.9444 0.9444 0.9444 0.94444 0.9444 0.9444 0.9444 0.9444 0.9444 0.9444 0.94444 0.94444 0.94444 0.9444444 0.94444 0.94444444 0.94444 0.94444444 0.944444444 0.94444444444
EST 24	N	220 6.4 6.8 0.944 1.7 0.944 0.943	8/ 4/83 220 7.9 0.863 0.863 0.142 0.142 0.142	6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2	0.922 2240 6.70 2220 230 230 270 9.44 9.44 9.44 9.44
TEN HIGH	-	30 11.4 11.4 11.4 0.9718 3.2 3.2 0.6.9 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	3/ 1/83 82 11.5 0.982 5.8 0.853 0.853 0.853	0.9718 3.22 3.22 3.22 3.22 4/12/83 11.22 13.22 11.22 13.22 11.22 11.22 13.22 11.22 13.22 13.22 13.22 11.22 13.22 12.22 12.22 12.22 12.22 12.22 12.22 12.22 12.22 12.22 12.22 12.22 12.22 12.22 12.22 12.22 1	0.850 330 330 8.3 8.3 8.3 711.5 11.5 0.942 10.4 11.4 10.4 11.4
1983	SAMPLES	DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) RATIO DIR (DEC) VEL (MPH) SPD (MPH) RATIO RATIO	60 DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) RATIO VEL (MPH) SPD (MPH) RATIO DIR (DEG) NDIR (DEG)	VEL (MPH) RAFIO DIR (DEG) DIR (DEG) SPD (MPH) RATIO RATIO DIR (DATE DIR (DATE DIR (MPH) SPD (MPH)	RATIO DIR (DEG) SPD (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) SPD (MPH)
	TOWN / SITE	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	WATERBURY 006 METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE	BRIDGEPORI METEOROLOGICAL SITE WORCESTER WATERBURY 007 METEOROLOGICAL SITE NEMARK	METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER

-95-

CONTINUED	
00	
11,	
TABLE	

1983 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH WIND DATA

UN AVENAGE ISP DATS WITH WIND DATA UNITS : MICROGRAMS / CUBIC METER	(NW) 4 5 6 7 8 9 10	59 58 53 51 50 48 44 41	/2//83 9/ $3/83$ 9/ $9/83$ 9/21/83 7/29/83 7/11/83 11/20/83 4/30 290 260 240 190 220 310 140 17 5.0 4.8 5.8 10.2 13.3 4.1 5.6 11.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	1 2 3 4	60 59 58	83 6/11/83 9/21/83 9/ 3/83 210 290 260 6.2 5.0 4.8	27 0.755 0.681 0.778 40 240 320 300 55 2.3 3.6 2.4	0.453 0.662 0.632 230 210 210 8.1 2.2 4.4 8.3 5.2 5.2	21 0.852 00 280 280 5.5 9.949 9.0949	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 m 20 0 2 0
	TOWN / SITE SAMPLES	WATERFORD 001	~~~	- <u>-</u>	(DEG) (MPH) (MPH)	METEOROLOGICAL SITE DIR (DEG) WORCESTER VEL (MPH) RATIO RATIO	WILLIMANTIC 002 60 DATE METEOROLOGICAL SITE DIR (DEG) NEWARK VEL (MPH) SPD (MPH) RATIO METEOROLOGICAL SITE DIR (DEG) BRADLEY VEL (MPH) SPD (MPH) RATIO METEOROLOGICAL SITE DIR (DEG) BRIDGEPORT VEL (MPH) RATIO METEOROLOGICAL SITE DIR (DEG) METEOROLOGICAL SITE DIR (DEG) METEOROLOGICAL SITE DIR (DEG) RATIO METEOROLOGICAL SITE DIR (DEG) RATIO METEOROLOGICAL SITE DIR (DEG) RATIO METEOROLOGICAL SITE DIR (DEG) RATIO	21 - 253 = 1.0.2 Co

1 - 332

11 tu 5

NW = 25 = 6.0 %

-96-

III. SULFUR DIOXIDE

Health Effects

Sulfur oxides are gases that come from the burning of sulfur-containing fuel, mainly coal and oil, and also from the smelting of metals and from certain industrial processes. They have a distinctive odor. Sulfur dioxide (SO₂) comprises about 95 percent of these gases, so scientists use a test for SO₂ alone as a measure of all sulfur oxides.

As the level of sulfur oxides in air increases, there is an obstruction of breathing, a choking effect that doctors call "pulmonary flow resistance." The amount of breathing obstruction has a direct relation to the amount of sulfur compounds in the air. The effect of sulfur pollution is enhanced by the presence of other pollutants, especially particulates and oxidants. Moreover, the harm that results from two or more pollutants is more than additive. Each augments the other, and the combined effect is greater than the sum of the effects that each alone would have.

Many types of respiratory disease are associated with sulfur oxides: coughs and colds, asthma, bronchitis, and emphysema. Some researchers believe that the harm is not only due to the sulfur oxide gases but to other sulfur compounds as well that accompany the oxides.

Conclusions

Sulfur dioxide concentrations in 1983 did not exceed any federal primary or secondary standards. With the exception of one day in Milford (see Table 14), measured concentrations were substantially below the 365 ug/m³ primary 24-hour standard. Measured concentrations at all sulfur dioxide monitoring sites were well below the 80 ug/m³ primary annual standard and the 1300 ug/m³ secondary 3-hour standard.

Method of Measurement

The DEP Air Monitoring Unit used the pulsed fluorescence method (Teco instruments) to continuously measure sulfur dioxide levels at all 15 sites in 1983.

Discussion of Data

Monitoring Network – Fifteen continuous SO₂ monitors were used to record data in twelve towns during 1983 (see Figure 5):

Bridgeport 001 Bridgeport 123 Danbury 123 Enfield 005 Greenwich 017 Groton 007 Hartford 123 Milford 002 New Haven 123 Norwalk 005 Preston 002 Stamford 024 Stamford 123 Waterbury 007 Waterbury 123

All of these sites telemetered the data to the central computer in Hartford on a real-time basis. Waterbury 007, Stamford 024 and the sites in Enfield, Groton, Norwalk and Preston are new sites and did not exist in 1982. **Precision and Accuracy** – 308 precision checks were made on SO₂ monitors in 1983, yielding 95% probability limits ranging from –12% to +6%. Accuracy is determined by introducing a known amount of SO₂ into each of the monitors. Three different concentration levels are tested: low, medium, and high. The 95% probability limits for accuracy based on 18 audits were: low, –11% to +12%; medium, –9% to +7%; and high, –8% to +7%.

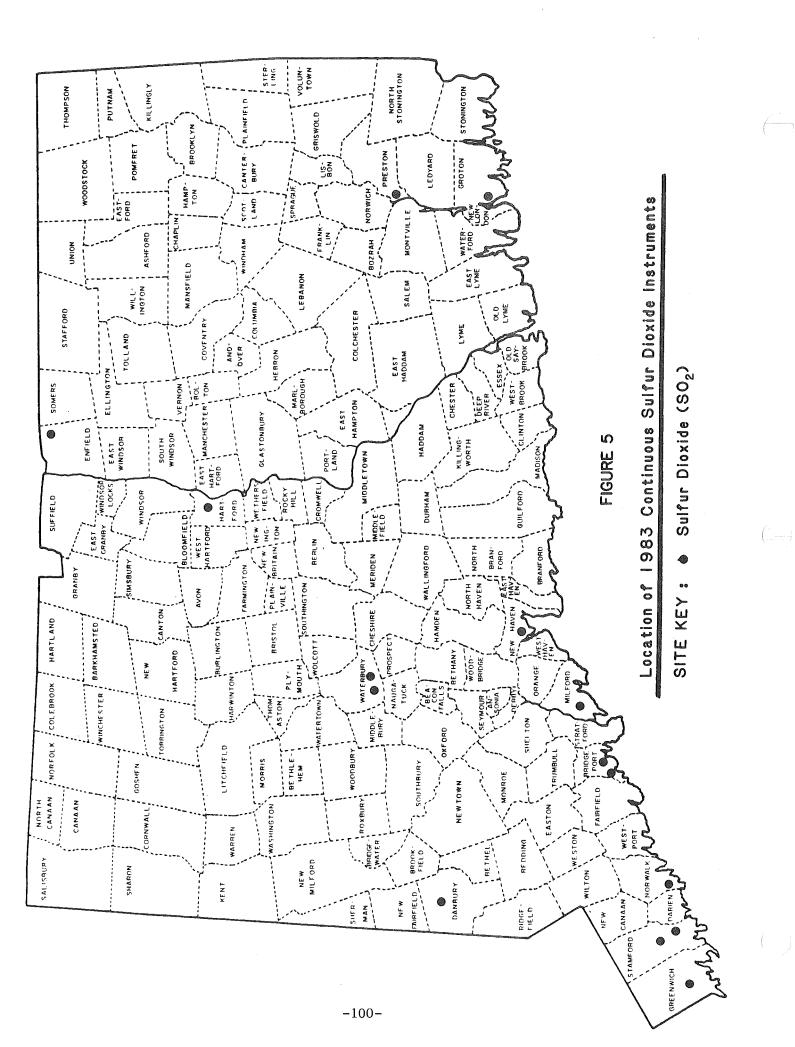
Annual Averages – SO₂ levels were below the primary annual standard of 80 ug/m³ at all sites in 1983 (see Table 12). The annual average SO₂ levels increased at seven of the nine monitoring sites that operated from 1982 to 1983. Bridgeport 123 experienced the highest increase of 4 ug/m³. Waterbury 123 showed an annual average decrease of 1 ug/m³ and New Haven 123 remained unchanged.

Statistical Projections – A statistical analysis of the sulfur dioxide data is presented in Table 13. This analysis provides information to compensate for any loss of data caused by instrumentation problems. The format of Table 13 is the same as that used to present the total suspended particulate annual averages (see Table 6). However, Table 13 gives the annual arithmetic mean of the valid 24-hour SO₂ averages to allow direct comparison to the annual SO₂ standards. The 95% limits and standard deviations are also arithmetic calculations. Since the distribution of the SO₂ data tends to be lognormal, the geometric means and standard deviations were used to predict the number of days the 24-hour standard of 365 ug/m³ would be exceeded at each site if sampling had been conducted every day.

It is important to note that these statistical tests require random data to be valid. This means that an equal number of samples must be collected in each season of the year and on each day of the week. For the nine sites that operated in both 1982 and 1983, the distribution and quantity of SO₂ data were comparable in both years — except for Bridgeport 001, which did not operate in the last quarter of 1983. The data for these sites indicate that there were no violations of the primary SO₂ standard in Connecticut. For example, a statistical prediction of one day exceeding the primary 24-hour standard (365 ug/m³) at Hartford site 123 indicates that an increase in SO₂ emissions there might jeopardize the attainment of this standard. Two days over the standard are required for the standard to be violated. For the remaining sites the distribution and quantity of SO₂ data were inadequate for representative annual statistics and are so indicated in Table 13.

24-Hour Averages – Table 14 presents the 1st and 2nd high running 24-hour concentrations recorded at each monitoring site. In 1983 no sites recorded SO₂ levels in excess of the 24-hour primary standard of 365 ug/m³. Second high running 24-hour average concentrations decreased at four of the nine SO₂ monitoring sites that operated during 1982 and 1983. The decreases were at least 23 ug/m³ and the largest decrease of 36 ug/m³ was experienced at Stamford 123. Four sites had higher second high running 24-hour average concentrations in 1983 when compared to 1982. These increases ranged from 3 ug/m³ at Waterbury 123 to 23 ug/m³ at New Haven 123. Hartford 123 experienced no change in the second high running 24-hour average.

Current EPA policy bases compliance with the primary 24-hour SO₂ standard on non-overlapping running averages. Running averages are averages computed for the 24-hour periods ending at every hour. Assessment of compliance is based on the value of the 2nd highest of the two highest non-overlapping 24-hour periods in the year. Thus, the basis for compliance is the magnitude of the exposure encountered within any two distinct 24-hour periods, not calendar days. However, there is some contention that compliance assessment for 24-hour SO₂ standards should be based on calendar day averages only. Table 15 contains the maximum 24-hour SO₂ readings from both the running averages and the calendar day averages for comparison. The maximum calendar day readings are all lower than the maximum readings from the running averages, and the differences range from 1 ug/m³ at New Haven 123 to 92 ug/m³ at Milford 002.


3-Hour Averages – Table 16 presents the 1st and 2nd high 3-hour concentrations recorded at each monitoring site. Measured SO₂ concentrations were far below the federal secondary 3-hour standard of 1300 ug/m³ at all DEP monitoring sites in 1983. When compared to 1982, the second high running 3-hour average concentrations decreased at six sites and increased at 3 sites in 1983.

10-High Days with Wind Data – Table 17 lists the ten highest 24-hour calendar day SO_2 averages and the dates of occurrence for each SO_2 site in Connecticut during 1983. The table also shows the average wind conditions that occurred on each of these dates. (The origin and use of these wind data are described in the discussion of Table 11 in the TSP section of this Air Quality Summary.)

Once again, as with TSP, most (i.e., 49.3%) of the highest SO_2 days occur during periods of persistent winds out of the southwest quadrant. This relationship is caused, at least in part, by SO_2 transport; but, any transport is limited by the chemical instability of SO_2 . In the atmosphere, SO_2 reacts with other gases to produce, among other things, sulfate particulates. Therefore, SO_2 is not likely to be transported very long distances. Previous studies conducted by the DEP have shown that during periods of southwest winds, levels of SO_2 in Connecticut decrease with distance from the New York City metropolitan area. This relationship tends to support the transport hypothesis. On the other hand, these studies also revealed that certain meteorological parameters, most notably mixing height and wind speed, are more conducive to high SO_2 levels on days when there are southwesterly winds than on other days.

The data in Table 17 were used to make a tally, by date, of the frequency of occurrence of high SO₂ levels. Only those nine sites were used which operated both in 1982 and 1983. If a given date recurred at 5 or more sites in this tally, the SO₂ levels and meteorological conditions were investigated further (there were 7 such days). A close look at these 7 days revealed three important points. First, all 7 days occurred during the winter months. This can be attributed to more fuel being burned during the cold weather. Second, 4 of the 7 days had persistent southwest winds for that calendar day. Third, 2 of the other 3 days had either persistent southwest winds for the previous 24 hours or the wind was relatively calm at Bradley and Bridgeport on the day the high SO₂ reading was recorded.

In summary, high levels of SO_2 in Connecticut seem to be caused by a number of related factors. First, Connecticut experiences its highest SO_2 levels during the winter months, when there is an increased amount of fuel combustion. Second, the New York City metropolitan area, a large emission source, is located to the southwest of Connecticut and, in this region, southwest winds occur relatively often in comparison to other wind directions. Also, adverse meteorological conditions are often associated with southwest winds. The net effect is that during the winter months when a persistent southwesterly wind occurs, an air mass picks up increased amounts of SO_2 over the New York City metropolitan area and transports this SO_2 into Connecticut. Here, the SO_2 levels remain high because the relatively low mixing heights associated with the southwest wind will not allow much vertical mixing. The levels of transported SO_2 eventually decline with increasing disparticulates. These sulfate particulates may fall to the ground in either a dry state (dry deposition) or in a wet state after combination with water droplets (wet deposition or "acid rain").

1983 ANNUAL ARITHMETIC AVERAGES* OF SULFUR DIOXIDE

AT SITES WITH CONTINUOUS MONITORS

(PRIMARY STANDARD: 80 ug/m³)

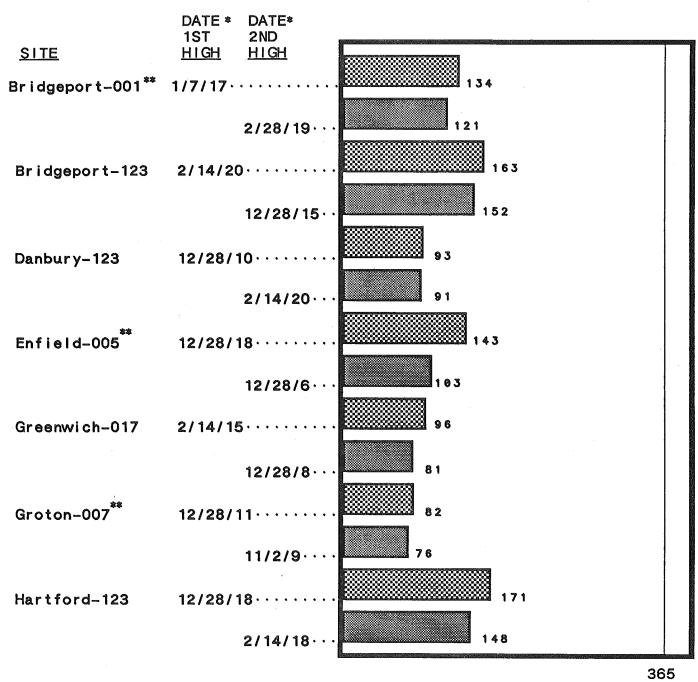
TOWN	SITE NAME	ANNUAL AVERAGE
Bridgeport-001	City Hall	28**
Bridgeport-123	Hallett Street	33
Danbury-123	Western CT State College	17
Enfield-005	Department of Corrections	23**
Greenwich-017	Greenwich Point Park	15
Groton-007	Fire Headquarters	24**
Hartford-123	State Office Building	32
Milford-002	Devon Community Center	35
New Haven-123	State Street	31
Norwalk-005	Health Department	22**
Preston-002	Norwich State Hospital	14**
Stamford-024	Fire House	27**
Stamford-123	Health Department	27
Waterbury-007	Fire House	33**
Waterbury-123	Bank Street	19

- * The annual averages are expressed in terms of the arithmetic mean because the primary ambient air quality standard for SO₂ is defined as the annual arithmetic mean concentration. This differs from the trend analysis presented earlier in section I.B. of this Air Quality Summary which made use of the annual geometric mean.
- ** The average is based on less than the required number of observations for a valid annual average.

1983 SULFUR DIOXIDE ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

DISTRIBUTION -- LOGNORMAL

PREDICTED DAYS OVER 365 ug/m3	×															
STD DEVIATION	17.066	22.834	13.031	20.895	11.659	13.835	22.793	27.169	24.284	21.556	7.016	15.948	18.916	29.103	14.291	random or of insufficient size for representative annual statistics
95-PCT-LIMITS LOWER UPPER	29	34	17	28	16	27	33	35	31	24	16	33	27	41	19	itative anı
95-PCT- LOWER	26	33	17	18	15	21	32	34	31	21	12	23	27	27	19	represer
ARITHMETIC MEAN**	27.6	33.3	16.9	23.1	15.5	24.2	32.4	34.8	30.7	22.6	13.9	28.0	26.7	34.0	18.9	ient size for
SAMPLES	260*	359	356	61*	333	79*	360	342	363	226*	61*	34*	362	60*	351	f insuffic
VEAR	1983	1983	1983	1983	1983	1983	1983	1983	1983	1983	1983	1983	1983	1983	1983	andom or o
SITE	001	123	123	005	017	007	123	002	123	005	002	024	123	007	123	ig not r
TOWN NAME	Bridgeport	Bridgeport	Danbury	Enfield	Greenwich	Groton	Hartford	Milford	New Наven	Norwalk	Preston	Stamford	Stamford	Waterbury	Waterbury	* Sampling not


representative annual statistics L 0 1 e l z e 5 מ 2

> * *

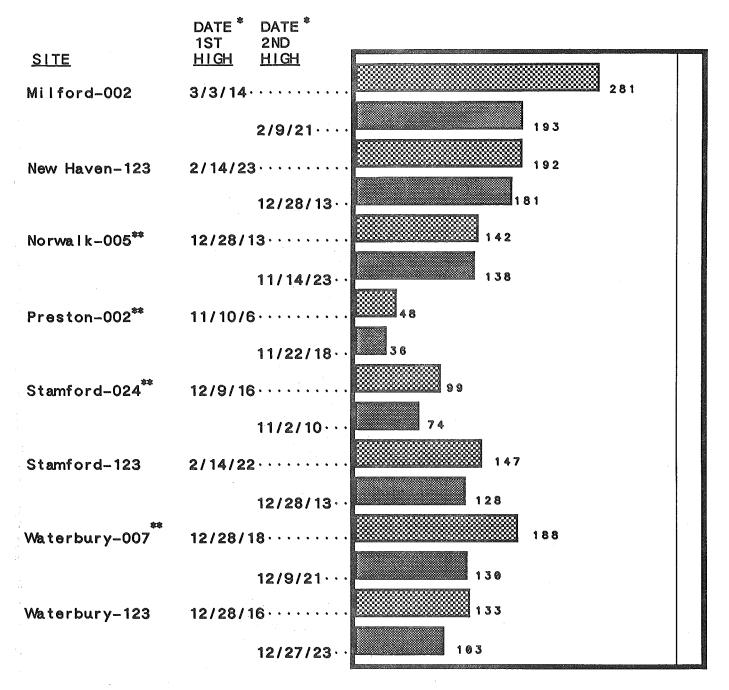
> > (

The annual averages in Table 13 vary slightly from those in Table 12 because of the manner in which they were derived. The averages in Table 12 are based on the available hourly readings, while those in Table 13 are based on valid 24-hour averages. (At least 18 hourly readings are required to produce a valid 24-hour average.)

1983 MAXIMUM 24-HOUR RUNNING AVERAGE SULFUR DIOXIDE CONCENTRATIONS

965 PRIMARY STANDARD

Date is month/day/ending hour of occurrence.


Database for the site contains less than 75% of the possible observations.

NB. When a listed concentration occurs more than once at a site, the earliest occurrence has precedence.

2ND HIGH, ug/m³
 2ND HIGH, ug/m³

客家

TABLE 14, Continued

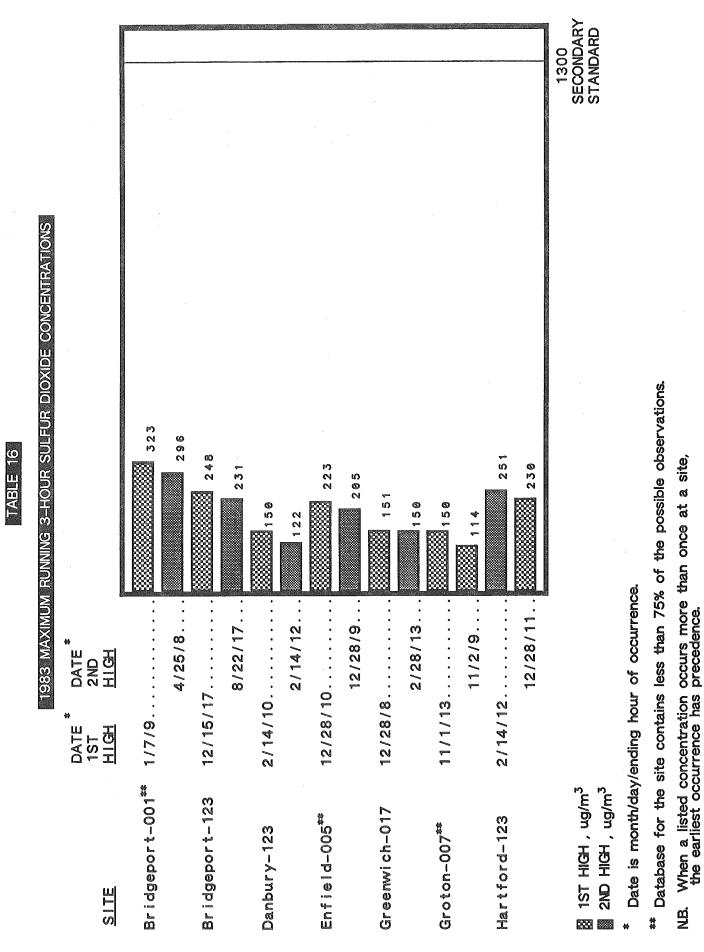
365 PRIMARY STANDARD

Date is month/day/ending hour of occurrence

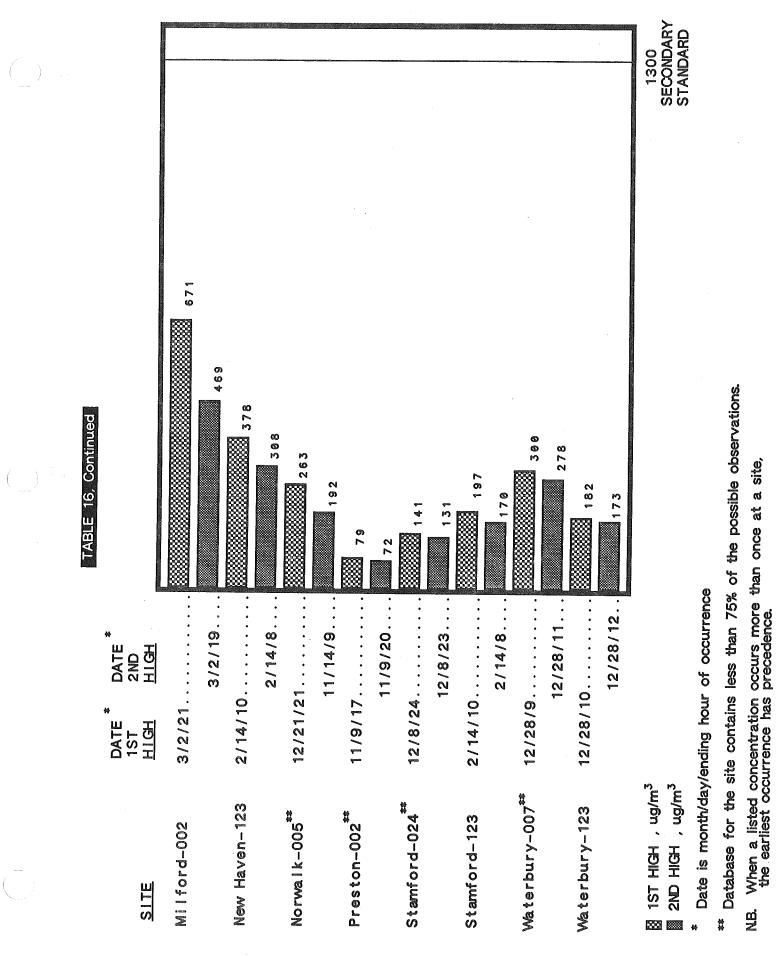
Database for the site contains less than 75% of the possible observations.

N.B. When a listed concentration occurs more than once at a site, the earliest occurrence has precedence.

3 1ST HIGH, ug/m³


2ND HIGH, ug/m³

COMPARISONS OF 1983 FIRST AND SECOND HIGH RUNNING AND


CALENDAR DAY 24-HOUR SO2 AVERAGES*

Site	1st High <u>Running Avg.</u>	1st High <u>Calendar Day</u>	2nd High <u>Running Avg.</u>	2nd High <u>Calendar Day</u>
Bridgeport-001**	* 134	127	121	120
Bridgeport-123	163	146	152	140
Danbury-123	93	89	91	86
Enfield-005**	143	126	103	101
Greenwich-017	96	85	81	76
Groton-007**	82	75	76	66
Hartford–123	171	143	148	142
Milford-002	281	189	193	173
New Haven-123	192	191	181	150
Norwa1k-005**	142	138	138	116
Preston-002**	48	33	36	32
Stamford-024**	99	71	74	59
Stamford-123	147	143	128	123
Waterbury-007**	188	156	130	127
Waterbury-123	133	104	103	103

* Units are ug/m³ ** Database for the site contains less than 75% of the possible observations.

-106-

-107-

	1983	3 TEN HIGHE	GHEST 24	HOUR AVERAGE	S02	DAYS WITH	WIND DATA	UNITS :	MICROGRAMS	MS / CUBIC	C METER
	SAMPLES	-	2	ŝ	4	5	9	7	8	6	10
			/]			7				Z
	260	127	120	91	88 27 11/02	~ 4	71 1/25/82	10.0	2/15/82	63 1722/83	63 11/23/83
SITE		240	2002	201	360	320		260	280) 000 1000	140
NEWAKK	VEL (MPH) SPD (MPH)	9.1	5.9 0.7	9.2	• •			- 60			~~
METEOROLOGICAL SITE		0.854	0.821 200	$0.832 \\ 240$	- 0	പന	ココ	an+	0.645 320	3 tr	~ -
BRADLEY	VEL	2 m ⊂	14r 0.00		1.1	20 20 20 20 20 20 20 20 20 20 20 20 20 2	6.8 7.9	3.7	4.2 7.6	0.3	3.4 4.7
	_	0.849	0.804	0.865	• m u	· O C	· ら -	. <u>-</u> т и	0.553	04	$\odot \alpha$
METEORULUGICAL STIE BRIDGEPORT	VEL (MPH)	6.1 6.1	11.6 12.2	5.9	• •	₽ \ •	t •	` .	, 	• •	• C
	SPD (MPH) RATIO	1.8 0.785	4./ 0.971	6.5 0.915	• -	· - T	٠∞	· ~	0.300	• က	۰۰۵
METEOROLOGICAL SITE WORCESTER	DIR (DEG) VFI (MPH)	240 5_8	260 5.3	260 5.0	0 '	m '	~ •	\sim .	320 3.9	ε.	ഹം
		0.2	5.6 0 0/10	5.3 0 944	8.5 0 961	6.0 0 774	• • •	· • •	5.8	2.9 0.455	
			•			د .	د .	2		1 2	
	359		140	121	15	114	107		~ `	101	6
METEOROLOGICAL SITE		2/14/83 30	12/27/83 240	12/28/83 260	11/ 9/83 180	- ~	2/28/83 200	1/ 2/83 260	1/22/83 240	7-	
NEWARK	VEL	6.7	9.7		- + - - + -	•	1 1 0	7.7	10.2		2.0
	RATIC	0.909	0.949	0.363	0.800	· m (0.821	0.832	σ	• _+ (• \
METEOROLOGICAL SITE BRADLEY	VEL	300 0.4	4.1	340	1.5	⊃ •	4.3	5.3	6.8	× •	0
	SPD (MPH)	1.000	1.7	5.9	2.0	• ^	5.3 0 801	6.2 0 865	~α		• O
METEOROLOGICAL SITE RRINGFPORT	-	50	260 260 8_1	170	220	230 5.3	220 4.6	260	240 11.4	210	. 50
	-	3.3	8.2	13.4	6.0 0.881		4.7 0 971	6.5 0 915	11.5 0 988	• 0	• 67
METEOROLOGICAL SITE	DIR	250		2 (V) "	• <\ "	202	•	•	•	2.01	
JRCESTER	SPD	6.5 6		001	500	0~0	1414		0 @ (1.1
	KAI 10	0.994	<i>دا</i> و.0	156.0	0.890	N	0.949	0.944	216.0	-	ת
	356	08	> 86 2	65	5	¢ 5	× 10	58	58	56	55
	-	2/14/83	12/27/83	∞	201	$\gamma - c$	501-	500	12/31/83	101	(-2)
METEOROLOGICAL STIE NEWARK		30 6.7	9.7	200	1.7	8 10 11.00	0.0	, , , , , , , , , , , , , ,	, 10 11.7	2-21	0.0
	SPD (MPH) RATIO	0.909	0.949	• •	• က	• က	• 7	• NI	0.943	• 🛯	• • • •
METEOROLOGICAL SITE BRADLEY	DIR (DEG) VEL (MPH)	300 0.4	200 4.1		3.	ο.	ο.	ഹ	250 0.7	~ •	v۰
	\sim	1 000 1	4.7 0 860	• •	• •	• 1-	• • •	• 00	1.4 0 505	• **	• 0
	RALIO	•	•	-						3.	~ -

Ć

TABLE 17

-108-

• (

(

1983 TEN HIGHEST 24 HOUR AVERAGE SO2 DAYS WITH WIND DATA

/ CUBIC METER	9 10	200 50 0.7 0.7 3.4 4.3 3.4 4.3 216 0.156 290 230 5.2 2.5 5.2 0.596	40 20 20 20 20 20 20 20 20 20 20 20 20 20	220 220 220 220 270 270 270 270 270 270	51 47 25/83 1/27/83 21/27/83 1/27/83 21/27/83 1/27/83 25/8 1/27/83 25/8 1/27/83 25/8 1/27/83 25/8 1/27/83 25/9 3.60 25/9 3.60 25/9 3.60 25/9 3.60 25/9 3.60 25/9 3.60 25/9 3.60 25/9 3.60 25/9 3.60 25/9 3.60 25/9 3.79 25/9 3.79 25/9 3.79 25/9 3.79 25/9 3.79 25/9 3.30 25/9 3.30 27/0 3.30 37/9 3.30 37/9 3.11
MICROGRAMS /	ω	290 4.3 5.6 0.767 290 9.5 0.984 0.984 0.984	0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2/28/83 2/28/83 4.8 0.85.9 0.821 0.821 0.821 0.821 0.821 0.220 0.220 0.220 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.970 0.9710 0.97100 0.97100 0.97100 0.97100000000000000000000000000000000000
A UNITS :	7	330 7.4 8.5 0.867 340 9.9 0.932 0.932	41 12/29/83 2590 8.5 12.7 0.670 310	0.7112 300 300 300 300 12.80 13.5 13.5 0.918	0.930 0.9300 0.9300 0.9300 0.9300 0.9300 0.9300 0.9300 0.9300 0.9300 0.9300 0.9300 0.9300 0.9300 0.9300 0.9300 0.9300 0.9300 0.9300 0.9300 0.930000000000
H WIND DATA	9	210 7.7 8.6 8.6 230 230 6.1 6.1 6.3	3 12/2 8 0.8 8	0.933 0.9330 0.9330 0.9330 0.9330 0.9330 0.9330 0.9330 0.9330 0.9330 0.93300 0.93300 0.93300 0.9330000000000	12/28/83 260 3.8 3.8 3.6 3.6 340 340 1.1 1.1 0.310 1.7 0.85 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
2 DAYS WITH	5	230 5.3 0.873 260 72.6 0.9212 0.9212	33 12/2 122 0.9	0.928 0.9270 0.132.90 0.112.90 0.112.90 0.112.90 0.112.90 0.122.00 0.120.00 0.120.0000000000	33 12/ 61 210 210 210 210 5.9 1912 0.910 230 230 230 230 0.970 0.970
VERAGE SO2	4	260 5.9 0.915 0.915 0.915 0.944	49 83 12/22/8 180 1.1 1.1 0.092 10	0.870 120 120 120 120 120 120 120 120 120 12	83 2/15/8 330 8 5.99 0.957 0.887 0.887 0.867 0.867 0.932 0.932 0.932
24 HOUR AVERAGE	ξ	0.53.8	83 12/ 55 55 6.9/ 0.942 190	0.9109	33 1/ 2605 0.95.5605
N HIGHEST	2	260 8.1 8.1 8.2 8.2 8.2 260 260 260 0.9 75 4 1 0.975	3 12/ 1 0.	0.038.210 0.038.210 0.038.210 0.038.210 0.038.210 0.04.14 0.038.210 0.04.14 0.038.210 0.04.14 0.038.2100 0.038.2100 0.038.2100 0.038.2100 0.038.2100 0.038.2100 0.038.2100 0.038.2100 0.038.2100 0.038.2100 0.038.2100 0.038.2100 0.038.2100 0.038.2100 0.038.2100 0.038.2100 0.038.2100 0.038.21000000000000000000000000000000000000	<pre></pre>
1983 IEN	-	50 3.3 2.9 3.3 3.3 2.5 0.888 2.5 0.888 0.888 0.994 0.994	12/28/83 260 3.8 10.5 0.363 340	0.310 170 1.1 1.1 1.1 1.1 1.1 0.085 0.085 0.085 0.531 0.531	2/14/85 300 6.77 0.909 0.44 0.904 1.000 1.000 1.000 0.994 0.994
51	SAMPLES	DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) SPD (MPH) DIR (DEG) VEL (MPH) SPD (MPH) RATIO	61 DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) RATIO RATIO	SPD RATIC DIR SPD SPD SPD RATIC SPD RATIC	333 DATE DATE DATE DATE DATE DATE MPH) SPD (MPH) SPD (MPH)
	TOWN/SITE	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	ENFIELD 005 METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	GREENWICH 017 METEOROLOGICAL SITE METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT BRIDGEPORT METEOROLOGICAL SITE

 \sim

و

1983 TEN HIGHEST 24 HOUR AVERAGE SO2 DAYS WITH WIND DATA

		\sim	\mathcal{O}	
C METER	2	12/ 250 37 250 250 250 250 250 250 250 250 250 250	0.95.33 0.965 0.97.5 0.965 0.97.5 0.95.5 0.95.5 0.95.5 0.944	12/28/83 260 3.5 0.363 340 1.8 1.8 0.310
`	ע	11/22/83 260 2260 11/22/83 250 2260 2260 2260 2260 2260 2260 2260	12/9/83 210 212/9/83 210 210 210 210 210 210 210 210 230 230 230 230 230 230 230 230 230 23	3/29/83 3/29/83 18.8 19.5 0.960 330 14.2 0.960
M I CROGRAMS	Ø	10/31/83 230 230 230 230 230 2805 0.855 280 2805 0.857 280 0.857 0.957 0.957	2/13/83 97 1.5 1.5 1.5 1.5 1.7 0.40 1.7 240 0.192 240 0.192 0.690 5.1 0.690 5.1 0.788	1/19/83 310 18.5 18.5 0.989 340 11.1 11.5 0.965
UNITS :	-	12/31/83 320 5.1/83 0.550 0.505 0.505 0.505 0.505 0.505 0.500 0.500 0.500 0.948 0.984	$\begin{array}{c} 1,22/83\\ 1,22/83\\ 7.1\\ 7.1\\ 7.5\\ 0.946\\ 0.103\\ 5.0\\ 60\\ 1.03\\ 60\\ 5.0\\ 0.836\\ 1.3\\ 1.3\\ 0.455\\ 0.455\\ 0.455\end{array}$	2/ 8/83 310 24.0 24.0 24.3 0.987 320 12.4 12.7 0.982
	0	$\begin{array}{c} 12/51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 5.4 \\ 5.4 \\ 5.4 \\ 5.4 \\ 5.3 \\ 0.910 \\ 0.891 \\ 0.891 \\ 0.970 \\ 0.9$		2/5/83 2/5/83 320 19.0 19.0 13.1 13.1 0.959
AYS WIN	ņ	12/28/83 52 260 3.8 0.365 0.365 0.310 0.310 0.519 0.510 0.531 0.531 0.531	1/ 5/83 8.4 8.6 0.974 2.3 1.9 1.0 1.95 0.731 0.731 0.731	146 3/83 310 19.8 0.989 0.989 15.7 17.5 0.952
AGE 302 U	+	11/ 2/83 56 0.416 0.997 0.997 0.582 0.997 0.582 0.582 0.582 0.582 0.570 0.582 0.570 0.582 0.570 0.582 0.570 0.582 0.570 0.582 0.570 0.582 0.570 0.571 0.576 0.577 0.576 0.577 0.576 0.577 0.576 0.577 0.576 0.577 0.576 0.577 0.576 0.577 0.576 0.577 0.576 0.577 0.576 0.577 0.576 0.577 0.576 0.577 0.576 0.577 0.576 0.577 0.576 0.577	12/27/83 249 9.7 9.72 9.7 9.7 0.949 8.1 8.1 8.1 0.949 0.949 0.989 0.989 0.975 0.975	147 310/27/83 310.7 10.7 13.1 13.1 13.1 13.1 5.8 5.3 0.790
HUUK AVER	ŝ	11/1/83 63 2.0 2.1 0.194 0.194 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.596 0.596 0.596	1/21/83 1/21/83 4.4 0.959 0.959 0.9538 0.9538 0.9528 0.9528 0.9528 0.9528 0.962	12/27/83 240 9.7 9.7 0.949 4.1 1.1 4.1 0.869
НЕО	N	$\begin{array}{c} 11 \\ 66 \\ 11 \\ 180 \\ 13$		173 3/2/83 340 22.8 24.4 0.935 13.3 13.3 0.914
1983 IEN HIG	-	12/27/83 75 240 2240 240 0.989 0.989 0.989 0.989 0.975 0.975 0.975	0 0 0 0	2/9/83 310 15.0 15.1 0.992 330 330 114.1
	SAMPLES	79 DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH)	0 MPHG 0	342 DIR (DEG VEL (MPH SPD (MPH SPD (MPH SPD (MPH VEL (MPH SPD (MPH RATIO
	TOWN/SITE	GROTON 007 METEOROLOGICAL SITE NETEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE METEOROLOGICAL SITE	HARTFORD 123 METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE BRIDGEPORT	MILFORD 002 METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY

-110-

1983 TEN HIGHEST 24 HOUR AVERAGE SO2 DAYS WITH WIND DATA

	X	ņ	2 F		ŝ	Ч
10	0.531 0.531 0.531 0.531	2012 2010 2010 2010 2010 2010 2010 2010	<u>, , , , , , , , , , , , , , , , , , , </u>	$\cdots \pm \infty$	11/10/8 50 9.5 0.985	6.0 6.3 11.7 11.7 11.8 0.994 8.3 0.973
6	320 14.1 14.1 310 15.2 0.980 0.980	0,159 0,133 0,000000		$\cdots + \pm \cdots$	ちょう ・ ろしし	0.505 00000000
ω	320 10.4 320 320 15.4 0.925 0.992	200000000000000000000000000000000000000	10.00000		$\rightarrow \infty \cup \cdots \rightarrow \cup \infty \leftarrow \cdots$	0.910 9.70 0.8916 0.910 0.970 0.970
7	310 12.6 0.978 320 19.54 1925 0.992	2020		· · 6 m · · ト	89 12/13/83 11.6 13.8 0.839 0.839	$\begin{array}{c} 10.3\\ 10.8\\ 12.5\\ 12.5\\ 0.998\\ 9.3\\ 0.993\\ 0.993\\ 0.993\\ 0.993\\ 0.993\\ 0.993\\ 0.995\\ 0$
9	340 12.6 12.7 0.992 14.6 14.6 0.974	222	3000.00	t 0	000.000	0.220 220 0.768 0.881 0.881 0.881 0.890 0.890
L L	330 12.1 12.4 12.4 320 320 21.9 21.9 0.994 0.994	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	255-25-13	· · ∞ /~ · · 6	94 12/ 4/83 30 11.6 13.1 0.887 20	$\begin{array}{c} 9.1\\ 9.3\\ 0.978\\ 40\\ 15.1\\ 15.1\\ 15.1\\ 15.1\\ 15.1\\ 15.1\\ 15.1\\ 0.935\\ 0.980\\ 0.980\end{array}$
4	320 7.2 8.1 0.889 300 300 9.6 0.928	tr · · 2 - 3	- <u>6</u> - <u>7</u> - <u>6</u> - <u>7</u>		12/21/83 40 8.9 10.4 0.861	$\begin{array}{c} 4.7\\ 0.5.0\\ 3.5\\ 0.802\\ 3.50\\ 3.50\\ 0.552\\ 0.552\\ 0.590\\ \end{array}$
ε	260 8.1 8.2 0.989 7.4 1.4 0.975 0.975	ち・ちくちゃ	$\cdot \circ \circ \cdot \cdot \circ \circ$	68.	to 080	1.8 0.310 170 170 1.1 0.085 200 200 200 200 0.531
N	340 15.5 0.936 15.5 0.936 15.4 0.841 841	0000	オ・・トト・	$\cdot \infty \bigcirc \cdot \cdot \infty$	12/27/83 112/27/83 240 9.7 0.949 200	4.1 0.869 8.1 0.989 0.989 0.989 0.975
-	320 12.0 12.1 0.993 320 16.5 16.7 0.987	2/14/83 2/14/83 30 6.7 7.3 0.909	300 0.4 0.4 1.000 2.9	3.3 0.888 250 6.4 0.994	1/14/83 1/14/83 12.6 12.8 0.985 0.985	7.1 7.5 0.945 8.9 8.9 0.994 0.994 0.968 0.968
SAMPLES	DIR (DEG) VEL (MPH) SPD (MPH) RATIO VEL (DEG) VEL (MPH) SPD (MPH) RATIO	363 DATE DATE DIR (DEG) VEL (MPH) SPD (MPH) RATIO	DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH)	SPD (MPH) RATIO [.] DIR (DEG) VEL (MPH) SPD (MPH) RATIO	226 DATE 1 DATE 1 DATE 1 DATE 1 DATE 1 DATE 1 MPH) SPD (MPH) SATI0 DIR (DEG)	VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH)
TOWN/SITE	METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	NEW HAVEN 123 - METEOROLOGICAL SITE NEWARK	METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT	METEOROLOGICAL SITE WORCESTER	NORWALK 005 METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE	BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER
	SAMPLES 1 2 3 4 5 6 7 8 9 1	SAMPLES 1 2 3 4 5 6 7 8 9 10 OROLOGICAL SITE DIR (DEG) 320 340 260 320 330 340 310 320 320 17 OROLOGICAL SITE DIR (DEG) 320 340 260 320 330 340 310 320 17 17 12 1 13 1 <td>/SITE SAMPLES 1 2 3 4 5 6 7 8 9 10 METEOROLOGICAL SITE DIR DEG 320 340 310 320 320 170 METEOROLOGICAL SITE DIR DEG 320 340 370 320 320 320 320 170 METEOROLOGICAL SITE DIR DEG 320 15.5 8.1 7.2 12.1 12.6 10.4 13.1 13.1 METEOROLOGICAL SITE DIR DEG 320 340 370 320</td> <td>/SITE SAMPLES 1 2 3 4 5 6 7 8 9 10 METEOROLOGICAL SITE DIR (REG) 320 340 310 320 320 170 METEOROLOGICAL SITE DIR (REG) 320 340 310 320 320 170 METEOROLOGICAL SITE DIR (REG) 320 340 561 7.4 9.5 11.1 13.4 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.2 320</td> <td>AFITE SAMPLES 1 2 3 4 5 6 7 8 9 10 METEOROLOGICAL SITE BRIDGEEORT VEL (MPH) 12:0 13:40 260 320 330 340 310 321 77 77<!--</td--><td>IE SAMPLES 1 2 3 4 5 6 7 8 9 10 IEOROLOGICAL SITE DIR (DEE) 320 340 320 3</td></td>	/SITE SAMPLES 1 2 3 4 5 6 7 8 9 10 METEOROLOGICAL SITE DIR DEG 320 340 310 320 320 170 METEOROLOGICAL SITE DIR DEG 320 340 370 320 320 320 320 170 METEOROLOGICAL SITE DIR DEG 320 15.5 8.1 7.2 12.1 12.6 10.4 13.1 13.1 METEOROLOGICAL SITE DIR DEG 320 340 370 320	/SITE SAMPLES 1 2 3 4 5 6 7 8 9 10 METEOROLOGICAL SITE DIR (REG) 320 340 310 320 320 170 METEOROLOGICAL SITE DIR (REG) 320 340 310 320 320 170 METEOROLOGICAL SITE DIR (REG) 320 340 561 7.4 9.5 11.1 13.4 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.2 320	AFITE SAMPLES 1 2 3 4 5 6 7 8 9 10 METEOROLOGICAL SITE BRIDGEEORT VEL (MPH) 12:0 13:40 260 320 330 340 310 321 77 77 </td <td>IE SAMPLES 1 2 3 4 5 6 7 8 9 10 IEOROLOGICAL SITE DIR (DEE) 320 340 320 3</td>	IE SAMPLES 1 2 3 4 5 6 7 8 9 10 IEOROLOGICAL SITE DIR (DEE) 320 340 320 3

0

 \sim

CONTINUED
17,
TABLE

1983 TEN HIGHEST 24 HOUR AVERAGE SO2 DAYS WITH WIND DATA

ĺ

ĺ

(____)

1983 TEN HIGHEST 24 HOUR AVERAGE SO2 DAYS WITH WIND DATA

	0061		101L31 24	HOUN AVEN	AUE 302 L			UNITS :	M I CROGRAMS	MS / CUBI	IC METER	
TOWN/SITE	SAMPLES		2	ę	4	ъ	9	٢	ω	6	10	
METEOROLOGICAL SITE BRIDGEPORT	DIR VEL SPD	50 2.9 3.3 0.888	260 8.1 8.2 0.989	230 5.3 0.873	220 4.6 4.7 0.971	170 1.1 13.4 0.085	210 7.7 8.6 0.891	260 5.9 6.5 0.915	240 11.4 11.5 0.988	330 7.4 0.867	240 3.2 4.6 0.690	
METEOROLOGICAL SITE WORCESTER		250 6.4 6.5 0.994	· · · •	$\omega \rightarrow \omega$	260 5.3 0.949	200 3.6 6.8 0.531	~·· ~	· t- · 0	~ · · /~	\cdots	300 5.1 6.5 0.788	
WATERBURY 007 METEOROLOGICAL SITE NEWARK	60 DATE DATE DATE DATE (MPH) SPD (MPH)	12/28/83 12/28/83 260 3.8 10.5	12/ 9/83 12/ 9/83 210 6.9 7.3 0 01.2	112/27/83 12/27/83 240 9.7 10.2	82 12/31/83 320 4.7 5.0 5.0	78 11/ 1/83 140 2.0 4.7 4.7	71 71 200 4.9 10.6	12/26/83 260 12.8 13.4	53 10/31/83 5.3 6.6	53 12/22/83 180 1.1 12.1	11/ 51 140 5.2 5.2	
METEOROLOGICAL SITE BRADLEY	VEL (MPH) SPD (MPH) RATIO	0.310 340 5.9 0.310		00t		30.05	je o tr		- 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00	, 1 , 1 , 1 , 1 , 1	1-220	4
METEOROLOGICAL SITE BRIDGEPORT	VEL (MPH) SPD (MPH) SPD (MPH)	170 170 13.4		0000000	0.4 mr	,		12.12.		10.12	, N N 7 L	
METEOROLOGICAL SITE WORCESTER		0.531 0.531	0.970		.98.	22.23	• •	, ~ 1 1 0 .	6.00	· +	innon	
WATERBURY 123 METEOROLOGICAL SITE NEWARK	351 DATE DATE DIR (DEG VEL (MPH SPD (MPH RATIO	104 2/27/83 240 9.7 10.2 0.949	0.10 0.288 0.326 0.288 0.3260 0.326 0.32600 0.32600000000000000000000000000000000000	- NO · · m		>		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\vovv	2/28/83 2/28/83 4.8 1.8 5.9	59 12/22/83 180 1.1 12.1	
METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT	DIR (DEG VEL (MPH SPD (MPH RATIO DIR (DEG VEL (MPH	200 4.1 0.869 8.1 8.1	0.310 170 170	0.865 260 265 265 265 265 265 265 265 265 265 265			- nnoin-	0.768	0.828 0.828 0.828 12.9	0.520 220 220 220 4.6		10
METEOROLOGICAL SITE WORCESTER	SPD (MPH RATIO DIR (DEG VEL (MPH SPD (MPH RATIO	8.2 0.989 7.4 0.975	53.08	$t \cdot \cdot o \rightarrow \cdot$	0.156 230 2.5 0.596 0.596	3.3 0.888 6.4 6.5 0.994	· 6 m · · 1	$\cdot \infty \sim \cdot \cdot \cdot \circ$	$\cdot \infty \cdot \circ \cdot \cdot \infty$	4.7 0.971 5.3 5.3 0.949	.010	

IV. OZONE

Health Effects

Ozone is a poisonous form of oxygen and the principal component of modern smog. Until recently, EPA called this type of pollution "photochemical oxidants." The name has been changed to ozone because ozone is the only oxidant actually measured and is the most plentiful.

Ozone and other oxidants — including peroxyacetal nitrates (PAN), formaldehydes and peroxides — are not usually emitted into the air directly. They are formed by chemical reactions in the air from two other pollutants: hydrocarbons and nitrogen oxides. Energy from sunlight is needed for these chemical reactions. This accounts for the term photochemical smog and the daily variation in ozone levels, which increase during the day and decrease at night.

Ozone is a pungent-smelling gas with a faintly bluish color. It irritates the mucous membranes of the respiratory system, causing coughing, choking and impaired lung function. It aggravates chronic respiratory diseases like asthma and bronchitis and is believed capable of hastening the death, by pneumonia, of persons in already weakened health. PAN and the other oxidants that accompany ozone are powerful eye irritants.

Conclusions

As in past years, Connecticut experienced very high concentrations of ozone in the summer months of 1983. Levels in excess of the one-hour NAAQS of 0.12 ppm were frequently recorded at each of the ten monitored sites. As a result, the one-hour standard for ozone was violated at every site. Nine sites experienced levels greater than 0.20 ppm in 1983, as opposed to four sites in 1982. Both the highest and the second highest one-hour concentrations increased at all ten sites.

The incidence of ozone levels in excess of the 1-hour 0.12 ppm standard increased from 1982 to 1983 (see Table 19). There was a total of 437 exceedances in 1982 and 959 in 1983 at those monitored sites that operated in both years. This represents a rise in the frequency of such exceedances from 10.5 per 1000 sampling hours in 1982 to 24.2 per 1000 sampling hours in 1983: a 130% increase. If one eliminates the duplication that results when two or more sites experience an exceedance in the same hour, then the number of exceedances increased from 180 to 351. On this basis, the state saw a 107% increase in the frequency of hourly exceedances of the standard.

The number of days on which the ozone monitors experienced ozone levels in excess of the 1-hour standard increased from 128 days in 1982 to 267 days in 1983 (see Table 18). This represents an increase in the frequency of such occurrences from 7.4 per 100 sampling days in 1982 to 16.2 per 100 sampling days in 1983: a 119% increase. If the duplication that results when two or more sites experience an exceedance on the same day is eliminated, then the number of exceedances increased from 36 to 60. On this basis, the state saw a 76% rise in the frequency of daily exceedances of the standard.

The yearly changes in ozone concentrations can be attributed to year-to-year variations in regional weather conditions, especially wind direction, temperature and the amount of sunlight. A large portion of the peak ozone concentrations in Connecticut is caused by the transport of ozone and/or precursors (i.e., hydrocarbons and nitrogen oxides) from the New York City area and other points to the west and southwest. The percentage of southwest winds during the "ozone season" remained about the same from 1982 to 1983, as is shown by the wind roses from Newark (Figures 9 and 10). The wind roses from Bradley (Figures 7 and 8) are not as representative, since the airport is located in the Connecticut River Valley and the wind gets channeled up or down the valley. The

magnitude of the high ozone levels can be associated with yearly variations in temperature. Ozone production is greatest at high temperatures and in strong sunlight. The summer season's daily high temperatures were higher in 1983 than in 1982. This is demonstrated by the number of days exceeding 90°F which increased from five in 1982 to eleven in 1983 at Sikorsky Airport in Bridgeport. At Bradley International Airport, the number of days exceeding 90°F increased from 11 in 1982 to 30 in 1983. The percentage of possible sunshine at Bradley averaged 74% in 1983 and 64% in 1982 for the months June through September. The average for the summer months at Bradley is normally about 62%. This large percentage of possible sunshine and the resulting increase in high temperature days are believed to be major factors in the increase in the number of high ozone days in Connecticut in 1983.

Method of Measurement

The DEP Air Monitoring Unit uses chemiluminescent instruments to measure and record instantaneous concentrations of ozone continuously by means of a fluorescent technique. Properly calibrated, these instruments are shown to be remarkably reliable and stable.

Discussion of Data

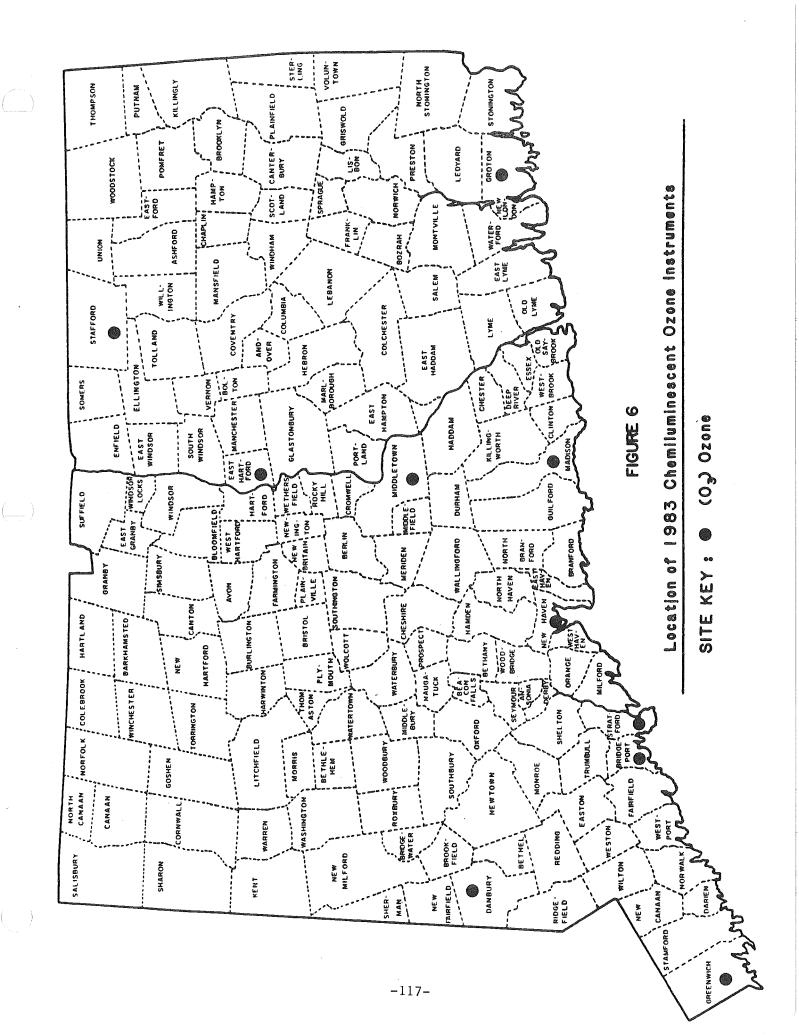
Monitoring Network – In order to gather information which will further the understanding of ozone production and transport, and to provide real-time data for the daily Pollutant Standards Index, DEP operated a state-wide ozone monitoring network consisting of four types of sites in 1983 (see Figure 6):

Urban	- Bridgeport, East Hartford, Middletown, New Haven
Advection from Southwest	– Danbury, Greenwich
Suburban	– Groton, Madison, Stratford
Rural	- Stafford

Precision and Accuracy – The ozone monitors had a total of 117 precision checks during 1983. The resulting 95% probability limits were -8% to +9%. Accuracy is determined by introducing a known amount of ozone into each of the monitors. Three different concentration levels are tested: low, medium, and high. The 95% probability limits, based on 13 audits conducted on the monitoring system, were: low, -14% to +7; medium, -8% to +5%; and high, -7% to +5%.

NAAQS – On February 8, 1979 the EPA established a national ambient air quality standard (NAAQS) for ozone of 0.12 ppm for a one-hour average. Compliance with this standard is determined by summing the number of days at each monitoring site over a consecutive three-year period when the 1-hour standard is exceeded and then computing the average number of exceededances over this interval. If the resulting average value is less than or equal to 1.0 (that is, if the fourth highest daily value in a consecutive three-year period is less than or equal to 0.12 ppm) the ozone standard is considered attained at the site. This standard replaces the old photochemical oxidant standard of 0.08 ppm. The definition of the pollutant was changed along with the numerical value of the standard, partly because the instruments used to measure photochemical oxidants in the air really measure only ozone. Ozone is one of a group of chemicals which are formed photochemically in the air and are called photochemical oxidants. In the past, the two terms have often been used interchangeably. This 1983 Air Quality Summary uses the term "ozone" in conjunction with the NAAQS to reflect the change in both the numerical value of the NAAQS and the definition of the pollutant.

The EPA defines the ozone standard to two decimal places. Therefore, the standard is considered exceeded when a level of 0.13 pm is reached. However, since the DEP still measures ozone levels to three decimal places, any one-hour average ozone reading which equals or is greater than 0.125 ppm is considered an exceedance of the 0.12 ppm standard in Connecticut. This interpretation of the ozone standard differs from the one used by the DEP before 1982, when a one-hour ozone concentration of 0.121 ppm was considered an exceedance of the standard.


1-Hour Average - The 1-hour ozone standard was exceeded at all ten DEP monitoring sites in 1983. Moreover, the highest 1-hour average ozone concentrations were higher in 1983 than in 1982 at all ten sites. Groton 005 had the largest increase of 96 ppm.

1096

The number of days on which the 1-hour standard was exceeded at each site during the summertime "ozone season" is presented in Table 18. The number of times the ozone standard was exceeded is presented in Table 19 for each site. Table 20 shows the year's high and second high concentrations at each site.

10 High Days with Wind Data – Table 21 lists the ten highest 1-hour ozone averages and their dates of occurrence for each ozone site in 1983. The wind data associated with these high readings are also presented. (See the discussion of Table 11 in the TSP section for a description of the origin and use of these wind data.)

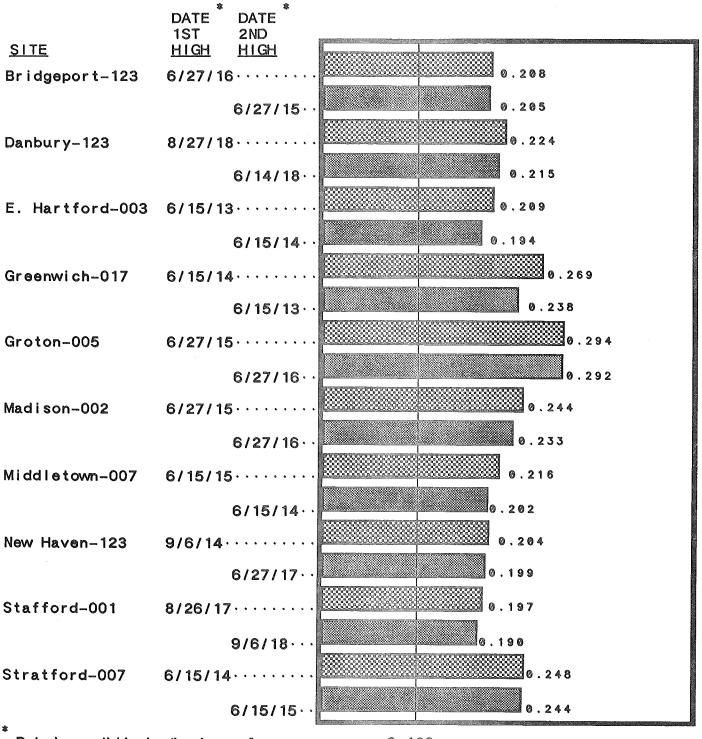
Nearly all (i.e., 86%) of the high ozone levels occurred on days with southwesterly winds. This is due to the special features of a southwest wind blowing over Connecticut. The first aspect of a southwest wind is that, during the summer, it usually accompanies high temperatures and bright sunshine, which are important to the production of ozone. The second is that it will transport precursor emissions from New York City and other urban areas to the southwest of Connecticut. It is the combination of these factors that often produces unhealthful ozone levels in Connecticut.

SITE	APRIL	MAY	JUNE	JULY	AUG.	<u>SEPT.</u>	TOTAL	TOTAL FOR LAST YEAR
Bridgeport-123	0	0	5	5	6	8	24	9
Danbury-123	1*	0	8	6	8	2	25	9
East Hartford-003	3 1	0	3	3	6	2	15	6
Greenwich-017	х	0	9	7	9	7	32	15
Groton-005	х	0	9	10	7	10	36	18
Madison-002	х	0	8	6	4*	5	23	11
Middletown-007	1	0	6	4	3	6	20	19
New Haven-123	0	0	7	7	6	7	27	9
Stafford-001	1	0	6	4	6	3	20	10
Stratford–007	1	0	13	11	10	10	_45	_22
				ΤΟΤΑ	L SITE	DAYS	267	128
			TOTAL	. INDI	VIDUAL	DAYS	60	36

NUMBER OF DAYS ON WHICH THE 1-HOUR OZONE STANDARD WAS EXCEEDED IN 1983

X No data available * Less than 75% of data available

SITE	APRIL	MAY	JUNE	JULY	AUG.	<u>SEPT.</u>	TOTAL	TOTAL FOR LAST YEAR
Bridgeport-123	0	0	18	16	16	17	67	30
Danbury-123	3*	0	39	24	24	4	94	24
East Hartford-003	3 2	0	9	6	14	4	35	14
Greenwich-017	х	0	41	27	28	20	116	52
Groton-005	X	0	47	48	29	63	187	62
Madison-002	Х	0	37	21	9*	14	81	41
Middletown-007	3	0	25	14	12	15	69	47
New Haven-123	0	0	26	20	22	14	82	35
Stafford-001	3	0	19	10	17	11	60	37
Stratford-007	3	0	52	36	37	40	<u>168</u>	95
				TOTAL	. SITE	HOURS	959	437
			TOTAL	INDIV	IDUAL	HOURS	351	180


NUMBER OF EXCEEDANCES OF THE 1-HOUR OZONE STANDARD IN 1983

Х

No data available Less than 75% of the data available *

-119-

1983 MAXIMUM 1-HOUR OZONE CONCENTRATIONS

Date is month/day/ending hour of occurrence0.120PRIMARYPRIMARYIST HIGH , ppmAND2ND HIGH , ppmSECONDARYSTANDARD

			· · · ·	
MILLION	10	0.151 6/11/83 210 8.2 0.755 0.453 2.30 2.453 0.453 2.30 2.453 0.453 0.970 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.3	0.164 6/17/83 150 6.2 0.954 7.3 0.978 0.978 0.978 0.942 200 200 200 200 200 200 200 200 200 2	$\begin{array}{c} 0.135\\ 8/22/83\\ 220\\ 6.0\\ 10.6\\ 0.562\\ 4.5\\ 4.5\\ 0.699\\ 0.699\end{array}$
PARTS PER	6	0.155 220 220 8.2 8.2 8.2 7.1 7.1 0.950 0.950 0.950 0.950 0.9210 0.9210 0.9250 0.9210 0.9220 0.9210 0.9220 0.9210 0.92200 0.92200 0.92200 0.92200 0.92200 0.92200 0.92200 0.92200 0.92200 0.92200 0.92200 0.92200 0.92200 0.92200 0.92200 0.92200 0.92200 0.92200 0.92200 0.9220000000000	$\begin{array}{c} 0.165\\ 6/18/5\\ 15/6\\ 5.6\\ 0.925\\ 0.92$	0.136 8/16/83 190 5.5 0.871 200 3.0 1.5 0.851 0.851
: STINU	Ø	$\begin{array}{c} 0.159\\ 7/159\\ 180\\ 180\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 2$	0.168 200 20168 200 200 200 200 200 200 200 0.409 200 200 0.409 0.400 0.409 0.400 0.409 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.400000000	0.136 6/30/83 180 5.9 0.699 4.0 4.0 6.3 0.638
	7	9,1173 260 260 19.5 19.5 19.5 19.6 11.8 0.530 6.5 0.988 0.988 11.8 0.988 0.988 0.988 0.988 0.987 0.987	0.181 170 170 170 170 170 170 170 170 170 17	0.139 7/ 4/83 180 8.3 8.3 8.3 8.3 8.3 7.3 7.5 0.975
WIND DATA	9	0.175 8/27/83 8/27/83 8.7 8.7 8.7 3.6 2.20 2.20 2.20 2.20 0.228 0.228 0.928 0.978 0.978 0.978	0.190 8/11/83 19/83 5.8 0.669 3.8 3.8 3.8 3.8 3.8 3.8 3.8 0.534 0.534 0.534 0.534 0.962	0.159 8/27/83 220 8.7 9.2 0.945 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30
DAYS WITH	5	0.175 8/17/83 220 5.50 5.20 5.20 5.20 5.20 5.20 5.20	$\begin{array}{c} 0.195\\ 7/12/83\\ 250\\ 10.2\\ 10.2\\ 10.2\\ 10.2\\ 10.2\\ 10.2\\ 10.2\\ 10.2\\ 220\\ 0.868\\ 0.868\\ 0.953\\ 3.6\\ 0.953\\ 3.6\\ 0.827\\ 0.$	0.169 8/26/83 10.2 10.5 0.968 8.3 8.3 8.3 0.960
OZONE	η	0.179 230 230 230 230 5.0 5.0 5.0 5.0 5.0 5.0 6.9 8.3 8.9 0.982 8.9 0.982 0.982 0.982 0.982 0.982 0.982 0.895	$\begin{array}{c} 0.200\\ 7/4/83\\ 180\\ 180\\ 7.3\\ 7.3\\ 7.5\\ 0.975\\ 0.975\\ 0.975\\ 0.652\\ 0.652\\ 0.652\\ 0.84$	0.170 6/14/83 4.8 8.1 8.1 0.602 300 1.1 1.1 0.213
-HOUR AVERAGE	ŝ	0.186 8/28/83 180 180 2461 1.7 5.2 0.332 1.7 0.332 0.332 0.248 0.248 0.248 0.508 0.508	0.205 7/28/83 5.4 9.1 9.1 9.1 9.2 9.1 9.1 9.2 170 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.522 0.535 0.522 0.522	9/ 6/83 9/ 6/83 8.2 9.1 9.1 0.910 5.7 5.7 5.7 0.950
HEST 1	5	0.188 6/15/83 200 200 5.5 3.44 5.5 3.44 5.5 5.5 5.5 6.2 7.3 2.00 2.20 0.229 0.229 0.409	0.215 6/14/83 4.8 4.8 8.1 7.0 5.3 7.0 5.3 7.0 7.0 7.0 7.0 0.909 0.909 0.909 0.131 0.131	0.190 8/17/83 5.20 8.8 8.8 8.8 8.8 5.9 5.9 5.9 5.9 0.624 0.624 0.624
3 TEN HIG		0.208 6/27/83 240 11.1 11.1 5.9 0.2905 5.9 0.799 7.3 0.799 7.3 0.799 7.3 0.799 8.6 0.563 0.563 0.563 0.952 0.952	0.224 8/27/83 220 8.7 8.7 8.7 3.6 0.945 0.945 0.945 0.733 0.733 0.733 0.733 0.733 0.733 0.726 0.728 0.928 0.928 0.978	0.209 6/15/83 200 6.2 0.784 0.784 0.784 0.784 0.621
1983	SAMPLES	214 DIR (DEG) VEL (MPH) SPD (MPH) SP	195 DATE DATE DATE DATE DATE DATE MPH) SPD (MPH) SPD (MP	209 DATE DATE VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO
	TOWN/SITE	BRIDGEPORT 123 METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE METEOROLOGICAL SITE	DANBURY 123 METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE METEOROLOGICAL SITE	EAST HARTFORD 003 METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY

-121-

1983 TEN HIGHEST 1-HOUR AVERAGE OZONE DAYS WITH WIND DATA

							WINU UAIA		UNITS :	PARTS PER	MILLION
TOWN/SITE	SAMPLES	-	2	3	4	5 L	9	7	8	6	10
METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) VPL (MPH) RATIO	220 6.3 300 5.3 0.409 0.409 0.409 0.409	210 5.9 0.985 5.7 0.973 0.973	220 7.4 8.5 0.909 7.2 0.909 0.942 0.942	90 56 0.909 160 0.6 0.6 0.131	220 9.52 0.967 8.550 0.968 8.550 0.968	220 6.5 7.9 260 6.0 6.0 6.2 0.978	160 4.4 6.8 0.65.8 6.9 6.9 0.842	210 210 6.4 6.4 241 240 7.2 0.910	0.97.8 0.97.8 0.97.8 0.97.8 0.914	180 2.7 2.7 0.417 2.10 1.6 1.6 0.385
GREENWICH 017 METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE METEOROLOGICAL SITE	177 DATE DATE DATE DATE DATE NERTIO DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) SPD (MPH) VEL (MPH) SPD (MPH)	0.269 6/15/83 6.2 6.2 7.9 7.9 2.5 0.784 7.9 2.8 0.728 0.929 0.929 0.929 0.929 0.929 0.409	$\begin{array}{c} 0.203\\7/12/83\\10.2\\10.2\\10.2\\10.2\\10.2\\10.2\\220\\1.4.6\\1.4.6\\1.2\\220\\0.868\\3.0\\220\\0.827\\0$	0.198 6/23/83 6/23/83 6.29 7.3 6.6 7.3 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.923 0.922 0.923 0.923 0.922 0.923 0.9220 0.922 0.9220 0.9220 0.9220 0.9220 0.9220 0.9220 0.92200 0.92200 0.92200 0.9220000000000	0.194 6/11/83 6/11/83 6/20 8.240 2240 8.1 0.453 0.970 8.1 0.970 9.0 0.922 0.922 0.922 0.922	0.188 9.25783 2.50 2.50 2.50 2.50 2.50 2.50 0.490 0.490 0.490 0.520 0.490 0.957 0.957 0.957 0.957	$\begin{array}{c} 0.180\\ 7/2/83\\ 230\\ 10.23\\ 10.22\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 6.9\\ 8.7\\ 0.725\\ 0.982\\ 0.982\\ 0.895\\ 0.895\\ 0.895\\ 0.895 \end{array}$	0.978 8/27/83 8/27/83 8.20 8.20 9.23 1.45 0.945 0.945 0.978 0.978 0.978 0.978 0.978	0.178 6/27/83 240 11.1 12.1 12.2 0.905 210 210 230 230 230 230 2563 8.6 0.952 0.952	0.973 8/11/83 5.20 5.20 0.624 0.949 0.949 0.949 0.949 0.949 0.949 0.949 0.949 0.949 0.973	$\begin{array}{c} 0.172\\ 6/14/83\\ 100\\ 8.18\\ 8.48\\ 8.13\\ 1.1\\ 1.1\\ 1.1\\ 1.1\\ 1.1\\ 1.1\\ 1.1\\ $
GROTON 005 METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE METEOROLOGICAL SITE	178 178 178 178 178 178 178 178 178 178	0.234 227/83 2110 11.1 12.2 0.2905 5.3 0.799 5.3 0.799 7.230 230 230 230 230 230 230 280 8.6 8.6 0.952	0.232 6/23/83 6/23/83 6/23/83 6/23/83 6/23/ 6/23 6/23 6/23 0.922 7/3 0.922 7/3 0.922 0.922 0.922 0.922 0.922 0.922 0.923 0.922 0.923 0.923 0.923 0.922 0.923 0.922 0.923 0.922 0.923 0.922 0.923 0.922 0.923 0.9270 0.9270 0.9270 0.9270 0.9270 0.9270 0.92700 0.92700 0.92700 0.92700000000000000000000000000000000000	0.223 7/15/83 270 270 3.10 3.290 3.200	0.222 9/10/83 250 250 10.65 10.65 0.891 250 0.981 11.8 11.8 11.8 11.9 290 290 290 290 290 290 290 290 11.9 290 290 290 290 290 290 290 290 290 29	0.215 9/11/83 250 7.88 0.784 4.4 4.4 290 8.5 0.915 8.0 8.0 8.0 0.900	0.208 7/12/83 10.20 10.2 2200 2200 2233 3.0 3.26 0.827 0.9827 0.9827 0.9827 0.9827 0.9827 0.9827 0.9827 0.9827 0.9827 0.9827 0.2220 0.2333 0.2327 0.8277 0.8777 0.8777 0.8777 0.8777 0.8777 0.8777 0.8777 0.8777 0.8777 0.8777 0.8777 0.8777 0.8777 0.8777 0.8777 0.8777 0.87777 0.87777 0.87777 0.8777777777777777777777777777777777777	0.200 8/20/83 11.6 14.1 0.823 0.923 0.911 0.913 0.913 0.984 0.984	0.200 8/27/83 220 8.7 8.7 230 230 230 14.9 14.3 14.3 230 14.3 230 14.3 220 0.945 7.5 0.945 0.928 0.928 0.978 0.978	0.200 230 230 230 230 230 5.8 0.914 190 190 5.8 0.922 6.0 0.922 0.922 0.921 0.922 0.921 0.921 0.921	0.196 230 230 230 230 230 280 280 280 280 280 280 280 280 280 28

(_____]

ĺ

-122-

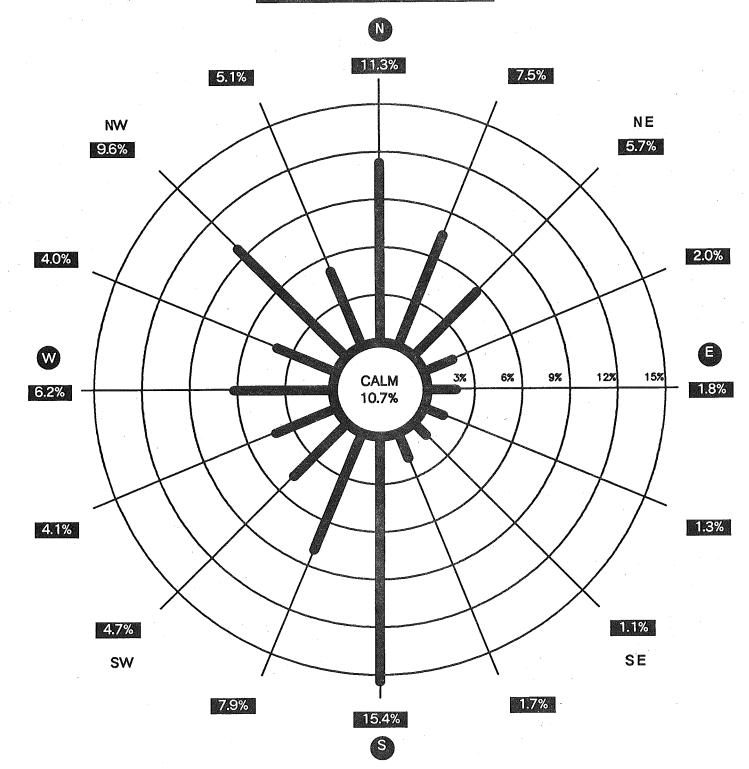
	198	3 TEN HI	GHEST 1-HO	-HOUR AVERAGE	OZONE	DAYS WITH	WIND DATA		: STINU	PARTS PER	MILLION
TOWN/SITE	SAMPLES	-	2	ю	4	۲. ۲	9	7	ø	6	10
MADISON 002 METEOROLOGICAL SITE NEMARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE	164 DATE DATE DATE DATE MPH) SPD (MPH) SPD (MP	0.244 6/27/83 240 11.1 11.1 5.7 0.2905 5.30 230 230 230 230 230 230 230 280 8.6 8.6 0.952 0.952	0.224 6/15/83 6.2 6.2 7.9 6.2 7.9 7.9 0.784 0.784 0.784 0.220 0.220 0.220 0.929 0.929 0.409 0.409	0.191 240 240 6.23/83 6.8 6.5 6.5 6.5 7.0 7.0 230 230 222 7.0 9.14 0.973 0.963 0.963	0.184 260 83 260 83 260 891 2891 2891 230 230 230 230 298 290 11.8 0.988 11.8 0.988 0.988 0.988 0.988 0.987 0.988 0.987 0.988 0.988 0.988 0.988 0.988 0.988 0.987 0.997 0.987 0.987 0.977 0.987 0.977 0.987 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.9777 0.9777 0.9777 0.9777 0.9777 0.97777 0.97777 0.97777777777	0.183 27/15/83 27/15/83 9.1 0.902 3.3 2.50 2.50 2.50 2.50 2.50 2.50 2.50 0.873 0.873 0.902 0.902 0.902 0.902 0.902	$\begin{array}{c} 0.165 \\ 6/19/83 \\ 3.6 \\ 3.6 \\ 3.6 \\ 3.6 \\ 3.6 \\ 2.20 \\ 2.20 \\ 2.20 \\ 2.20 \\ 2.20 \\ 0.909 \\ 0.900 \\ 0.909 \\ 0.900 \\ 0.90$	$\begin{array}{c} 0.165\\7/12/83\\250\\10.2\\10.2\\10.2\\200\\44.6\\14.6\\14.6\\5.9\\220\\5.9\\5.9\\3.6\\3.6\\0.827\\0$	9,11/83 250 7.84 7.84 7.84 7.84 7.84 7.84 7.8 7.8 7.8 7.8 8.0 8.0 8.0 0.900 0.900	0.162 6/30/83 7.9 7.9 7.9 7.10 7.10 6.4 6.4 6.4 6.4 7.10 0.918 0.9110 0.9110 0.9110 0.9110	0.152 8/17/83 5.20 0.624 0.949 0.949 0.949 0.949 0.949 0.949 0.949 0.949 0.949 0.949 0.949 0.973 0.973
MIDDLETOWN 007 METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE	209 DATE DATE DATE DATE DATE DATE DATE MPH) SPD (MPH) SPD (MPH) SP	0.216 6/15/83 6/15/83 6.2 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9	0.973 0.973 0.973 0.975 0.975 0.975 0.973 0.9750 0.9750 0.9750 0.9750 0.9750 0.9750 0.9750 0.9750 0.9750 0.9	0.190 2283 10.2 520 520 520 520 6.9 8282 0.982 250 0.982 0.892 0.895 0.895 0.895	9/177 9/19/83 230 9.5 9.5 0.922 8.3 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922	9/ 175 220 2200 8.2 8.2 9.1 7.2 0.950 7.2 0.950 1.2 0.950 1.2 0.912 1.2 0.950 1.2 0.950 1.2 0.950 1.2 0.950 1.2 0.952 1.2 0.052 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.	0.172 2.8/83 2.8/83 10.5 0.979 2.20 0.979 0.934 0.971 0.980 0.980 0.980 0.951 0.951 0.951	0.170 227/83 71.1 12.2 0.205 210 210 210 210 210 210 210 210 210 210	0.161 211/83 6/11/83 6/11/83 6/10 8.240 2240 8.1 8.1 8.1 0.970 0.970 0.970 0.970 0.970 0.970 0.971 0.971	0.159 7/12/83 7250 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.	0.147 9/10/83 9/10/83 9/10/83 9/10/83 0.886 0.9886 0.9886 0.9886 11.8 0.987 0.9970 0.9970 0.9970 0.9970 0.99700 0.99700 0.9970000000000
NEW HAVEN 123 METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE METEOROLOGICAL SITE	214 DATE DATE VEL (MPH) SPD (MPH) SPD (MPH) RATIO VEL (MPH) SPD (MPH) SPD (MPH)	0.204 9/6/83 220 8.2 9.1 0.910 5.7 5.7 0.950	0.199 6/27/83 240 11.1 12.2 0.205 5.9 0.739 0.799	0.197 230 230 10.2 11.5 0.2883 5.0 5.0 6.9 0.725	0.190 7/4/83 7.3 7.3 8.3 0.871 200 7.5 0.975	0.187 8/17/83 220 5.5 5.5 0.624 5.9 5.9 0.949	0.185 8/8/83 230 230 10.3 10.5 0.57 0.979 6.6 6.6 0.934	0.178 9/10/83 260 9.5 10.6 10.6 10.6 14.6 1.6 1.6 0.606	0.165 7/12/83 250 10.0 10.2 0.980 4.0 4.0 0.869	0.165 8/28/83 4.7 4.7 10.2 0.461 1.461 1.40 1.40 1.7 2.40 0.332 0.332	0.164 7/21/83 6.7 11.5 0.580 2.90 3.6 0.497

DILE AVE

-123-

TINUED
CON
-
21

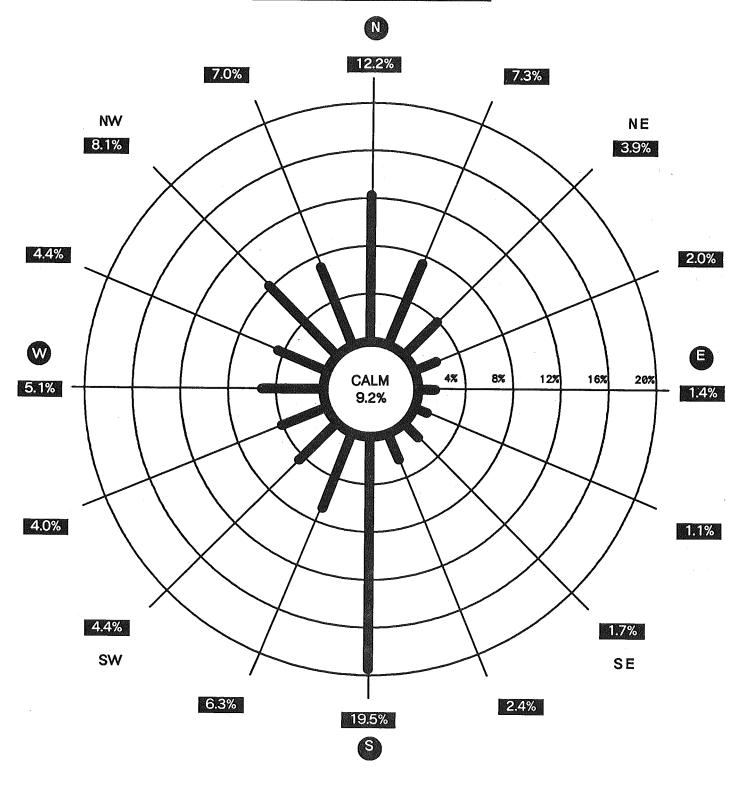
1983 TEN HIGHEST 1-HOUR AVERAGE OZONE DAYS WITH WIND DATA


							AINU UNIM		: STINU	PARTS PER	MITTION
TOWN/SITE	SAMPLES		N	3	4	ŝ	9	7	8	6	10
METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) VEL (MPH) RATIO RATIO	220 8.2 909 1.9 0.9 1.9 0.9 1.9 0.9 1.2	230 10.1 280 8.6 0.952 0.952	220 8.7 8.9 250 7.0 0.85 0.85 0.85 0.85 0.85	160 4.4 6.8 6.9 0.652 8.2 0.8 8:2 0.8 8:2 0.8 8:2	210 5.3 285 260 5.7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	220 7.2 0.980 250 7.5 0.951 0.951	230 6.5 6.5 6.5 7.5 6.5 290 71.8 71.8 0.987	220 5.9 6.2 6.2 230 230 3.0 0.827 0.827	60 6.25 80 80 0.508 0.508	230 6.7 7.5 0.925 280 4.7 0.721
STAFFORD 001 METEOROLOGICAL SITE NEMARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE METEOROLOGICAL SITE		0.197 8/26/8 226/8 226/8 0.966 8.3 0.957 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50	0.190 220 220 220 220 220 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.190 0.9550 0.9500 0.9500 0.9500 0.9500 0.9500 0.950000000000	0.170 7/29/83 7/29/83 13.3 13.3 13.3 13.3 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.7.4	0.165 8/17/83 2220 5.59 0.949 0.949 0.985 5.60 5.98 0.985 5.9 0.985 5.9 0.985 5.9 0.985 5.9 0.985 5.9 0.985 5.9 0.985 5.9 0.985 5.9 0.985 5.9 0.985 5.9 0.985 5.9 0.985 5.9 0.985 5.9 0.985 5.9 0.985 5.9 0.985 5.9 0.985 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.	0.155 2.2/83 2.2/83 0.2283 5.20 5.20 6.9 8.3 7.25 0.982 7.25 0.982 2.50 0.982 2.50 0.982 2.50 0.982 2.50 0.982 2.50 0.725 0.755 0.755 0.755 0.755 0.7550000000000	0.153 8/.838/83 230.879 10.5 0.979 0.979 0.934 0.934 0.934 0.980 0.975 0.7555 0.7555 0.7555 0.7555 0.75550 0.75550 0.75550 0.75550 0.75550 0.75550 0.75550 0.75550 0.75550 0.75550 0.75550 0.75550 0.75550 0.75550 0.755500 0.755500 0.75550000000000	0.152 6/14/83 4.8 100 8.1 100 8.1 100 100 0.5 100 0.909 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.151 0.652 0.652 0.652 0.652 0.5888 0.5888 0.58888 0.5888 0.5888 0.5888 0.58888 0.5888 0.5888 0.5888 0.5888 0.58888 0.5888 0.5888 0.5888 0.5888 0.5888 0.58888 0.58888 0.5888 0.5888 0.588888 0.58888 0.5	9/149 9/149 9/149/83 9/14 9/22 0.9220 0.9220 0.9220 0.9220 0.9220 0.9220 0.92200 0.920000000000	0.01148 0.01148 0.01100 0.05110 0.05110 0.0513833 0.0513833 0.051383 0.051383 0.051383 0.051383 0.051383 0.05138 0.050
STRATFORD 007 METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE BRIDGEPORT	RATI POIR RATI POIR RATI RATI RATI RATI				0.973 9.10/83 260 10.66 10.66 1.10/83 1.0/83 1.0/83 0.280 0.988 0.988 0.988 0.988 0.987 0.987				$\cdot \circ$ $\circ \cdot \circ \cdot \circ + \cdot \circ \circ \cdot \cdot \circ \circ \cdot \cdot \circ \circ \cdot \circ \circ \circ \circ$	0.991 0.189 0.189 0.189 0.458 0.458 0.458 0.458 0.458 0.458 0.458 0.220 0.909 0.529 0.569 0.569 0.569	·

()

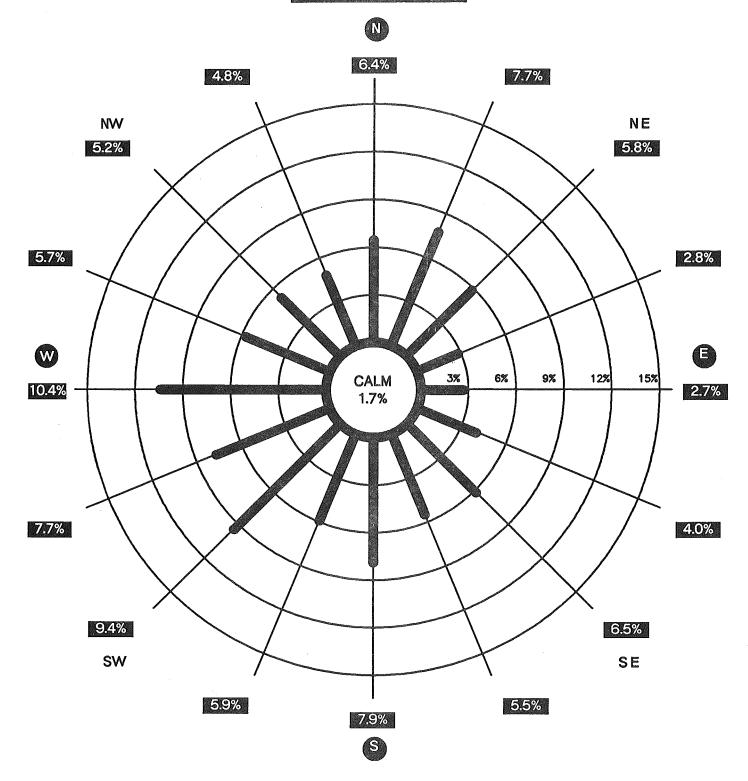
WIND ROSE FOR APRIL - SEPTEMBER 1982

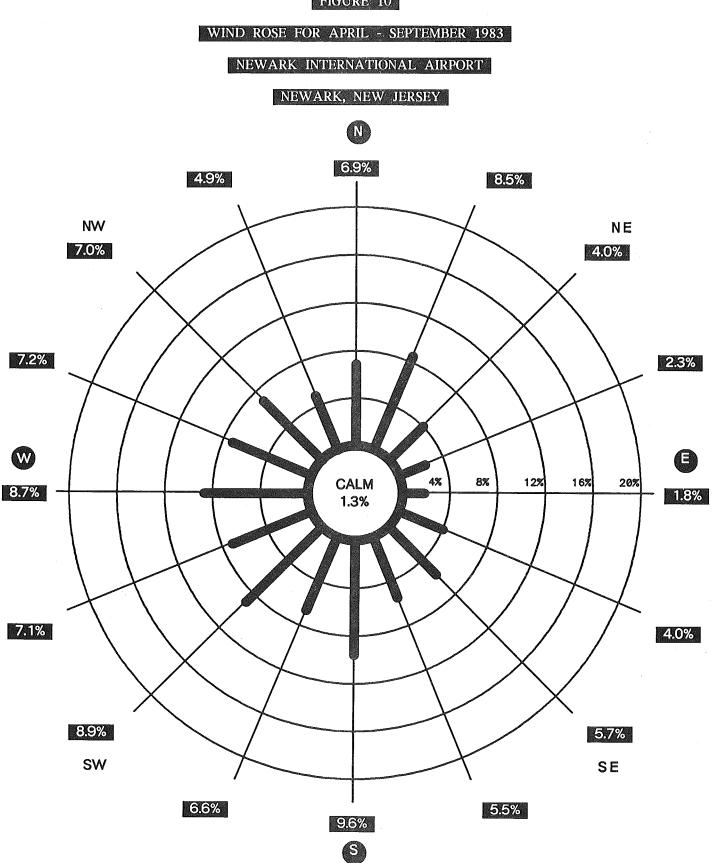
BRADLEY INTERNATIONAL AIRPORT


WINDSOR LOCKS, CONNECTICUT

WIND ROSE FOR APRIL - SEPTEMBER 1983

BRADLEY INTERNATIONAL AIRPORT


WINDSOR LOCKS, CONNECTICUT


WIND ROSE FOR APRIL - SEPTEMBER 1982

NEWARK INTERNATIONAL AIRPORT

NEWARK, NEW JERSEY

(.....)

V. NITROGEN DIOXIDE

Health Effects

Nitrogen dioxide (NO₂) is a toxic gas with a characteristic pungent odor and a reddish-orange-brown color. It is highly oxidizing and extremely corrosive.

Nitrogen dioxide is not emitted into the atmosphere to any great extent by man-made sources. However, its presence in the atmosphere is accounted for by the photochemical oxidation of nitric oxide (NO), large amounts of which are emitted into the air by high temperature combustion processes. Industrial furnaces, power plants and motor vehicles are the primary sources of nitric oxide emissions.

Exposure to NO₂ is believed to increase the risks of acute respiratory disease and susceptibility to chronic respiratory infection. NO₂ also contributes to heart, lung, liver and kidney damage. At high concentrations, this pollutant can be fatal. At lower levels of 25 to 100 parts per million, it can cause acute bronchitis and pneumonia. Occasional exposure to low levels of NO₂ can irritate the eyes and skin.

Other effects of nitrogen dioxide are its toxicity to vegetation and its ability to combine with water vapor to form nitric acid. Furthermore, NO₂ is an essential ingredient, along with hydrocarbons, in the formation of ozone.

Conclusions

Nitrogen dioxide (NO₂) concentrations at all monitoring sites were well below the NAAQS for NO₂ in 1983. This was the second full year the DEP used continuous electronic analyzers to measure NO₂ levels. NO₂ trend analysis or comparisons can be made when two full years of data are available at a monitoring site. This condition was satisfied at only one site: East Hartford 003.

Sample Collection and Analysis

The DEP Air Monitoring Unit used continuous electronic analyzers employing the chemiluminescent reference method to continuously measure NO₂ levels.

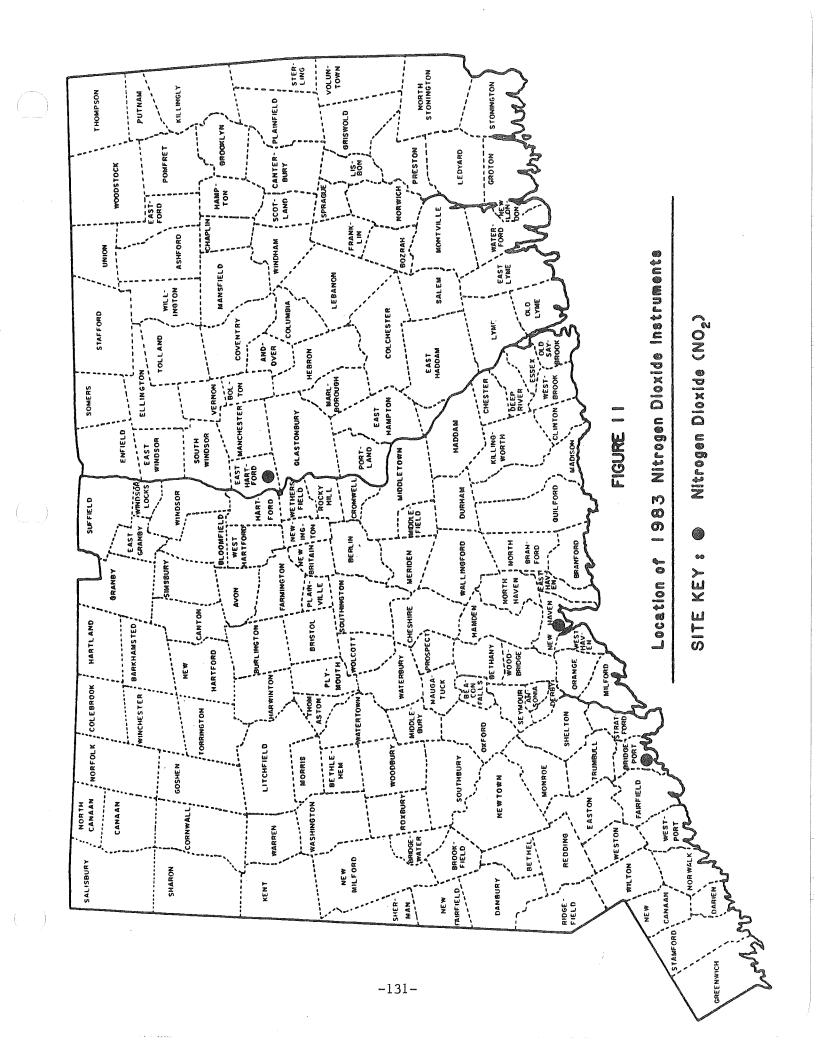
Discussion of Data

Monitoring Network – There were three nitrogen dioxide monitoring sites in 1983 (see Figure 11). The sites – Bridgeport 123, East Hartford 003 and New Haven 123 – were located in three urban areas in order to obtain data alongside ozone monitors.

Precision and Accuracy – Sixty-seven precision checks were made on the NO₂ monitors in 1983, yielding 95% probability limits ranging from -13% to +15%. Accuracy is determined by introducing a known amount of NO₂ into each of the monitors. Four audits for accuracy were conducted on the monitoring network in 1983. Three different concentration levels were tested on each monitor: low, medium, and high. The 95% probability limits for the low level test ranged from -10% to +15%; those for the medium level test ranged from -4% to +1%; and those for the high level test ranged from -9% to +3%.

Historical Data – The DEP's historical file of annual average nitrogen dioxide data from gas bubblers for 1973–1980 is available in the 1980 Air Quality Summary.

Annual Averages – The annual average NO₂ standard of 100 ug/m³ was not exceeded in 1983 at any site in Connecticut (see Table 22). In 1983 three sites had sufficient data to compute valid arithmetic means. However, comparisons with the 1982 annual averages are not possible because of the incomplete nature of the 1982 data. This is also true of 1981, except for East Hartford 003. In fact, the only comparison of annual NO₂ levels that can be made is at East Hartford 003 for the years 1981 and 1983. The arithmetic mean NO₂ concentration at the site increased by 7.8 ug/m³ or 22% between those two years.


Statistical Projections – The format of Table 22 is the same as that used to present the TSP and sulfur dioxide data. However, Table 22 gives the annual arithmetic mean of the hourly NO₂ concentrations to allow direct comparison to the annual NO₂ standard. The 95% confidence limits about the arithmetic mean for each site demonstrate that it is unlikely that any site exceeded the primary annual standard of 100 ug/m³ in 1983.

10-High Days with Wind Data – Table 23 presents for each site the ten days in 1983 when the highest hourly NO₂ readings occurred, along with the associated wind conditions for each day. (See the discussion of Table 11 in the TSP section for a description of the original use of the wind data.)

According to National Weather Service local climatological data recorded at Bradley Airport, 15 of the 21 days listed in the table had more then 50% of the possible sunshine. Of the six remaining days, four followed days when the percent of possible sunshine exceeded 80%. This is interpreted to confirm the importance of photochemical oxidation in the formation of NO₂.

High NO₂ levels occurred most often (i.e., 40% of the time) during the winter months and when the winds were southwesterly. Six out of the seven high NO₂ days that occurred at at least 2 of the sites had persistent winds out of the southwest quadrant. And, on average, 60% of the days tabulated for each site had persistent southwest winds.

Given the above observations and the fact that two of the three NO₂ sites are located on the coast of Connecticut, it appears that a combination of pollutant transport and a high percent of possible sunshine (both of which occur on days with persistent southwest winds) tend to produce high NO₂ levels in Connecticut.

1981-1983 NITROGEN DIOXIDE ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

TABLE 22

Town Name	Site	Year	Samples	Arithmetic Mean	95-PCT-Limits <u>Lower</u> <u>Upper</u>	Limits <u>Upper</u>	Standard Deviation
Bridgeport	123	1981	4802*	50.3	49.8	50.8	26.743
Bridgeport	123	1982	6480*	53.7	53.3	54.1	30.874
Bridgeport	123	1983	8328	56.4	56.2	56.6	34.704
East Hartford	003	1981	6826	35.7	35.4	36.0	22 546
East Hartford	003	1982	6521*	36.5	36.2	36.8	22.454
East Hartford	003	1983	8576	43.5	43.4	43.6	31.298
Greenwich	017	1981	1644*	32.6	31.4	33.8	26.931
Greenwich	017	1982	2432*	36.5	35.5	37.5	29.416
Hartford	123	1981	1644*	59.0	57.7	60.3	28.766
Madison	002	1981	1618*	26.4	25.3	27.5	25.859
Madison	002	1982	1775*	17.7	17.1	18.3	14.002
New Haven	123	1981	4315*	49.3	48.8	49.8	24.353
New Haven	123	1982	6420*	54.2	54.0	54.4	17.185
New Haven	123	1983	17971	62.8	62.7	62.9	13.541
Stratford	007	1981	3143*	26.6	26.0	27.2	22.057
Stratford	007	1982	3975*	28.0	27.4	28.6	25.275
	-	Ľ		•			

* Sampling not random or of insufficient size for representative annual statistics

N.B. The arithmetic mean and standard deviation have units of $\text{ug}/\text{m}^3.$

~ (

	1983	TEN HI	GHEST 1-H	-HOUR AVERAGE	GE NO2 DAYS	WITH	WIND DATA		UNITS :	PARTS PER	MITLION
TOWN/SITE	SAMPLES	٢	2	ŝ	4	£	Q	7	ω	6	10
BRIDGEPORT 123 METEOROLOGICAL SITE NETEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT BRIDGEPORT METEOROLOGICAL SITE BRIDGEPORT	8328 01R 061E 047E 047E 061 0412 061 018 006 018 006 0000 0000 0000 0000 0000 00000 0000 0000 000000	$\begin{array}{c} 0.123\\ 10.123\\ 720\\ 720\\ 8.1\\ 8.1\\ 180\\ 5.6\\ 0.959\\ 0.920\\ 0.920\\ 0.933\\$	0.122 270 270 270 5.70 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 0.966 0.969 0.969 0.823 0.823	$\begin{array}{c} 0.120\\ 11/20/83\\ 5.6\\ 0.929\\ 0.657\\ 0.657\\ 0.657\\ 0.698\\ 0.898\\ 0.898\\ 0.898\\ 0.680\\ 0.680\\ 0.680\\ \end{array}$	0.119 2/11/83 6.7 0.909 3.00 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.2 0.888 0.888 0.994 0.994	0.119 2/28/83 4.8 0.5.9 0.821 0.821 0.821 0.821 0.821 0.821 0.821 0.920 0.949 0.949	0.105 2/21/83 8.4 6.9 6.0 6.0 6.0 6.0 6.0 5.3 0.873 0.873 0.873 0.873 0.873 0.873	0.104 11/2/83 2.2 0.416 190 4.6 0.997 2.7 2.7 2.7 2.7 2.7 0.582 6.3 0.582 6.3 0.974 0.974	$\begin{array}{c} 0.102 \\ \pm /29/83 \\ 5.2 \\ 5.2 \\ 5.2 \\ 5.2 \\ 5.2 \\ 5.2 \\ 5.2 \\ 5.2 \\ 5.2 \\ 5.2 \\ 5.2 \\ 0.559 \\ 0.857 \\ 0.986 \\ 0.986 \\ \end{array}$	0.102 9/19/83 9.5 9.5 9.5 190 5.8 8.3 8.3 8.3 8.3 0.922 0.922 6.0 0.922 0.922 0.922	0.100 1/27/83 14.5 4.5 7.0 250 2500 4.2 2600 2600 2600 2600 5.8 0.6887 0.887
EAST HARTFORD 003 METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT BRIDGEPORT BRIDGEPORT BRIDGEPORT	8576 DATE DATE DATE DATE VEL (MPH) SPD (MPH) SPD (MPH) SPD (MPH) RATIO RATIO RATIO RATIO RATIO RATIO RATIO RATIO RATIO RATIO RATIO RATIO RATIO RATIO RATIO RATIO RATIO RATIO RATIO	$\begin{array}{c} 0.130\\ 2/14/83\\ 6.7\\ 6.7\\ 7.3\\ 0.909\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.4$	0.086 170 170 170 170 170 170 170 170	0.085 2/21/83 230 230 8.4 8.4 8.4 0.938 6.0 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.260 0.260 0.220 0.921	0.084 3/ 1/83 20 11.5 0.982 5.8 0.853 0.853 0.853 0.853 0.853 0.853 0.853 0.853 0.853 0.853 0.853 0.853 0.853 0.971 0.971 0.461 0.461	0.083 2/15/83 330 5.9 0.927 3.50 3.50 3.50 0.887 3.50 0.887 3.50 0.867 0.867 0.867 0.926 0.867 0.926 0.926 0.926	0.081 2/28/83 20081 5.00 2004 4.8 0.821 4.8 0.821 4.8 0.821 4.8 0.971 0.971 0.919 0.919 0.919 0.919 0.919	$\begin{array}{c} 0.081\\ 9/9/83\\ 240\\ 240\\ 7.6\\ 0.738\\ 4.0\\ 1.556\\ 0.738\\ 6.8\\ 0.738\\ 6.8\\ 0.738\\ 6.8\\ 0.738\\ 0.738\\ 0.738\\ 0.738\\ 0.738\\ 0.738\\ 0.738\\ 0.738\\ 0.738\\ 0.738\\ 0.738\\ 0.738\\ 0.738\\ 0.738\\ 0.738\\ 0.936\\ 0$	0.078 10/4/83 220 7.1 7.1 7.1 0.88.1 5.6 0.959 0.959 0.950 0.950 0.950 0.953 0.920 0.920 0.920 0.933	0.077 2/16/83 70 5.9 0.75.9 0.1100 0.1100 0.1100 0.1100 0.1100 0.1100 0.1100 0.1100 0.1100 0.1100 0.1100 0.1100 0.1100 0.100000000	0.075 4/27/83 5.40 6.6 6.6 8.1 0.815 3.60 2.20 2.80 8.3 0.976 3.00 3.00 3.00 0.945 0.945
NEW HAVEN 123 METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE METEOROLOGICAL SITE BRADLEY	7971 DATE DATE DATE DATE SPD (MPH) RATIO DTR (DFG) V VEL (MPH) SPD (MPH) SPD (MPH) SPD (MPH)	$\begin{array}{c} 0.165\\ 9/10/83\\ 2.60\\ 9.5\\ 10.69\\ 1.0.69\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 0.606\end{array}$	$\begin{array}{c} 0.129\\ 10/24/83\\ 2.12\\ 7.1\\ 8.1\\ 8.1\\ 180\\ 5.6\\ 5.9\\ 0.959\end{array}$	0.113 9/19/83 230 9.5 10.4 190 5.8 5.8 0.922	0.110 6/19/83 220 220 3.6 7.8 0.458 2.4 4.0 4.0 0.608	0.106 6/13/83 2.4 5.2 0.455 300 1.6 1.6 0.523	0.106 10/9/83 9.6 9.8 0.977 6.6 6.6 0.865	0.105 2/21/83 2/21/83 8.4 8.9 8.9 0.938 6.0 6.0 6.0 0.870	0.105 3/15/83 2.80 7.5 11.6 0.645 4.2 4.2 4.2 0.553	0.105 4/28/83 170 3.9 6.2 0.636 3.9 3.9 0.652 0.652 0.652	0.102 4/29/83 5.2 0.569 5.2 5.2 5.2 65.2 0.781

(_____)

TABLE 23, CONTINUED

1983 TEN HIGHEST 1-HOUR AVERAGE NO2 DAYS WITH WIND DATA

	i k							_	: STINU	PARTS PER	WILLION
TOWN/SITE	SAMPLES	-	N	£	4	υ.	9	7	8	6	10
METEOROLOGICAL SITE DIR (DEG) BRIDGEPORT VEL (MPH) (SPD (MPH) (RATIO METEOROLOGICAL SITE DIR (DEG) WORCESTER VEL (MPH) 1 SPD (MPH) 1	DIR (DEG) T VEL (MPH) SPD (MPH) RATIO DIR (DEG) R VEL (MPH) SPD (MPH)	230 6.5 290 290 11.8	230 6.6 5.2 5.2 5.2	230 8.3 0.922 6.0 6.0	220 220 2290 5.2 5.2	250 6.2 320 5.8 5.8	20 8.8 0.949 6.7 8.6	230 5.3 6.6 6.6 7.2	0.300 3.20 3.20 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.32000 0.32000 0.320000000000	200 200 233 230 2330 230 230 230 230 230	0.8579 88759 9.8799 9.8799 9.8779 9.77000 9.77000 9.77000 9.77000 9.77000 9.77000 9.77000 9.77000 9.77000 9.77000 9.77000 9.770000000000
	RATIO	0.987	0.933	0.991	0.569	0.669	0.774	0.921	0.686	0.909	0.986

ĺ

VI. CARBON MONOXIDE

Health Effects

Carbon monoxide (CO) is a colorless, odorless, poison gas formed when carbon-containing fuel is not burned completely. It is by far the most plentiful air pollutant. Fortunately, this deadly gas does not persist in the atmosphere. It is apparently converted by natural processes to harmless carbon dioxide in ways not yet understood, and this is done quickly enough to prevent any general buildup. However, CO can reach dangerous levels in local areas, such as city-street canyons with heavy auto traffic and little wind.

Clinical experience with accidental CO poisoning has shown clearly how it affects the body. When the gas is breathed, CO replaces oxygen in the red blood cells, reducing the amount of oxygen that can reach the body cells and maintain life. Lack of oxygen affects the brain, and the first symptoms are impaired perception and thinking. Reflexes are slowed, judgement weakened, and drowsiness ensues. An auto driver breathing high levels of CO is more likely to have an accident; an athlete's performance and skill drop suddenly. Lack of oxygen then affects the heart. Death can come from heart failure or general asphyxiation, if a person is exposed to very high levels of CO.

Conclusions

The eight-hour National Ambient Air Quality Standard of 9 parts per million (ppm) was exceeded at all five carbon monoxide monitoring sites in Connecticut during 1983. The standard was exceeded once at Bridgeport 004, New Haven 007 and Stamford 020, twice at New Britain 002, and three times at Hartford 012. In 1982, two exceedances occurred at both Hartford 012 and Stamford 020 and three exceedances occurred at New Britain 002. No site measured an exceedance of the one-hour standard of 35 ppm in 1983.

In order to put the monitoring data into proper perspective, it must be realized that carbon monoxide concentrations vary greatly from place-to-place. More than 95% of the CO emissions in Connecticut come from motor vehicles. Therefore, concentrations are greatest in areas of traffic congestion. The magnitude and frequency of high concentrations observed at any monitoring site are not necessarily indicative of widespread CO levels.

The CO standards are likely to be exceeded in any city in the state where there are areas of traffic congestion. However, as federally-mandated controls reduce emissions from new motor vehicles, and as Connecticut's SIP control strategies are implemented, there should continue to be a decrease in the number of such areas; the remaining areas should shrink in size and have lower CO levels.

Unlike SO₂, TSP and O₃, elevated CO levels are often associated with non-southwesterly winds, indicating that this pollutant is more of a local-scale (not regional-scale) problem.

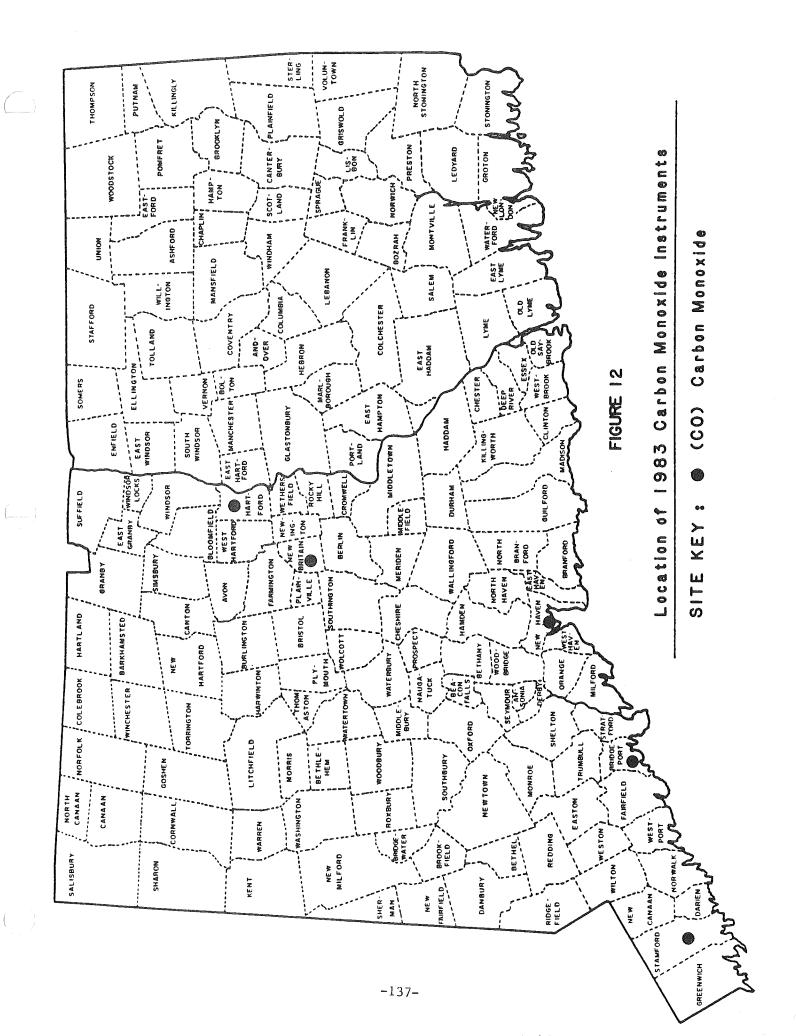
Method of Measurement

The DEP Air Monitoring Unit uses instruments employing a non-dispersive infrared technique to continuously measure carbon monoxide levels. The instantaneous concentrations are recorded on strip charts from which hourly averages are extracted. Due to the relative inertness of CO, a long sampling line can be used without the danger of scrubbing. The most important consideration in the measurement of CO is the placement of the sampling probe inlet; that is, its proximity to traffic lanes.

Discussion of Data

Monitoring Network – The network in 1983 consisted of five carbon monoxide monitors: Bridgeport 004, Hartford 012, New Britain 002, New Haven 007, and Stamford 020. They are all located in urban areas. All sites are located west of the Connecticut River, with three of them in coastal towns (see Figure 12).

Precision and Accuracy – The carbon monoxide monitors had a total of 128 precision checks during 1983. The resulting 95% probability limits were -8% to +11%. Accuracy is determined by introducing a known amount of CO into each of the monitors. Six audits for accuracy were conducted on the monitoring network in 1983. Three different concentration levels were tested on each monitor: low, medium and high. The 95% probability limits for the low level test ranged from -7% to +6%; those for the medium level test ranged from -4% to +5%; and those for the high level test ranged from -5% to +2%.


8-Hour and 1-Hour Averages – Hartford 012 and New Britain 002 had second high CO concentrations exceeding the 8-hour standard of 9 ppm, which means that the standard was violated at these sites in 1983. This was also true in 1982, except that Stamford 020 violated the standard as well. Regarding the highest 8-hour averages at each site, none decreased from 1982 to 1983, and all but the one at Stamford 020 increased significantly. The second highest values at each site were also higher in 1983 than in 1982, except at Stamford 020 which had a lower second high concentration.

As for 1-hour averages, no site in the state recorded a value exceeding the primary 1-hour standard of 35 ppm. Bridgeport 004, Hartford 012 and New Haven 007 recorded a highest 1-hour value greater than the year before. Second high 1-hour values were higher in 1983 than in 1982 at Bridgeport 004 and Hartford 012 and lower at the other three sites.

The maximum and second high CO concentrations at each site are presented in Table 24. Table 25 presents highs and a tally of the number of times the standards were exceeded at each site. Seasonal variations in CO levels can be observed using this table.

10-High Days with Wind Data – Table 26 lists for each site the ten days in 1983 when the 1-hour CO averages were highest. The wind data associated with these high readings are also presented. (See the discussion of Table 11 in the TSP section for a description of the origin and use of these wind data.)

The high CO levels tended to occur during the colder months at all five CO sites. Low atmospheric mixing heights and stable atmospheric conditions are two reasons CO levels are high during the fall and winter. A noteworthy feature of the high CO days is that the persistence of a wind is more important than the direction to which or from which it is blowing. Since 95% of the CO emissions in Connecticut come from motor vehicles, it is likely that the high CO levels are caused when persistent winds are blowing CO emissions from the direction of nearby roads toward the monitors.

1983 CARBON MONOXIDE STANDARDS ASSESSMENT SUMMARY

TOWN-SITE	MAXIMUM 8-HOUR RUNNING AVERAGE	TIME OF MAXIMUM 8-HOUR RUNNING 1 AVERAGE	2ND HIGH 8-HOUR RUNNING AVERAGE	TIME OF 2ND HIGH 8-HOUR RUNNING 1 <u>AVERAGE</u>	MAXIMUM 1-HQUR AVERAGE	TIME OF MAXIMUM 1-HOUR 2 AVERAGE	2ND HIGH 1-HOUR AVERAGE	TIME OF 2ND HIGH 1-HOUR 2 AVERAGE
Bridgeport-004	9.6	2/14/22	7.5	12/9/2	14.0	2/14/17	13.8	2/14/19
Hartford-012	12.8	2/15/1	10.3	2/14/14	19.3	2/14/23	17.5	2/14/22
New Britain-002	11.3	2/14/24	11.0	2/14/13	19.2	2/16/9	17.6	2/14/9
New Haven-007	9.5	2/14/13	8.3	11/10/3	15.5	2/14/10	13.3	1/2/17
Stamford-020	9.7	2/14/22	8.7	2/14/5/5	15.2	1/23/19	14.4	2/14/20
1								

Time of 8-hour averages is reported as follows: month/day/hour (EST), specifying the end of the 2 8-hour average period Time of 1-hour averages is reported as follows: month/day/hour (EST), specifying the end of the 1-hour average period

N.B. CO averages are expressed in terms of parts per million (ppm).

1983 CARBON MONOXIDE SEASONAL FEATURES

			х. т. Х		.,	te de la constante de la const La constante de la constante de			• • • • • •				- <u>-</u>			т ла н., т		
								-								i ,		
DEC.	11.4	7.5	o		8.4	7.2	0	11.0	6.5	. 0		10.0	ດ 2 2		••	7.8	ະ ຄູ	0
NOV.	6.9	6.3	0		10.7	6.2	0	10.5	5.9	0		13.1	8.3	O		10.9	8.0	ο
<u>0CT.</u>	8.0	6.1	0		8.9	5.7	O	9.2	ຍ. 1 ເ	٥		7.8	5.8	0		12.7	B.3	0
SEPT.	7.8	6.0	O		8.8	5.6	ала 1947 — Ала О	9.1	ດ. ຕ			6.8	4.6	0		8.2	5.0	0
AUG.	5.5	3.6	0		8.1	5.2	0	6.2	3.8	0		б	4.2	o		6.7	5.3	0
<u>10LY</u>	4.8	3.3	0	. !,	6.9 2	4.7	0	10.7	8.1	٥		5.3	2.9	0	• .*	8.5	6.4	0
JUNE	4.2	3.1	0		13.1	4.2	0	6.8	5.7	0		4.7	3.2	0		7.7	5.1	0
MAY	4.4	3.6	0		9.4	4.6	o	7.1	5.7	0		5.1	2.7	0		6.5	4.6	0
APRIL	8.1	ີ້	0	•	6.8	5.9	O	8.0	5.5	0		6.1	4.7	0		11.7	7.8	0
MARCH	7.0	4.8	0		8.8	6.7	0	11.5	в. З	0		5.7	6 4		÷.	9.6	6.6	0
FEB.	14.0	9 . 6	٣		19.3	12.8	2	19.2	11.3	7		15.5	9.5	-		14.4	9.7	
JAN.	6°6	6.8	o		12.4	10.2	 .	13.6	∵ ຕ ອ	0		13.3	7.9	0		15.2	в.3	0
	Max. 1-Hr.	Max. Running 8-Hr.	# Times 8-Hr. Exceeded		Max. 1-Hr.	Max. Running 8-Hr.	# Times 8-Hr. Exceeded	Max. 1-Hr.	Max. Running 8-Hr.	# Times 8-Hr. Exceeded	•	Max. 1-Hr.	Max. Running 8-Hr.	# Times 8-Hr. Exceeded		Max. 1-Hr.	Max. Running 8-Hr.	# Times 8-Hr. Exceeded
TOWN-SITE	Bridgeport -004	t			Hartford -012	N 		New Britain 	N 000			New Haven				Stamford -non)	

N.B. The CO concentrations are in terms of parts per million (ppm)

		ι.	1983 TEN H	ICHEST 1	-HOUR AVERAGE	8	DAYS WITH V	WIND DATA		. STINI	BABTC DED	
TOWN	TOWN/SITE	SAMPLES	-	N	۳.		'n	9	7	~ ~ ~	, 6	10 10
BRID	BRIDGE PORT 004 METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE METEOROLOGICAL SITE	8539 BJR (DATE DATE DATE DATE DATE DATE DATE DATE	2/14.0 2/14.0 6.7 6.7 7.3 6.7 7.3 0.909 0.44 0.44 0.44 0.44 0.44 0.44 0.4	12/ 8/83 9.22 9.28 9.29 9.42 9.11 9.29 7.3 7.3 7.3 0.906 15.1 0.906 0.988 0.988 0.988	0.851 0.769 0.769 0.769 0.769 0.769 0.769 0.769 0.769 0.769 0.769 0.769 0.719 0.071 0.071 0.848 0.848	11/ 2.83 2.22 2.22 2.22 0.416 0.416 0.582 0.583 0.583 0.583 0.583 0.583 0.583 0.583 0.583 0.5720 0.5720 0.5720 0.5720 0.5720 0.5720 0.5720 0.57200 0.57200 0.57200 0.57200000000000000000000000000000000000	2/28/83 2/28/83 2200 5.9 0.520 0.9710 0.97100 0.9710 0.97100000000000000000000000000000000000	11/ 1/83 11/ 1/83 140 2.60 2.60 0.194 0.156 0.10	4/15/83 130 1330 14.4 150 150 150 15.0 15.0 15.0 15.0 15.0 130 130 130 130 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.952 0.0520000000000	0.17/83 10/17/83 0.486 0.486 0.446 0.425 0.446 0.425 0.425 0.425 0.925 0.925 0.446 0.925 0 00000000000000000000000	10/31/83 230 5-3 0.805 0.805 1-3 0.805 230 230 230 0.899 230 230 0.899 230 0.957 0.957 0.957 0.957	9/7.8 9/30/83 30 30 30 30 30 13.8 0.994 0.994 0.988 0.988 0.988 0.988 0.988
НАКТ	HARTFORD 012 METEOROLOGICAL SITE METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT BRIDGEPORT METEOROLOGICAL SITE METEOROLOGICAL SITE	8365 DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) SPD (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (2/14/83 2/14/83 6.7 6.7 7.3 6.7 7.3 0.909 0.44 0.900 0.44 0.44 0.44 0.44 0.	6/26/83 6/26/83 2.4 2.4 2.4 2.6 3.5 0.723 3.9 0.723 0.7200 0.723 0.7200000000000000000000000000000000000	1/21/83 20 20 20 20 20 20 20 20 20 20 20 20 20	12.2 30 30 7.1 7.1 7.1 0.946 0.946 0.3 60 60 5.0 0.103 60 60 60 60 60 7.3 0.103 0.836 0.836 0.455 0.455	$\begin{array}{c} 11 \\ 10.7 \\ 180 \\ 180 \\ 180 \\ 1.5 \\ 1.5 \\ 0.80 \\ 0.68 \\ 0.881 \\ 0.881 \\ 0.890 \\ 0.890 \\ 0.891 \\ 0.890 \\ 0.800 \\$	2/15/5 330 5.9 5.9 5.9 0.927 330 0.927 330 0.927 330 0.927 0.867 0.867 0.926 0.932 0.932 0.932 0.932	2/16/83 70 4.4 0.751 0.751 0.751 0.751 0.751 0.751 0.751 0.751 0.751 0.752 0.948 0.948 0.60 0.643	9.4 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 190 190 190 190 190 190 190 190 190 190	7/ 3/83 230 1.6 0.242 270 6.5 0.662 0.662 0.953 0.972 0.953 0.953	2/13/83 60 1.5 0.311 0.311 0.192 0.540 0.66 5.1 0.655 0.788 0.788
NEK	BRITAIN 002 METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE METEOROLOGICAL SITE	7818 DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	2/16.2 2/16/83 75.9 0.751 0.751 0.110 0.117	2/11.6 2/14/83 30 6.7 7.3 0.909 0.4 0.4 0.4 1.000	$\begin{array}{c} 13.6\\1/21/83\\20\\20\\1.6\\0.959\\0.959\\0.348\\0.348\end{array}$	11.5 11.5 11.5 11.5 0.982 0.982 0.853 0.853	11/5/83 200 8.4 8.4 0.974 0.974 2.3 0.785 0.785	$\begin{array}{c} 11.0\\ 12/22/83\\ 18.1\\ 1.1\\ 12.1\\ 12.1\\ 12.1\\ 10\\ 10\\ 10\\ 0.870\\ 0.870\end{array}$	77/56/83 330 830 330 10.8 14 5.2 7.2 0.844	3/10.6 3/10/83 10.1 10.6 0.952 20.952 10.1 10.1 10.1 10.1	$\begin{array}{c} 10.5 \\ 11/9.83 \\ 4.4 \\ 4.4 \\ 5.5 \\ 0.800 \\ 1.5 \\ 1.5 \\ 0.768 \\ 0.768 \end{array}$	2/17/83 2/17/83 7.6 8.56 0.856 0.856 4.9 0.675
· ()					· ()						()	

-140-

	-	1983 TEN H	ICHEST 1-	-HOUR AVERAGE	00	DAYS WITH W	WIND DATA		UNITS :	PARTS PER	MILLION
TOWN/SITE	SAMPLES	-	~	ε	4	Ъ	9	2	80	6	10
METEOROLOGICAL SITE BRIDGEPORT			ω		11	ц. 7.	10. 10.	34 7.	2.7.8	$\sim \cdot \cdot \rangle$	
METEÓROLOGICAL SITE WORCESTER	RATIO DIR (DEG) VEL (MPH) SPD (MPH) BATIO	0.948 60 2.9 4.5	0.888 250 6.4 6.5	0.933 330 7.6 7.9	•	0.953 190 3.5 4.7	•	0.979 310 8.7 8.9	•	0.881 5.5 6.2	•
		0.043	7	06.	0.40	ŝ	ŝ	-	2	5	N
NEW HAVEN 007	8145 DATF	15.5 2/14/83	13.3 1/ 5/83	13.1 11/ 9/83	12.1	•	10.1	10.0 12/ 8/83	9.8	9.6	9.5
METEOROLOGICAL SITE NEWARK	VEL VEL		\sim	5	5	530 8530 8530	1.50	96 96	7.7	2.0	N 40
	RATI	0	. ~ `	.00	· 5	$\cdot \infty$	4.9	9.8 0.942	· 5		• -
METEURULUGICAL STIE BRADLEY			200 2.3	\sim	o • •	\circ .	→ •	290 9.2 10.1	. .	260 0:7 2:0	б •
METEOROLOGICAL SITE	DIR	1.000	0.785	0.768	0.769	3 1.	0.192 240	0.911	0.849	.05	0.997 200
BRIDGEPORI	SPD		- <u></u> -		0 m 0	رم م	ж. т.	~ 80	.9.	0.7	4 5
METEOROLOGICAL SITE WORCESTER	VEL	0.888 250 6.4	0.953 190 3.5	$\sim \sim \alpha$	· # -	~ 9 .	70 ·	0.906 270 15.1	∞. 	0.156 230 2.5	ഹ
	SPD (MPH) RATIO	6.5 0.994	• က	• 6	4.3 0.848	• 0	• 60	98.	· · က	6	· · ト
STAMFORD 020	7187 DATE	15.2 1/23/83	14.4 2/14/83	• • •	12.1 2/ 1/83	11.7 4/28/83	11.5 1/ 7/83	11.4 2/17/83	11/ 1/83	• 0	• ^
METEOROLOGICAL SITE NEWARK	VEL		. Or	∞ .	28.7.	N •	.16			· ? .	3.0
METEOROLOGICAL SITE	RATI	0.915	0.909	$\cdot \odot \infty$	· ~ ~	· m C	· 5	$ \begin{array}{c} 8.9\\ 0.856\\ 30 \end{array} $	4./ 0.416 260	, 60% 	∙ထ⊂
BRADLEY	VEL SPD	5.6	0.4	~-~. ~-~.	6.	~~ v	Ω. π	4.9)] • •	· · ·
METEOROLOGICAL SITE BRIDGEPORT	RATIO DIR (DEG) VEL (MPH)	0.982 60 10.9	1.000 2.9	0.485 230 3.9	0.910 290 3.9	0.652 200 2.8	0.849 230 6.1	0.675 50 8.2	0.194 50 0.7	0.851 330 8.1	0.925 200 2 2
	SPD RAT1		3.3 0.888	• 0	• = =	• ∞	• ∞	9.9 0.829	ഹ	· • <>	• • - 7
METEOROLOGICAL SITE WORCESTER	DIR Vel		250 6.4	ω·	σ.	∞ +	+ +	· 0	5. 23. 23.	32	<u>~</u> ~
	SPD (MPH) RATIO	4.2 0.687	6.5 0.994	- 5	۰ω	•0	• က	5.8 0.823	•0	6. 97	٠ŋ

TABLE 26, CONTINUED

 $\langle \dots \rangle$

1983 TEN HIGHEST 1-HOUR AVERAGE CO DAYS WITH WIND DATA

-141-

VII. LEAD

Health Effects

Lead (Pb) is a soft, dull gray, odorless and tasteless heavy metal. It is an ubiquitous element that is widely distributed in small amounts, particularly in soil and in all living things. Although the metallic form of lead is reactive and rarely occurs in nature, lead is prevalent in the environment in the form of various inorganic compounds, and occasional concentrated deposits of lead compounds occur in the earth's crust.

The presence of lead in the atmosphere is primarily accounted for by the emissions of lead compounds from man-made processes, such as the extraction and processing of metallic ores, the incineration of solid wastes, and the operation of motor vehicles. The combustion of lead-containing gasoline by motor vehicles is the largest source of airborne lead emissions and is responsible for approximately 90% of the total. These emissions are in the form of fine-to-course particulate matter and are comprised of lead sulfate, ammonium lead halides, and lead halides, of which the chief component is lead bromochloride. The halide compounds appear to undergo chemical changes over a period of hours and are converted to lead carbonate, oxide and oxycarbonate.

The most important sources of lead in humans and other animals are ingestion of foods and beverages, inhalation of airborne lead, and the eating of non-food substances. From the standpoint of the general population, the intake of lead into the body is primarily through ingestion. The direct intake of lead from the ambient air is relatively small. Except in special cases, the contribution to the total body burden of lead via inhalation of airborne lead in urban areas is usually less than 30%. In non-urban areas, it is usually less than 5%.

Overexposure to lead in the United States is primarily a problem in children. Age, pica, diet, nutritional status, and multiple sources of exposure serve to increase the risk of lead poisoning in children. This is especially true in the inner cities where the prevalence of lead poisoning is greatest. Overexposure to lead compounds may result in undesirable biologic effects. These effects range from reversible clinical or metabolic symptoms that disappear after cessation of exposure to permanent damage or death from a single extreme dose or prolonged overexposure. Clinical lead poisoning is accompanied by symptoms of intestinal cramps, peripheral nerve paralysis, anemia, and severe fatigue. Very severe exposure results in permanent neurological, renal, or cardiovascular damage or death.

Conclusions

The Connecticut primary and secondary ambient air quality standard for lead and its compounds was not exceeded at any site in Connecticut during 1983.

The monitoring sites where the lead levels were highest were generally in urban locations with moderate to heavy traffic. This is due to the fact that in Connecticut the primary source of lead in the atmosphere is the combustion of leaded gasoline in motor vehicles.

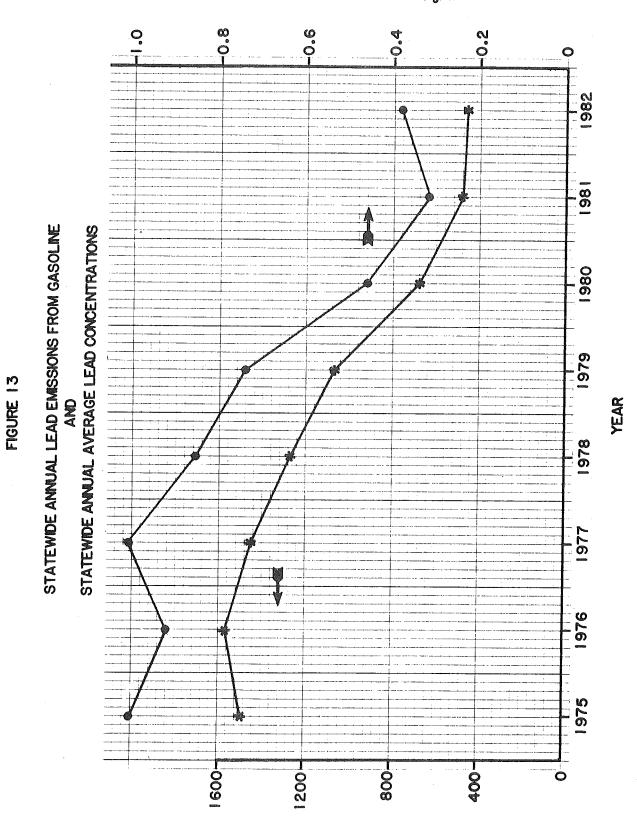
A downward trend in measured concentrations of lead has been observed since 1978. This is probably due to the increasing use of unleaded gasoline. Figure 13 shows that the decrease in lead emissions from gasoline from 1975 to 1982 has been commensurate with a decrease in statewide ambient average led concentrations. In fact, this relationship is so close, it has a correlation co-efficient of 0.983 (see Figure 14).

Sample Collection and Analysis

The Air Monitoring Unit uses hi-vol and lo-vol samplers to obtain ambient concentrations of lead. These samplers are used to collect particulate matter onto fiberglass filters. The particulate matter collected on the filters is subsequently analyzed for its chemical composition. Wet chemistry techniques are used to separate the particulate matter into various components. The lead content of the TSP is determined using an atomic absorption spectrophotometer. (The use of these sampling devices and the chemical analysis techniques were fully described in the TSP section.) Unlike TSP samples which are analyzed separately, the lead sample is a composite of all the individual samples obtained at a site in a single month. That is, a cutting is taken from each TSP filter during the month and these cuttings are chemically analyzed for lead en masse.

Discussion of Data

Monitoring Network – In 1983, both hi-vol and lo-vol samplers were operated in Connecticut to monitor lead levels (see Figure 15). There were 16 hi-vol sites operated throughout the State (see Table 32) as part of the State and Local Air Monitoring Stations (SLAMS) network. The DEP also operated five lo-vol monitors in 1983 in cities with populations greater than 200,000. They are Hartford 015 and 016, Stamford 022, New Haven 016, and Bridgeport 010. These "micro-scale" lead sites are situated near some of the busiest city streets in order to monitor "worst-case" lead concentrations. EPA approval for these lo-vol sites is being sought by the Department.

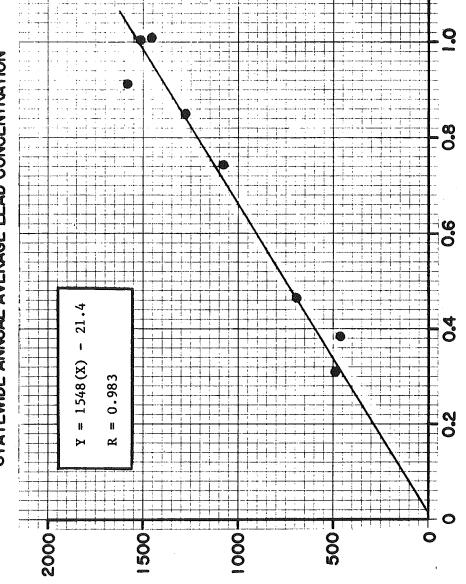

Precision and Accuracy – The hi-vol lead monitors had a total of 22 precision checks in 1983. The resulting 95% probability limits were -16% to +12%. Accuracy for lead is defined as the accuracy of the analysis method. It is determined by chemical analysis of known lead samples. There were 15 audits for accuracy conducted on the monitoring network in 1983. Two different concentration levels were tested: low and high. The 95% probability limits for the low level test ranged from -4% to +4%; those for the high level test ranged from -2% to +2%.

NAAQS – Connecticut's ambient air quality standard for lead and its compounds, measured as elemental lead, is: 1.5 micrograms per cubic meter (ug/m³), maximum arithmetic mean averaged over three consecutive calendar months. This standard was enacted on November 2, 1981. Previously, Connecticut's lead standard was substantially identical: 1.5 ug/m³ for a calendar quarter-year average. The change to a 3-month running average means that a more stringent standard now applies, since there are three times as many data blocks within a calendar year which must be below the limiting concentration of 1.5 ug/m³.

3-Month Running Averages – Three-month running average lead concentrations are given in Table 27 for the year 1983. These values are also presented in graphical form in Figure 16 for the period 1981–83.

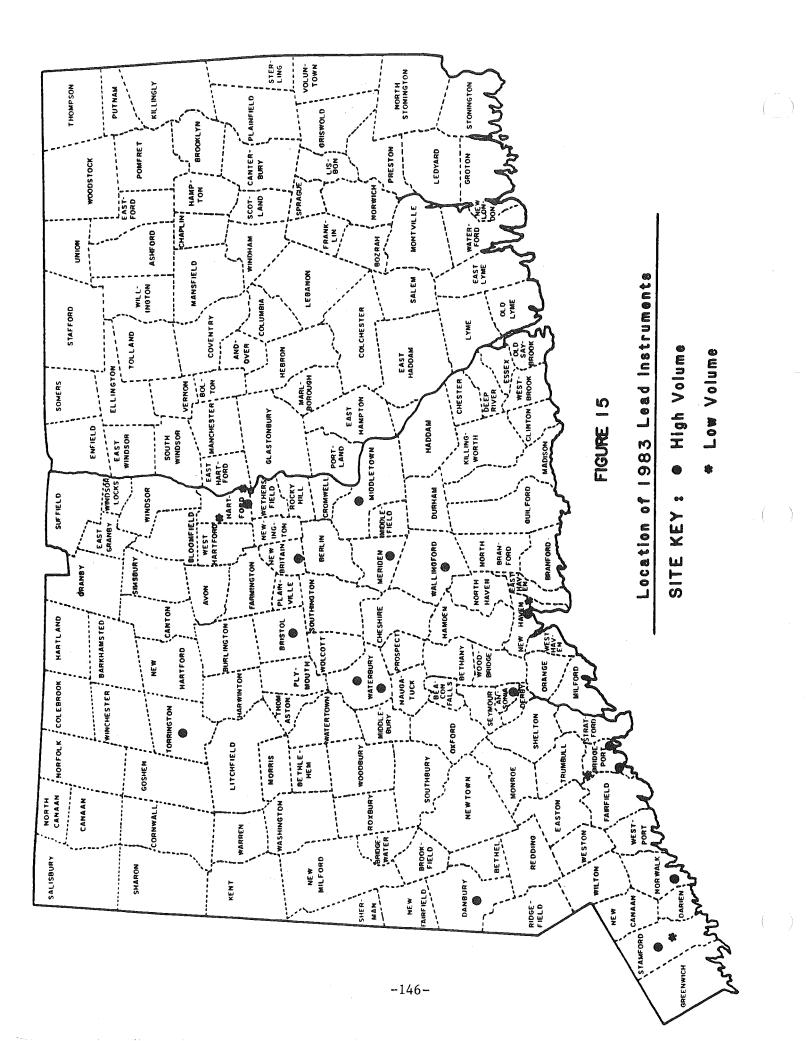
The reader should note that TSP episode sampling was performed at Ansonia 003, Bridgeport 123, New Britain 007 and Waterbury 007 during the months of January and February. One additional day of sampling in each month was performed at these sites outside of the normal every-sixth-day schedule in order to measure high ambient TSP concentrations. These samples were inadvertently made a part of the monthly lead composite.

In addition, there were two instances in 1983 when a TSP sample was invalidated after the monthly lead sample was analyzed. This occurred at Middletown 003 in October and at New Britain 007 in November. The corresponding individual lead samples should also have been invalidated, but this was not possible due to the fact that the lead sample that is analyzed is a monthly composite.



AVERAGE LEAD CONCENTRATION (ug/m³) (•)

(\$) (100×1000 (mothe tone/yoor) (\$)

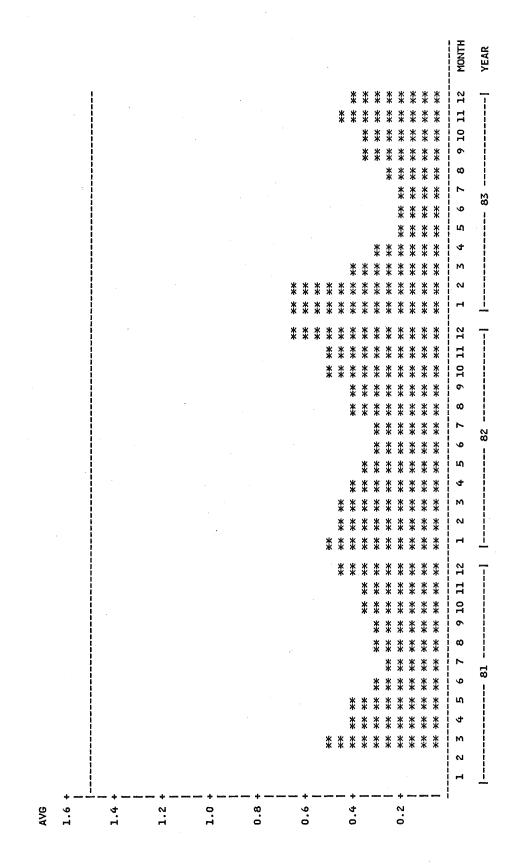


STATEWIDE ANNUAL LEAD EMISSIONS FROM GASOLINE VS STATEWIDE ANNUAL AVERAGE LEAD CONCENTRATION

AVERAGE LEAD CONCENTRATION (ug/m^3)

LEAD EMISSIONS (methe tone/year)

1983 3-MONTH RUNNING AVERAGE LEAD CONCENTRATIONS (ug/m3)


SITE	Jan.*	Feb.*	Mar.	Apr.	May	June	ylut	Aug.	Sept.	Oct.	Nov.	Dec.
Ansonia-003	0.67	0.65	0.42	0.28	0.21	0.21	0.19	0.25	0.33	0.37	0.43	0.41
Bridgeport-009	0.45	0.36	0.21	0.18	0.16	0.17	0.17	0.21	0.25	0.29	0.34	0.34
Bridgeport-010	0.75	0.49	0.35	0.36	0.37	0.44	0.43					+ + + + + + + + + + + + + + + + + + + +
Bridgeport-123	0.63	0.61	0.42	0.32	0.29	0.29	0.29	0.33	0.41	0.44	0.51	0.47
Bristol-001	0.27	0.26	0.21	0.18	0.15	0.14	0.11	0.15	0.18	0.22	0.27	0.26
Danbury-002	0.43	0.36	0.24	0.19	0.18	0.18	0.18	0.22	0.29	0.34	0.42	0.41
Hartford-014	Ó.50	0.44	0.30	0.24	0.21	0.20	0.17	0.22	0.28	0.38	0.44	0.44
Hartford-015	0.66	0.69	0.60	0.53	0.42							
Hartford-016	06.0	0.80	0.57	0.60	0.48	0.49	0.42	0.42	0.45	0.56	0.68	0.70
Meriden-002	0.47	0.33	0.24	0.19	0.20	0.23	0.24	0.27	0.34	0.39	0.42	
Middletown-003	0.40	0.37	0.29	0.21	0.17	0.16	0.14	0.19	0.26	0.34	0.40	0.37
New Britain-007	0.44	0.46	0.40	0.22	0.17	0.16	0.15	0.20	0.25	0.30	0.35	0.31
New Haven-016	-		0.39	0.36	0.30	0.36	0.36	0.40	0.46	0.51	0.55	0.46
New Haven-123	0.66	0.56	0.42	0.35	0.31	0.31	0.28	0.37	0.45	0.54	0.60	0.60
Norwalk-012	0.54	0.40	0.27	0.18	0.18	0.21	0.22	0.27	0.35	0.41	0.48	0.45
Stamford-001	0.48	0.36	0.25	0.20	0.20	0.23	0.24	0.27	0.28	0.31	0.37	0.36
Stamford-022	0.59	0.46	0.31	0.29	0.29	0.36	0.38	0.39	0.40	0.43	0.42	0.37
Torrington-123	0.50	0.45	0.32	0.20	0.17	0.19	0.19	0.20	0.24	0.36	0.53	0.54
Wallingford-001	0.53	0.42	0.29	0.16	0.14	0.15	0.18	0.21	0.24	0.31	0.42	0.43
Waterbury-007	0.73	0.68	0.49	0.33	0.26	0.28	0.30	0.35	0.44	0.49	0.59	0.58
Waterbury-123	0.90	0.77	0.59	0.39	0.36	0.34	0.33	0.35	0.43	0.55	0.82	0.85

* 3-month running average includes data from the last 2 months of 1982

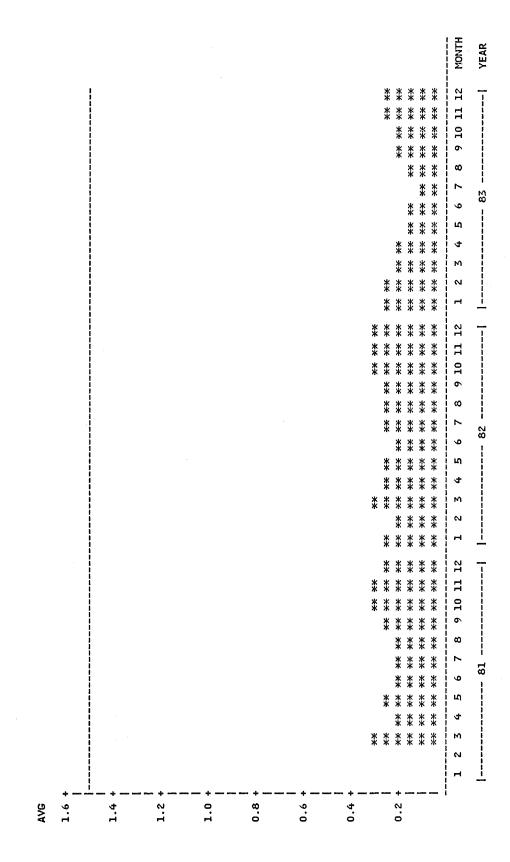
-147-

FIGURE 16

3-MONTH RUNNING AVERAGES FOR LEAD STATION=ANSONIA 003

3-MONTH RUNNING AVERAGES STATION-BRIDGEPORT STATION-BRIDGEPORT *** ** ** ** ** ** ** ** *** *** ** **

-149-

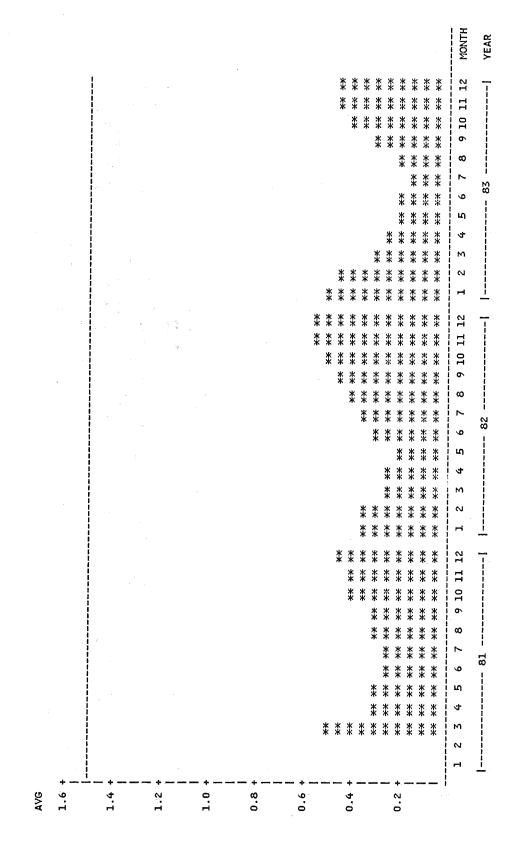

MONTH YEAR 12 ī I 5 0 ω * * * * * * * * * 1 \sim * 83 * * * * * 9 * * * ** Ŋ * * * * * ** ** 3-MONTH RUNNING AVERAGES FOR LEAD STATION=BRIDGEPORT 010 ** * * 4 ** * ** * ** м * * * * * ** FIGURE 16, CONTINUED * * * * * ** * ** * ~ ** н * * * * * * * * * * ** * * * 12 * * * * \$ * * \$ * ** * * * * ** * * H ** ** * * * ž * * 5 ** * ** * \$ * * ж * ** * * ** ₩ * * * * ** * σ * ** * * * * ω ** * ** * * ** ** * * * * * * * * * * * ~ i 82 Q ļ Ŋ ক м 2 | н 1.6 + + ÷ 1.4 0.2 AVG 0.8 0.6 1.2 1.0 0.4

MONTH YEAR 9 10 11 12 ** * * ** ** * ** * * ** * * * ** * * * * ** ₩ i ** * ** ** ** * ** ** * * * * ** ** ** * * * * * * * * ** ω İ * * ~ ** ** ** * ** 83 * * 9 * ** * ļ ** ** * * ហ ** ** * * * ** ** ¢ ** ** * * м ** ** ** ** * * * ~ * * * * ** ** * * * * * | * * ₩ ** * * ** ы * * * * * ** * * 9 IO II 12 * ** * * ** * 3-MONTH RUNNING AVERAGES FOR LEAD STATION=BRIDGEPORT 123 ** * * ** ** * ** ** * * ** ** * ** ** ** ≵ ** * * ** * ** ** * ** ** * * * * * ** ** ** * ** * * * ω ** * * ** ** ** * ** ** i * * * * * * * * * * * * ~ - 82 Ŷ ហ * * * * * * * 4 ** * м * ** * ** ** * ** * * * * ** ~ ** ** * ** İ * ** ** * ** н ** * ** 1 * 9 10 11 12 ** * * * * ** ** * ** ** ** * ** * ** ** ** * ** ** ** * * ** ** * * * * ** ** ** ** ** ω * ** * ** * ** ** ~ * * * * * ** 81 * * * * * * ** 9 * ហ * * ** * * * * * ** ** * * * * * * ** ** * * * 4 * * * * * * * * * * * * м 0 ы 1.6 + 1.0 0.8 0.6 0.4 0.2 1.2 AVG 1.4

FIGURE 16, CONTINUED

-151-

3-MONTH RUNNING AVERAGES FOR LEAD STATION=BRISTOL 001



-152-

		FIGURE 16, CONTINUED	
		3-MONTH RUNNING AVERAGES FOR LEAD Station=danbury 002	
AVG	•		
1.6 +			
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
			· · ·
	***	* * * *	
+ + + -	** ** **	** ** ** ** ** **	** ** ** ** **
	** ** ** ** ** ** ** ** ** ** ** ** **	** ** ** ** ** ** ** ** ** ** ** ** ** ** **	** ** ** ** ** ** ** ** ** ** ** ** **
i	4 5 6 7 8 9 10 11 12	2 3 4 5 6 7 8 9 10 11	2 3 4 5 6 7 8 9 10 11
			83 YEAR

-153-

3-MONTH RUNVING AVERAGES FOR LEAD STATION-HARTFORD 014

-154-

		***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ******	****** ****** ****** ****** ****** ******	
	**************************************	***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ******	****** ****** ****** ****** ****** ******	
		***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ******	**	
		**	****** ****** ****** ****** ****** ******	
	****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** <t< td=""><td>***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ****** ****** ***** ****** ****** ***** ****** ****** ***** ****** ****** ***** ****** ****** ***** ****** ****** ***** ****** ****** ***** ****** ****** ***** ****** ****** ***** ****** ****** ***** ****** ****** ***** ****** ****** ***** **</td><td>**</td></t<> <td></td>	***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ****** ****** ***** ****** ****** ***** ****** ****** ***** ****** ****** ***** ****** ****** ***** ****** ****** ***** ****** ****** ***** ****** ****** ***** ****** ****** ***** ****** ****** ***** ****** ****** ***** ****** ****** ***** **	**	
		***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ******	** <td></td>	
	******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* *******	****** ****** ****** ****** ****** ******	****** ****** ****** ****** ****** ******	
	******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******** *******	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ******* ****** ******	
		****** ******* ****** ******	****** ******* ******* ******* ******* <td></td>	
*****	XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX </td <td>***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ****** ****** ****** ****** ***** ****** ****** ****** ****** ***** ****** ****** ****** ****** ***** ****** ****** ****** ****** ***** ****** ****** ****** ****** ***** ****** ****** ****** ****** ***** ****** ****** ****** ****** ***** ****** ****** ****** ****** ***** ****** ****** ****** ****** ***** ****** ****** ****** ****** ***** ****** ****** ****** ****** ****** *****</td> <td>****** ******* ******* ******* *******<td></td></td>	***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ****** ****** ****** ****** ***** ****** ****** ****** ****** ***** ****** ****** ****** ****** ***** ****** ****** ****** ****** ***** ****** ****** ****** ****** ***** ****** ****** ****** ****** ***** ****** ****** ****** ****** ***** ****** ****** ****** ****** ***** ****** ****** ****** ****** ***** ****** ****** ****** ****** ***** ****** ****** ****** ****** ****** *****	****** ******* ******* ******* ******* <td></td>	
**************************************	XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX	***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ****** ****** ******	****** ******* ****** ****** ****** ****** ****** ****** ******* ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ******* ******* ******* ********	
****** ****** ****** ****** ****** ******	****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ******	****** ******* ******* ******	****** ******* ******* ******	
****** ****** ****** ****** ****** *****	****** ***** ***** ****** ****** ******	***** ****** ***** <t< td=""><td>***** ****** ***** ***** ***** ***** ***** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ******* ******* *******</td><td></td></t<>	***** ****** ***** ***** ***** ***** ***** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ******* ******* *******	
****** ****** ****** ****** ****** ******	***** ***** ***** ***** ***** ***** ******	****** ******* ****** ******	****** ******* ****** ****** ****** ****** ****** ******* ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ******* ******* ******* ********	
**************************************	***** ****** ****** ****** ****** ******	xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 11 12 1 2 3 4 5 11 12	xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxx xxxxxx xxxxxx xxxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxxx xxxxx xxxxx	
**************************************	***** ***** ***** ***** ***** ***** ****	***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** 11 12 1 2 3 4 5 11 12	****** ****** ****** ****** ****** ****** ****** ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ************ ******************	
******* ****** ******* ******* ********	***** ***** ***** ***** ***** ***** ****	***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ****** ***** ***** ***** ***** ****** ***** ***** ***** ***** ***** ***** ***** ****** ***** ***** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ******* ****** ****** ******* ******* ******* ****** ******* ******* ******* ******* ******* *******	***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ****** ***** ***** ***** ***** ***** ***** ***** ***** ***** 11 12 1 12 ****** 1 2 3 4 5 11 12	
****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ******	★★★★ ★ ★★★★★ ★★★★★ ★★★★★★ ★★★★★	***** ***** ***** ***** ***** ***** ****	xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx 11 12 1 2 3 4 5 11 12 11 12 1 2 3 4 5 11 12	
XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX		11 12 1 2 3 4 5 11 12	11 12 1 2 3 4 5 11 12	

-155-

MONTH 12 * * * * ** * * * * * * * * * H * * * * ** ** ** * * * * * * * 10 * * * * * * ** * * ** * * \$ * ** * * * * ** * ω ** * ~ * * * * * ₩ ** * * * * Ŷ * * ** ** * ** ١Û ** * * * \$ \$ \$ ₹ ** 4 * * ** * * * * * * м * * * \$ * ** Ť * 3 ~ ** ** ** * ** * * ** ** * ** * * * * * н * * * * ₩ \$ ** \$ ** * * ** * * * * 12 ** * ** ** ** ** \$ * * * ** ** ** ** ** ** ** ** * * 1 * * * ** ** * * ** ** ** * * * * ** * * * ** ** ** 9 IO ω ř 9 ហ 4 м ~ H 1.6 + 0.2 + 1.4 + 1.0 + 1.2 0.8 4.0 AVG 0.6

YEAR

Ī

80

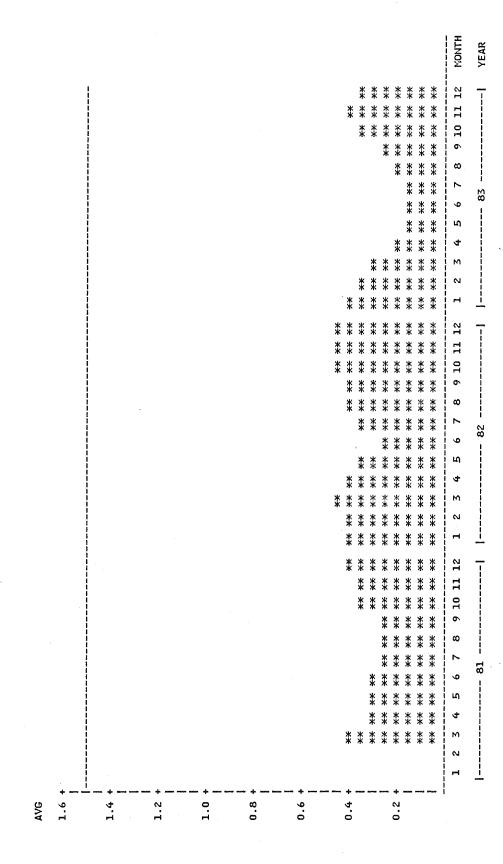
ł

ł

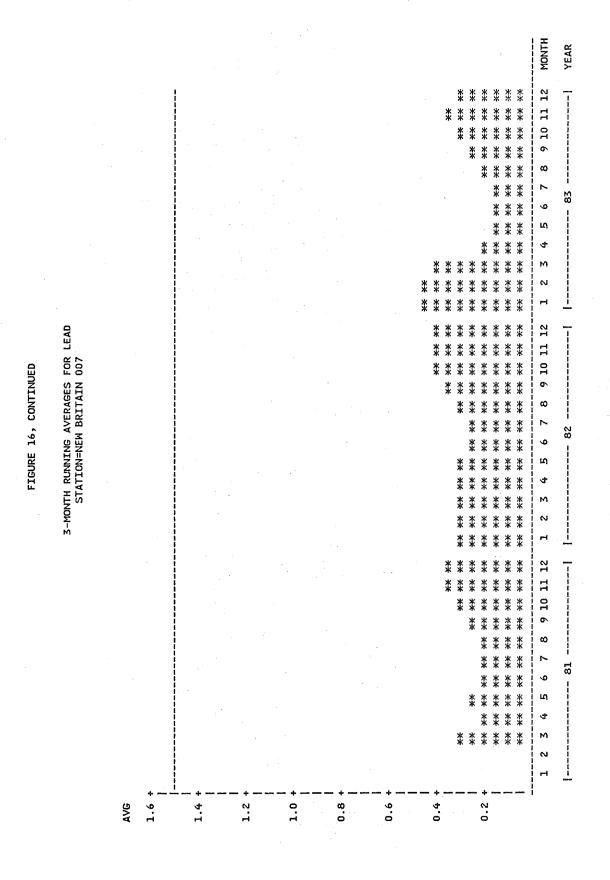
82

i

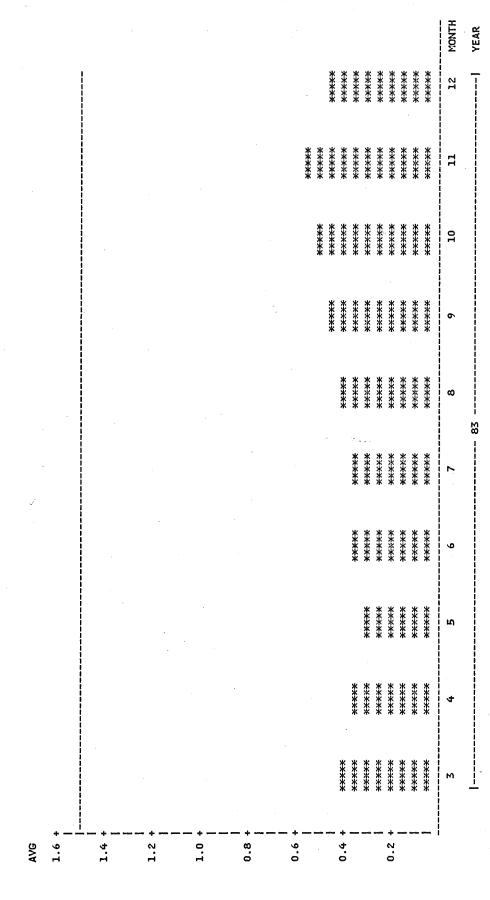
3-MONTH RUNNING AVERAGES FOR LEAD STATION=HARTFORD 016


FIGURE 16, CONTINUED

-156-


MONTH YEAR 9 IO II 12 -----* * * ** ** ** ** * ** ** ** * * ** ** * * ** ** * ** ** ω ** ** * ** ** ** ** * ~ * ** ** £8 9 ** ** ** ** ** * ** ** ហ * * ¢ * * * ** ** ** ** * * м * * * * 2 * * İ * * * М * * ** ** ** ** 3-MONTH RUNNING AVERAGES FOR LEAD STATION-MERIDEN 002 ** * * ** ** ** * ** ** 9 10 11 12 ** ** * * ** ** * ** * * * ** FIGURE 16, CONTINUED ** ** ** ** * * ** * * ** \$ * ** ** ** ** ** ω ** * ** ** ** ** * 67 ** ** ** ** ** ** 82 ** ** ** ** ** ** ł ហ * ** ** * ** * ** ** ** 4 ** ** * * ** ** * ** ** ** ** ** м ** ~ * * * ** ** ** ** н 1 ** * * * * * * * 6 7 8 9 10 11 12 -----** ** ** * ** ** ** * ** ** * ** ** * * * ** * ** * ** ** * ** * * ** ** ** ** ** ** ** ** ** * * ** 81 * ** ** ** ** ** * ហ ** ** ** ** ** \$ м ຸ ----m 1.6 + 0.4 + 0.8 + 0.2 + 1.4 AVG 1.2 л. О.Т **0**.6

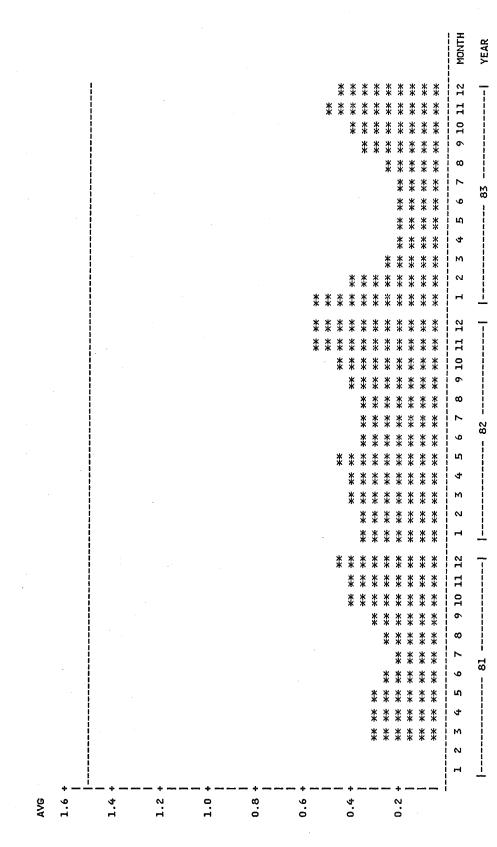
-157-


-158-

 $\left(\ldots \right)$

-159-

3-MONTH RUNNING AVERAGES FOR LEAD STATION=NEW HAVEN 016

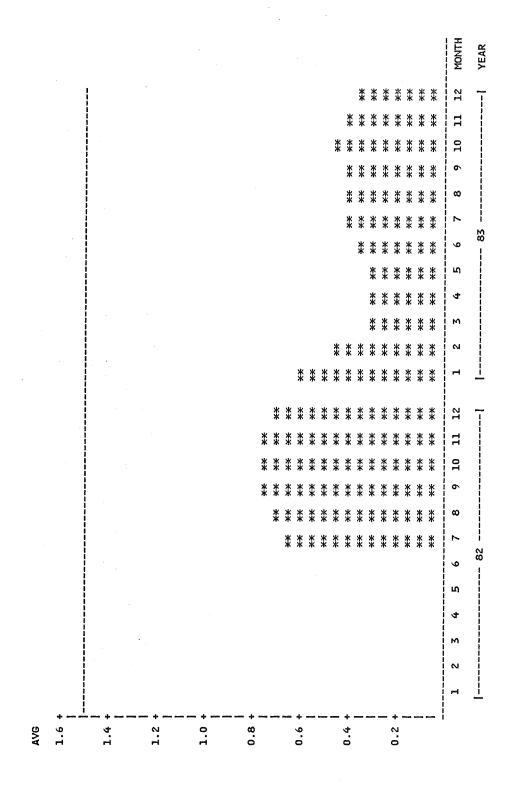

-160-

MONTH YEAR 9 10 11 12 ** ** ** ** ** ** ** ** ** | * ** ** ** ** ** ** ** * * * ** ** * ** ** ** ** ** ** * ** ** ** * * ** ** * * ** ** ** ** * * * œ ** ~ ** * * 8 Ŷ ** ** * ** * * ** ហ ** ** ** ** ণ্ট ** ** ** ** * ** * * ** м ** ** ** ** ** ** * * * ** ** ** <u>م</u>ا ** ** * * i m ** ** ** ₩ \$ ** ** * ** * ₹ * * 3-MONTH RUNNING AVERAGES FOR LEAD STATION=NEW HAVEN 123 1 ** * * * 9 IO II 12 * ** ** ** * ** ** * ** ** **** * * * * * * * ** ** ** œ 1 ~ 82 9 ហ ক м 2 r-i * * * * 9 IO II 12 * * * * * * ** ** ** * ** ** * ** * * ** * ** ** ** * * * ** * * * * ** ** ** * * ** * ** ** ** ** * 678 * ** ** ** * * ** ** * * ** ** ** ** 5 ** * ** * ** ** * ** ហ ** ** * * * ** ** ** ** * ** ** ** ** ** ** ** ** ঝ * ** * * * * * * * * * * * * \$ * * м -----0 rt 1.6 ± 9.6 + 0.2 + 0.6 AVG 1.4 1.2 1.0 0.8

FIGURE 16, CONTINUED

-161-

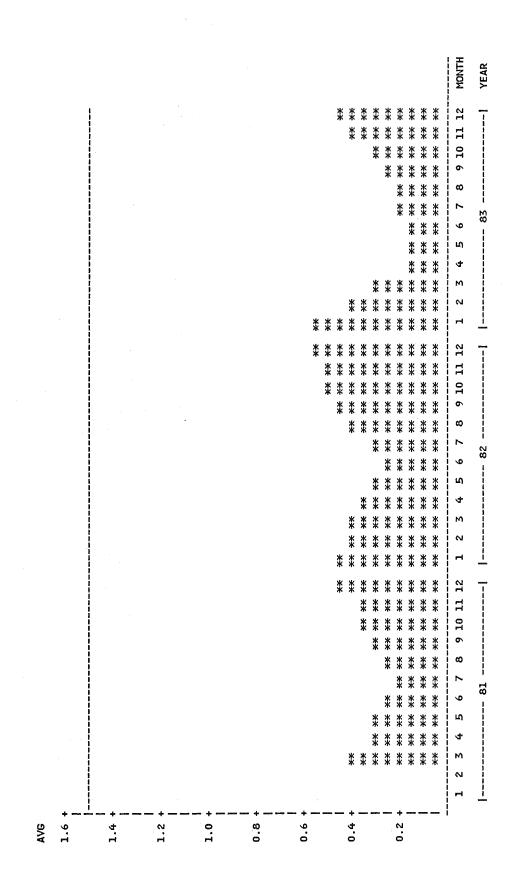
3-MONTH RUNNING AVERAGES FOR LEAD STATION=NORWALK 012


ź.

-162-

MONTH YEAR 9 10 11 12 ** ** * * * ** ** ** ** ** * ** ** ** * ** * ** * * * ** ** ** ** ** ** ** ** ** ω * 67 * ** ** 83 ** ** ** Ю ** ** ** ** * ** ঔ ** ** м ** ** ** ** * ** * * ** ** ** ** 0 1 * ≵ ₩ \# * m ** \$ \$ * * 3-MONTH RUNNING AVERAGES FOR LEAD STATION=STAMFORD 001 9 10 11 12 * * * * ** * ** ** * * ** ₩ ** ** FIGURE 16, CONTINUED ** ** ₩ * * ** * ₩ ₩ * \$ ** ** * * ω ₩ İ ~ ** ** ** ₩ * ** 82 9 * * ** ₹ * ស * ** ** ** ** ক ** ** ** * ** ** м * ** * * ** ** ** ** * ** <u>~</u> ** ** ** ! * * * * н * * * * 9 IO II I2 ** ** ** ** ** ł ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * * * ** Ø ** ** ** * * ** ** ** ** * ~ ** ** ** 81 Ŷ ** ** ** ** ** ۱Ŋ ** ** ** ** \$ * ** ** * * * * * 4 i * * * * * * * м ณ 1 мÌ 0.2 + J.6 0.8 AVG 1.4 1.2 1.0 0.6 0.4

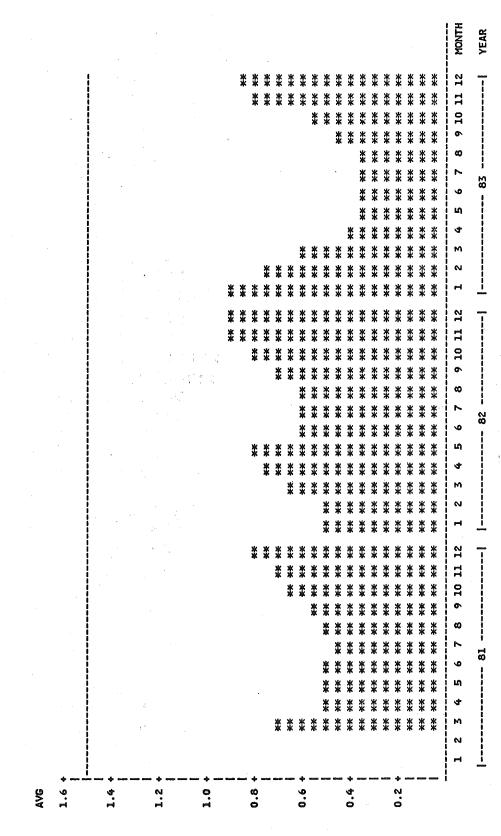
-163-


3-MONTH RUNNING AVERAGES FOR LEAD STATION-STAMFORD 022

							** ** ** ** ** ** ** ** ** ** **	** ** ** ** ** ** ** ** ** ** ** ** ** *	5 6 7 8 9 10 11 12 MONTH
	AD	144				**	** ** ** ** ** ** ** ** ** **	* ** ** ** * ** ** ** ** ** ** ** ** **	12 1 2 3 4 -
FIGURE 16, CONTINUED	3-MONTH RUNNING AVERAGES FOR LEAD STATION=TORRINGTON 123					*		*** *	1 2 3 4 5 6 7 8 9 10 11
							** ** ** ** ** ** ** ** ** ** ** ** ** *	** ** ** ** ** ** ** ** ** ** ** **	1 2 3 4 5 6 7 8 9 10 11 12
		AVG 1.6 +	+ 4. 1.	 1.2 1	 	• • · •		0.5	1

-165-

3-MONTH RUNNING AVERAGES FOR LEAD STATION=WALLINGFORD 001


-166-

3.87° 4.7° 4. MONTH 194 A.V YEAR | 1.6.2.4.6.7.6 * * 9 IO II 12 ** ** ** ** ** ** ** 2 2 2 4 5-5 6-6 ** ** à * * ** ** ** ** * ş ** ** ** 94 2 ن بني $\frac{\hat{\mu}}{2\hat{\mu}}$ 14 ** * ** ** ** ** ** * ù ** ** 主义 * * * * ** ** ** ** * 4. 16 si K н Х ω * * ** ** ** * * ${}^{k}_{ij}$ ~ ** ** ** * ** * 2 83 9 $\frac{M}{M} = \frac{R}{M}$ ģ * ** ** ** * ** 4 (3) $\frac{W}{2k}$ $\leq \\ \leq \leq$ ** ** * * Ŋ 法派 ** * ** * ** ক ** м * * * * ** ** ** ** * * 129.2 ** ** ** ** ** 2 ** ** ** ** ** * * * ** ** ** H ** ** \$ * ₩ * ** ** ** * ** ** ** ** 9 10 11 12 3-MONTH RUNNING AVERAGES FOR LEAD STATION=WATERBURY 007 ** ** ** ** ** * ** * * ** ×:* ** ** ** ** ** ** ** ** ** ** ** ** ** * * ** ** ** ** ** ** * ** ** ** ** ** ** ** ** * * ** \$ ** ** * ** 678 * * ** * ** ** ** ** ** ** * 82 -** ** ** ** * * \$ ** ** 1 S * ** * ** * * ** ** 4 ** * (5. Ar ** ** м ** ** * ** ** 94 Aj iA G 0 ł ** ** ** ** ** ** ** ** ** ** * ない 5. 1 * * ** ** * ** * * * ** M ** \$ 4 9 10 11 12 è... i, V 窠 24 3 ** * * ** ** ** ** ** * 1 高品 ÷., ** ** ** ** ** ** ** ** 杂志 4 4. 13 * * * * 의 국 2013년 - 141 * * ** ** ** ** \$ * ** * * * ** ** ω * * ** ** ** \$ ** ** 1.2 4.4 ~ * * ** ** ** ** 81 9 ** ** ** ** * * * ហ ** * ** ** ** 4 * * ** ** * * * * ** ** ** • * * * * * ** ** ** * ** м * * 2 H 0.8 + 1.6 + 0.2 + 4.1 1.0 AVG 1.2 0.6 **9**.0 ••

FIGURE 16, CONTINUED

-167-

3-MONTH RUNNING AVERAGES FOR LEAD STATION=MATERBURY 123

VIII. ACID PRECIPITATION

Monitoring Program

Recently, there has been a growing public concern about the occurrence and effects of atmospheric deposition, most notably acid precipitation or "acid rain." It has become apparent that, in order to address this concern, basic data need to be collected on the chemical properties of precipitation. Recognizing this, the State of Connecticut, through the Department of Environmental Protection, has agreed to cooperate with the Water Resources Division of the United States Geological Survey (USGS) to establish the Connecticut Atmospheric Deposition Monitoring Program.

Program Objectives

The program is designed to collect and analyze precipitation on an event basis and has the following objectives:

- (1) to determine selected chemical and physical properties of precipitation in Connecticut;
- (2) to determine the spatial and temporal distribution of precipitation chemistry in the State;
- (3) to determine the relationships between precipitation chemistry and meteorological conditions, such as storm track and air mass movement;
- (4) to provide baseline information that can be used to determine trends and estimate loads; and
- (5) to use techniques and methodologies consistent with those of the national monitoring networks in order to provide comparative information.

Data Collection Sites

Data collection sites have been established according to siting criteria used in the National Atmospheric Deposition Program (NADP). Use of these criteria ensures the validity of comparisons made between data which are collected through Connecticut's program and data from other atmospheric deposition programs. Other objectives considered during the siting process were the collection of samples representative of different geographic areas of the State, and the sampling of precipitation representative of long-range transport and not merely local sources. Using these criteria, precipitation sampling sites were established in the towns of Plainfield, Marlborough and Litchfield (see Figure 17).

Equipment

Each site is equipped with a Geo Filter automatic wet-dry sensing precipitation collector. This collector is the same type as those used by the NADP and the National Trends Network (NTN). The collector operates when precipitation wets an electronic sensor, completing an electrical circuit. This activates a motor that opens a lid over the sample container when the precipitation event begins and closes the lid when the precipitation ceases. The purpose of the lid is to retard the loss of samples through evaporation and to prevent contamination by dry fallout.

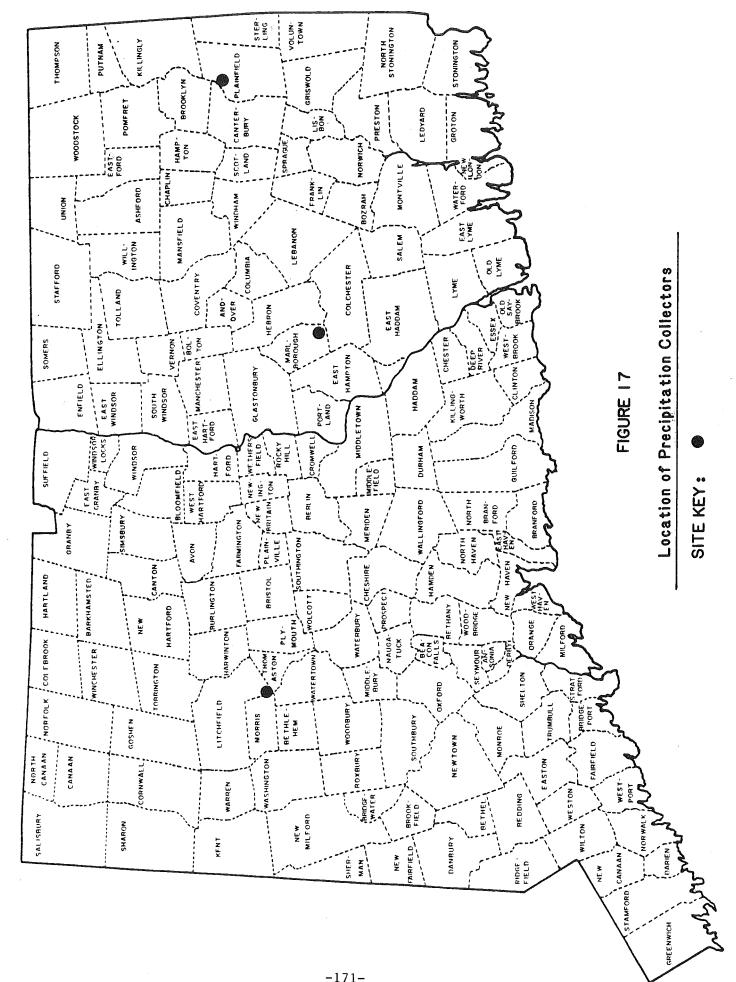
Each site is also equipped with an automatic rain gage which provides a record of the quantity of rain at 15-minute intervals.

In addition to the above equipment, a prototype precipitation quality monitor is being tested at the Plainfield site. Developed by the USGS Hydrologic Instrumentation Facility, the monitor consists of a wet-dry sensing precipitation collector fitted with a funnel in place of a collection container. Precipitation flows from the funnel through tubing to a series of sensors. The sensors continuously measure pH, temperature and specific conductance throughout a precipitation event and record the data at pre-selected intervals. Precipitation quantity is measured by a tipping-bucket type rain gage.

Data Collection

Samples of precipitation are gathered from the automatic collectors as soon as possible following the end of a precipitation event, in most cases within 24 hours. The samples are immediately tested for acidity through pH measurements. The samples are also tested for specific conductance, which is a measure of the ions in solution — the dissolved solids in solution — which is a measure of the pollutant load. The results of this testing for the three precipitation sampling sites are tabulated from 1981 in Tables 28, 29 and 30. The results for 1983 are illustrated in Figures 18 through 26.

Samples from selected precipitation events are also sent to a USGS laboratory for further analyses to determine the concentrations of additional chemical constituents, including major anions, cations, nutrients and trace metals.


Through the Connecticut Atmospheric Deposition Monitoring Program, a network capable of providing uninterrupted baseline data on precipitation quality within the State has been developed. Data collected through the program is currently being published monthly by the USGS in its report, *Water Resources Conditions in Connecticut.* When using the data, one should note that it is specific only to the time and place of its collection.

Discussion of Data

Presently, data that has been collected in the initial stages of the study is being analyzed to determine, on a preliminary basis, the distribution and magnitude of atmospheric deposition in Connecticut. Because precipitation chemistry is a function of air quality and climate, both of which fluctuate over time and space, several more years of continuous data collection will be necessary to develop an adequate baseline to determine trends accurately and to more fully define the controlling processes. However, a preliminary evaluation of the data indicates that the precipitation occurring within Connecticut has been chemically affected by man-made contaminants. The data show that 19 percent of the precipitation events studied to date have had a pH of 4.0 or below. Further evaluation of the data will provide more information on the source of the contaminants and the effects upon the environment.

It is important to stress that it is presently difficult to forecast statewide trends in the chemical properties of precipitation, or to perform comparative analyses, because of a lack of a large long-term data base. Generally, a 20-year or greater period of record is an acceptable statistical data base. When performing comparative analyses, some hydrologic data bases use 60 years or more of record keeping. Therefore, it should be apparent that data collection under the Connecticut Atmospheric Deposition Monitoring Program must continue until a sufficient period of record has been obtained.

Further information is available from the Water Resources Division, United States Geological Survey, 450 Main Street, Hartford, Connecticut 06103 at (203) 722–2528, or from the Natural Resources Center, Department of Environmental Protection, 165 Capitol Avenue, Hartford, Connecticut 06106 at (203) 566–3540.

-171-

ATMOSPHERIC DEPOSITION DATA FOR THE PLAINFIELD SITE

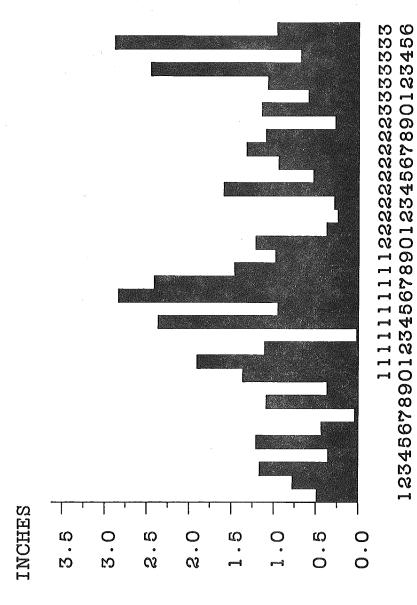
Event <u>Number</u>	Period of Collection	Specific <u>Conductance</u>	Hq	Inches of <u>Precipitation</u>
1 2 3 4 5 6	10/23/81 - 10/27/81 11/14/81 - 11/16/81 12/1/81 - 12/2/81 12/14/81 12/15/81 - 12/16/81 12/27/81 - 12/28/81	15 15 14 12 12 51	4.5 4.5 4.4 4.6 4.0	2.30 1.01 2.68 0.58 2.90 0.20
1 2 3 4 5 6 7 8 9 10	1/4/82 - 1/5/82 4/26/82 - 4/27/82 5/29/82 - 5/31/82 6/2/82 6/4/82 - 6/6/82 7/28/82 - 7/29/82 8/9/82 8/9/82 - 8/10/82 11/28/82 - 11/29/82 12/16/82	15 11 18 5 10 18 25 31 8 16	4.8 4.4 5.0 5.1 4.4 4.2 4.8 4.9	2.70 0.99 1.43 2.86 4.28 0.11 0.96 0.71 0.98 0.85
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27	1/5/83 - 1/6/83 1/13/83 1/22/83 - 1/24/83 1/29/83 - 1/31/83 2/3/83 2/6/83 - 2/7/83 2/11/83 - 2/12/83 3/2/83 3/2/83 3/6/83 - 3/9/83 3/19/83 - 3/21/83 3/27/83 - 3/28/83 4/3/83 4/10/83 4/10/83 4/10/83 4/10/83 4/10/83 4/10/83 4/10/83 4/10/83 4/10/83 4/24/83 5/31/83 6/4/83 6/27/83 - 6/28/83 7/25/83 8/11/83 - 8/12/83 9/12/83 9/23/83 10/1/83 - 10/2/83	15 18 8 26 14 13 6 17 26 47 20 22 32 13 16 13 15 30 41 68 27 79 38 39 87 14	4 4 7 9 2 7 7 9 5 2 0 5 4 2 6 4 5 9 2 0 8 3 8 0 0 7 7 4 3 4 3 4 4 3 4 4 4 4 4 4 4 4 7 4 3 4 3	0.49 0.78 1.17 0.36 1.21 0.44 0.04 1.09 0.37 1.37 1.91 1.11 0.02 2.37 0.96 2.84 2.42 1.47 0.99 1.22 0.38 0.25 0.29 1.60 0.54 0.95

TABLE 28, Continued

Event Number	Period of Coilection	Specific <u>Conductance</u>	pH	Inches of <u>Precipitation</u>
·				
28	10/12/83 - 10/13/83	4	5.4	1.10
29	10/18/83	45	4.0	0.28
30	10/23/83 - 10/25/83	8	4.8	1.15
31	11/3/83 - 11/4/83	30	4.2	0.60
32	11/10/83	17	4.4	1.08
33	11/15/83 - 11/16/83	8	4.8	2.46
34	11/21/83	14	4.6	0.69
35	11/24/83 - 11/26/83	5	5.2	2.89
36	11/28/83 - 11/29/83	25	4.3	0.97

Event	Period of	Specific	<u>_Hq</u>	Inches of
<u>Number</u>	Collection	<u>Conductance</u>		<u>Precipitation</u>
1	12/16/82	22	4.5	1.18
1 1 2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 22 23 4 5 6 7 8 9 10 11 22 3 4 5 6 7 8 9 10 11 22 3 4 5 6 7 8 9 10 11 22 3 4 5 6 7 8 9 0 11 22 2 23 4 5 6 6 7 8 9 0 11 22 3 4 5 6 6 7 8 9 0 11 22 3 4 5 6 6 7 8 9 0 11 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12/16/82 1/5/83 - 1/6/83 1/10/83 - 1/11/83 1/23/83 2/2/83 - 2/3/83 2/6/83 - 2/7/83 2/11/83 - 2/12/83 3/2/83 3/7/83 - 3/9/83 3/19/83 - 3/21/83 3/27/83 - 3/28/83 4/3/83 4/10/83 4/10/83 4/10/83 4/10/83 4/10/83 - 4/20/83 4/24/83 5/15/83 - 5/16/83 5/29/83 - 5/30/83 6/4/83 6/28/83 7/25/83 8/11/83 - 8/12/83 9/12/83 9/23/83 10/18/83 - 10/283 10/18/83 - 10/25/83 11/3/83 - 11/4/83 11/10/83 11/15/83 - 11/16/83 11/21/83 11/24/83 - 11/25/83	$\begin{array}{c} 22 \\ 18 \\ 6 \\ 13 \\ 19 \\ 50 \\ 9 \\ 46 \\ 22 \\ 37 \\ 14 \\ 18 \\ 11 \\ 9 \\ 10 \\ 23 \\ 16 \\ 35 \\ 39 \\ 49 \\ 58 \\ 67 \\ 46 \\ 49 \\ 65 \\ 20 \\ 9 \\ 65 \\ 20 \\ 9 \\ 6 \\ 30 \\ 9 \\ 80 \\ 40 \\ 10 \\ 14 \\ 21 \end{array}$	4.5 4.9540903154765351199991985691882665	1.18 0.64 2.39 1.45 1.89 $0.45*$ $1.30*$ 0.21 0.27 1.22 1.29 1.29 1.07 2.70 2.61 1.27 1.35 0.87 0.81 1.39 1.71 1.54 0.75 1.60 0.24 0.94 1.18 3.34 0.33 2.32 0.11 0.94 1.64 0.57 1.45
35	11/28/83 - 11/29/83	24	4.3	0.71
36	12/6/83	32	4.2	1.04
37	12/12/83 - 12/14/83	26	4.5	3.41

ATMOSPHERIC DEPOSITION DATA FOR THE MORRIS DAM SITE


*Water equivalent of snowfall

<u>TABLE 30</u>

ATMOSPHERIC DEPOSITION DATA FOR THE MARLBOROUGH SITE

Event <u>Number</u>	Period of Collection	Specific <u>Conductance</u>	<u>Ha</u>	Inches of <u>Precipitation</u>
1	5/29/83 - 5/31/83	36	4.1	1.39
2	6/4/83	42	4.1	0.99
3	6/27/83 - 6/28/83	75	3.8	2.63
4	7/5/83 - 7/6/83	89	3.7	0.27
5	7/21/83	46	4.0	0.39
6	7/24/83	40	4.0	0.91
7	8/11/83 - 8/12/83	27	4.2	1.75
5 6 7 8 9	9/23/83	11	4.7	1.18
9	10/1/83 - 10/2/83	5	4.8	2.22
10	10/12/83 - 10/13/83	10	4.8	1.22
11	10/18/83	32	4.2	0.19
12	10/23/83 - 10/24/83	4	5.3	1.97
13	11/3/83 - 11/4/83	38	4.0	0.75
14	11/10/83	20	4.4	1.27
15	11/15/83 - 11/16/83	6	4.9	1.73
16	11/21/83	12	4.7	0.49
17	11/24/83 - 11/25/83	7	4.9	2.43
18	11/28/83 - 11/29/83	21	4.4	1.04
19	12/6/83	30	4.3	0.68
20	12/12/83 - 12/14/83	40	4.6	1.89

INCHES OF PRECIPITATION PLAINFIELD SITE, 1983

EVENT

 $CCMO^{-C} - H < H^{-OZ}$

EVENT

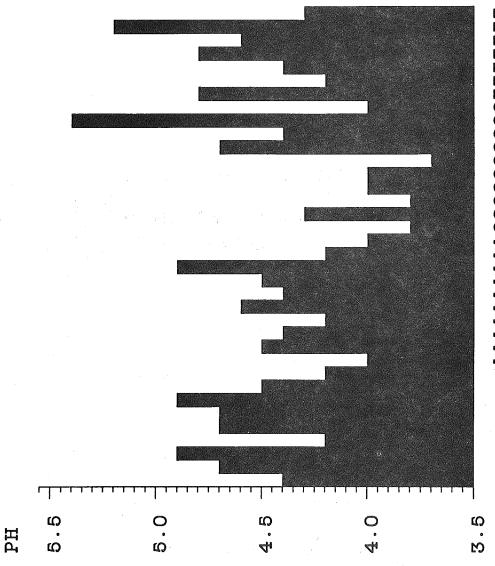
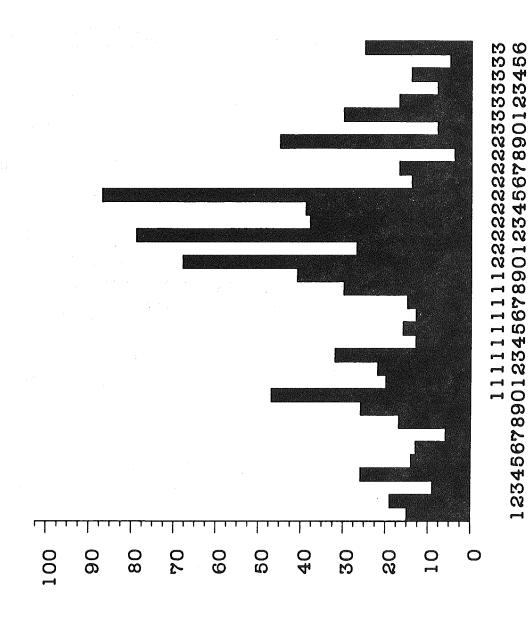
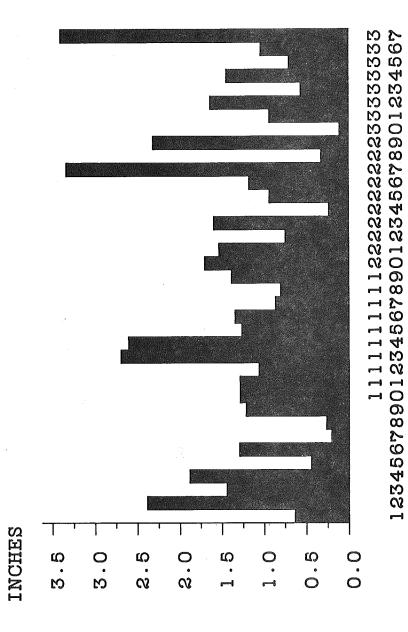
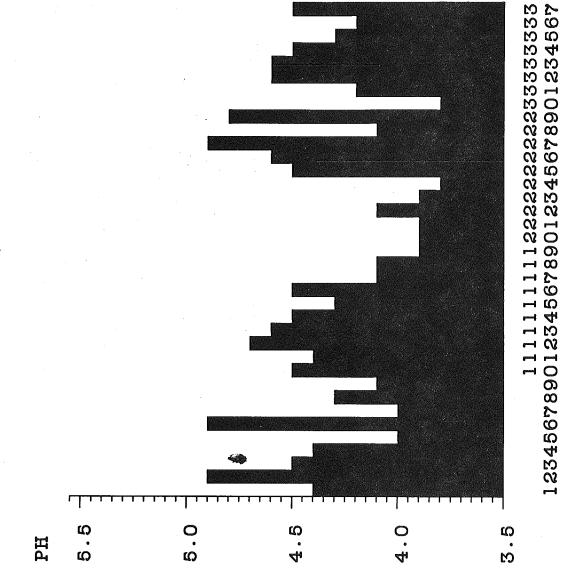



Figure 19

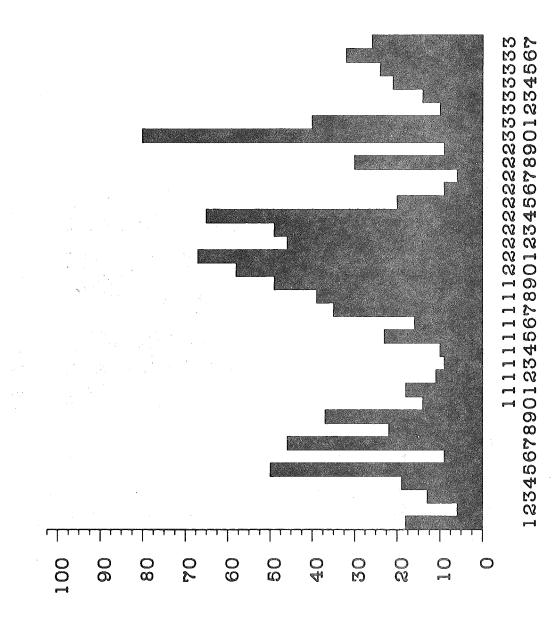
PH OF PRECIPITATION PLAINFIELD SITE, 1983


∢∪_0_⊢≻

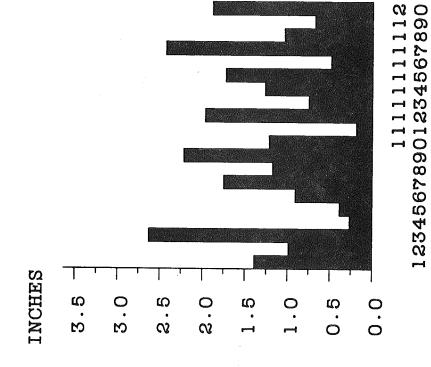
SPECIFIC CONDUCTANCE OF PRECIPITATION PLAINFIELD SITE, 1983


EVENT

INCHES OF PRECIPITATION MORRIS DAM SITE, 1983

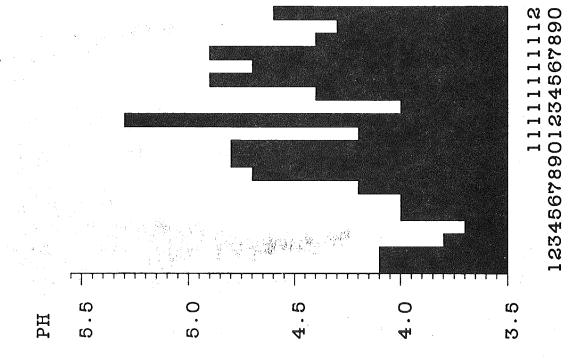

 $CCMO^-C^- + < + - OZ$

PH OF PRECIPITATION MORRIS DAM SITE, 1983


EVENT

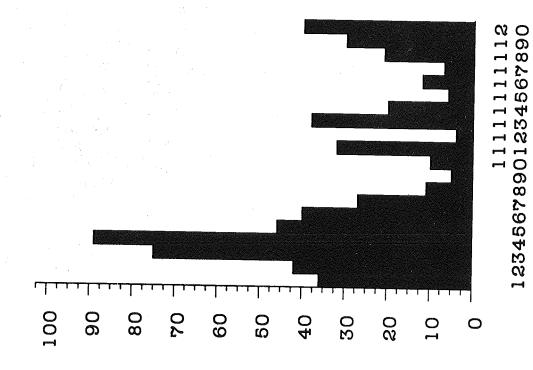
SPECIFIC CONDUCTANCE OF PRECIPITATION MORRIS DAM SITE, 1983

NUTROPHTO OOSUDOH&SOM


INCHES OF PRECIPITATION MARLBOROUGH SITE, 1983

EVENT

LKMO-L-HAH-OZ


PH OF PRECIPITATION MARLBOROUGH SITE, 1983

EVENT

 $\triangleleft \circ - \circ - \vdash \succ$

SPECIFIC CONDUCTANCE OF PRECIPITATION MARLBOROUGH SITE, 1983

EVENT

NUMOTIO OOZODOHAZOM

IX. CLIMATOLOGICAL DATA

Weather is often the most significant factor influencing short-term changes in air quality. It also has an affect on long-term trends. Climatological information from the National Weather Service station at Bradley International Airport in Windsor Locks is shown in Table 31 for the years 1982 and 1983. Table 32 contains information from the National Weather Service station located at Sikorsky Memorial Airport near Bridgeport. All data are compared to "mean" or "normal" values. Wind speeds and temperatures are shown as monthly and yearly averages. Precipitation data includes both the number of days with more than 0.01 inches of precipitation and the total water equivalent. Also shown are degree days^{*} (heating requirement) and the number of days with temperatures exceeding 90°F.

Wind roses for Bradley Airport and Newark Airport have been developed from 1983 National Weather Service surface observations and are shown in Figures 28 and 30, respectively. Wind roses from these stations for 1982 are shown in Figures 27 and 29, respectively.

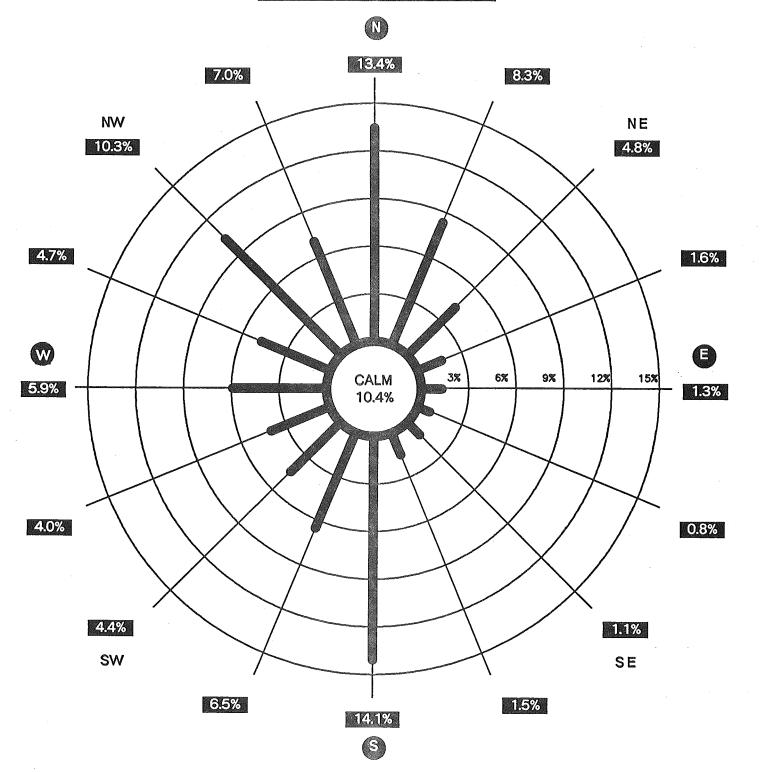
The degree day value for each day is arrived at by subtracting the average temperature of the day from 65°F. This number (65) is used as a base value because it is assumed that there is no heating requirement when the outside temperature is 65°F.

	(Hdw)	Mean C	9.2	9.5	10.0	10.2	0.6	8.1	7.5	7.2	7.3	7.8	8.4	8.7	8.6	
	AVERAGE WINC SPEED (MPH)	1983	7.1	7.9	9.3	8.0	7.8	6.1	6.9	6.2	5.8	6.6	7.2	7.6	7.2	ration
	AVER	1982	8.5	7.5	7.5	10.9	6.2	7.0	6.0	6.2	5.4	6.2	7.2	6.8	۲.٦	Administration
	0 I O	MeanC		10	12		12	11	10	10	ი	8	11	12	127	harts heric Ac
	NUMBER OF DAYS WITH MORE THAN .01 INCHES OF PRECIPITATION	1983	10	7	17	13	19	٢	ស	12	9	11	E,	11	129	jical Data Charts of Commerce c and Atmospheric ita Service
	NUM DAV MORE PRECIC	1982	11	7	13	1	10	15	4	പ	ດ	7	12	1 <u>3</u>	117	ogical Data it of Commerc ic and Atmos Data Service
DATA ART	NOIS	Meand	3.56	3.24	3.76	3.80	3.53	3.56	3.50	3.81	3.64	3.18	3.76	3.79	43.13	Local Climatological Data Charts U.S. Department of Commerce National Oceanic and Atmospheric Environmental Data Service
101	PRECIPITATION IN INCHES WATER EQUIVALENT	1983	4.68	3.83	6.86	06.6	4.82	2.61	1.07	2.55	2.10	5.52	6.09	5.97	56.00	Local U.S. C Natior Enviro
MATOLOG TIONAL LOCKS	PREC IN EQ	1982	4.76	2.83	2.23	4.12	3.30	13.60	2.60	4.41	2.41	3.31	3.12	1.32	48.01	From:
1983 INTE WIND	DAVS	<u>Normal</u>	1234	1047	874	486	197	20	0	8	102	391	702	1113	6174	Extracted F
1982 AND BRADLEV	DEGREE	1983	1170	1002	793	483	261	24	0	7	106	404	662	1135	6047	ŵ
51	ā	1982	1427	966	871	569	128	64	-	30	96	416	575	894	6067	
	OF ING AX. EDED	<u>Mean</u> b	o	o	0	¥	-	4	o.	ß	3	*	o	o	21	
	JMBER AS DUR ICH M 90 TE	1983	o	o	0	0	0	80	13	80	Ø	0	o	0	38	
	DA) TEMP	1982	0	o	0	0	0	0	10	-	0	0	0	0	:	
	л С С С	Mean a	26.6	27.7	37.1	48.1	59.2	68.0	73.2	71.0	63.6	53.1	42.1	30.3	50.0	0.5
	AVERAGE TEMPERATURES	1983	27.1	29.1	39.2	48.9	56.8	69.9	74.9	72.7	66.5	52.5	42.7	28.1	50.7	Less than 1905-1983 1960-1983 1955-1983 1951-1980
	TEMP	1982	18.8	29.2	36.7	45.8	61.4	65.0	74.4	69.5	63.0	51.5	45.8	36.0	49.8	
			Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	YEAR	שיט בע איי

ĺ

TABLE 31

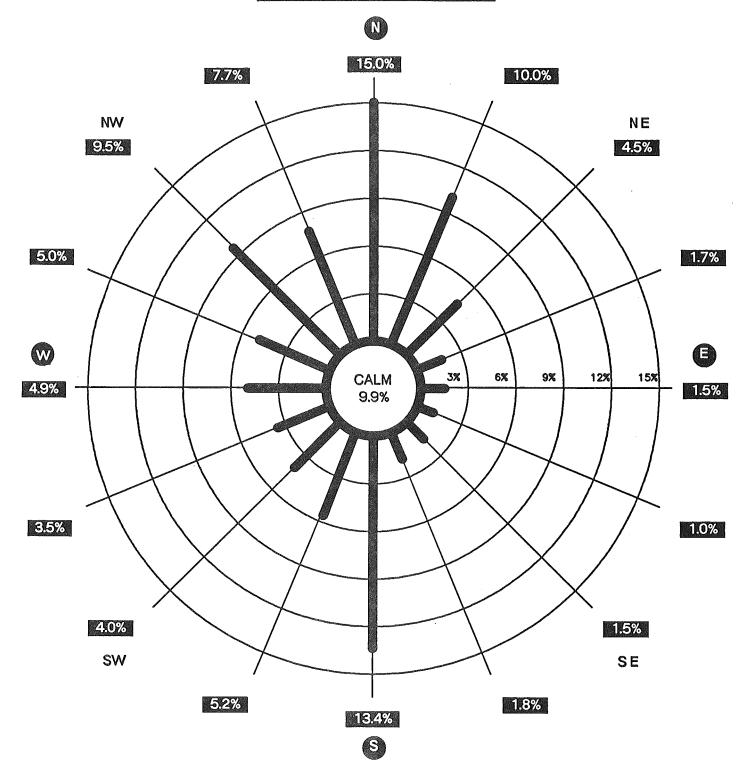
-186-


		Ψ														
		Mean	13.2	13.6	13.5	13.0	11.6	10.5	10.0	10.1	11.2	11.9	12.7	13.0	12.0	ç
	AVERAGE WIND Speed (MPH)	1983			1	 ‡		1	 			1	1	1 1 1		tratic
	AVERAGE SPEED	1982		1 1 1			 - 	 	 	1	 	1 1 1	# 	**	 	Administration
	- z	ean e	=	10	1	11	11	თ	8	თ	თ	7	10	11	17	
	NUMBER OF DAYS WITH MORE THAN .01 INCHES OF PRECIPITATION	983 M		8	2	-	ß	വ	9	8	4	10	7	12	-	Climatological Data Charts epartment of Commerce al Oceanic and Atmospheric nmental Data Service
	NUMBER OF DAYS WITH MORE THAN . INCHES OF PRECIPITATI	982 19	0	7	г Ю	0	-	ى د	4	7	9	-	6		0 113	ical D of Com and A ta Ser
	M 4	d 196	10		¥	10	11	ĩ	,	14	÷	1-	0,	E.	110	tologi ment c eanic al Dat
	N T N	Mean	3.64	3.30	3.99	3.93	3.67	3.36	3.63	4.00	3.54	3.37	3.78	3.72	43.93	
	PRECIPITATION IN INCHES WATER EQUIVALENT	1983	3.72	2.40	9.21	10.72	4.77	3.72	1.66	2.57	2.20	4.63	6.58	4.74	56.92	Local U.S. Natio Envir
OKD	PREO I N	1982	5.50	2.47	2.76	3.83	3.02	11.53	3.31	3.14	1.30	1.52	3.13	1.10	42.61	From:
STRATFORD	DAYS	Normal C	1101	963	831	492	220	20	0	0	49	285	585	955	5501	Extracted
		1983 N	1034	914	754	501	280	29	0	89	73	320	550	981	5444	ж Ш
	DEGREE	82	297 1(67	832	56	64	72	-	19	66	371 3	530	60		
		b 19	12	æ	8	വ	-					ю	വ	â	5614	
	OF ING EDED	Mean	0	0	0	0	*	-	ю	-	*	0	ο	0	9	
	NUMBER OF DAYS DURING WHICH MAX. MP. EXCEEDED 90°F	1983	0	ο	0	0	0	7	ю	8	4	0	0	o	11	
		1982	0	0	0	0	0	0	2	0	0	0	ο	0	ы	
	° L	Mean a	28.4	30.4	37.9	48.0	58.4	67.7	73.3	71.9	65.2	54.7	44.2	33.2	51.1	0.5 1928-1980
	AVERAGE EMPERATURE	1983	31.4	32.3	40.5	48.1	55.8	67.7	74.3	73.1	67.3	55.1	6.5	33.1	52.1	10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5
	A	1982	22.9 3	2.8	37.9 4	46.3 4	59.6	63.9 6	72.9 7	69.3 7	64.1 6	52.9 5	47.0 4	38.7 3	50.7 5	Less than 1903-1983 1966-1983 1951-1980 1894-1983 1949-1983
	1	⊷ I	7	т м			വ	9	7	9	9	വ	4	С	· م	ние форбара Предстание Предстани
			Jan.	Feb.	March	April	May	June	ylul	. end	Sept.	Oct.	Nov.	Dec.	YEAR	

1982 AND 1983 CLIMATOLOGICAL DATA SIKORSKY INTERNATIONAL AIRPORT STRATFORD

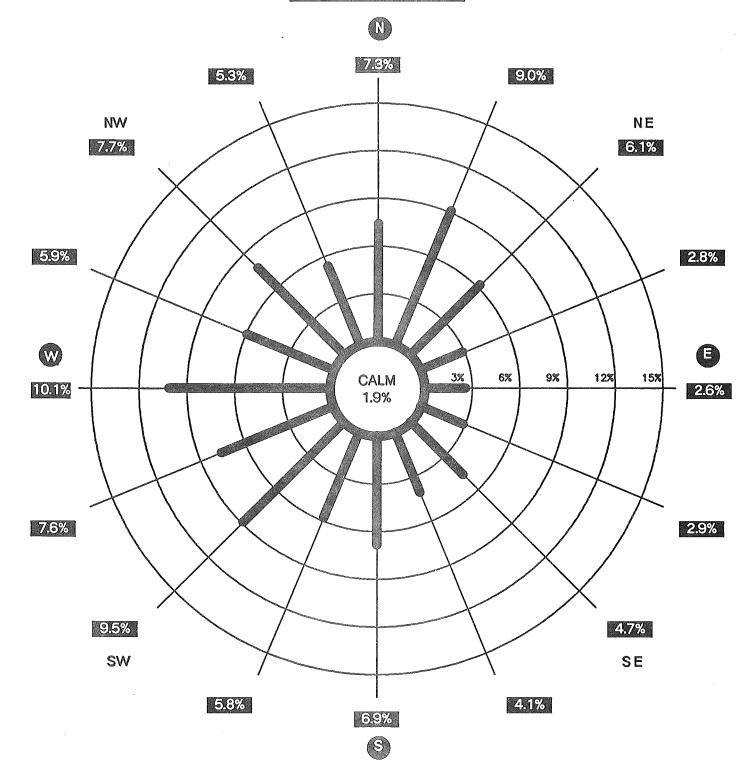
ANNUAL WIND ROSE 1982

BRADLEY INTERNATIONAL AIRPORT


WINDSOR LOCKS, CONNECTICUT

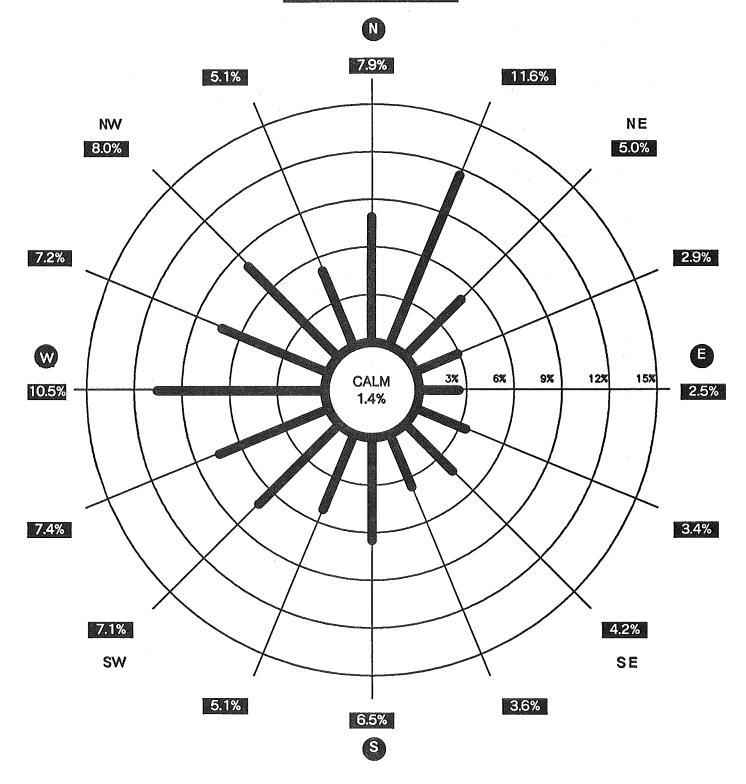
ANNUAL WIND ROSE 1983

BRADLEY INTERNATIONAL AIRPORT


WINDSOR LOCKS, CONNECTICUT

ANNUAL WIND ROSE 1982

NEWARK INTERNATIONAL AIRPORT

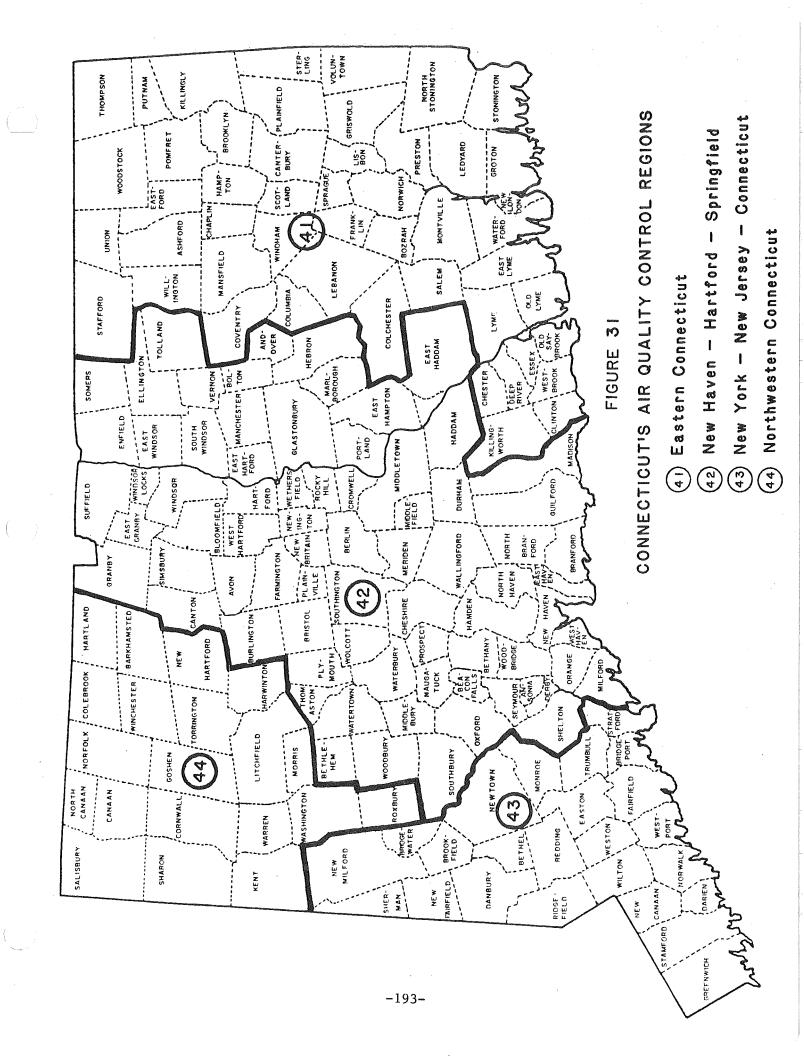

NEWARK, NEW JERSEY

ANNUAL WIND ROSE 1983

NEWARK INTERNATIONAL AIRPORT

NEWARK, NEW JERSEY

-191-



X. ATTAINMENT AND NON-ATTAINMENT OF NAAQS IN CONNECTICUT'S AQCR'S

The attainment status designations for Connecticut's four Air Quality Control Regions (AQCR's, see Figure 31) with regard to the National Ambient Air Quality Standards (NAAQS) have been determined for 1983 for the following pollutants: total suspended particulates (TSP); sulfur dioxide (SO₂); ozone (O₃); nitrogen dioxide (NO₂); carbon monoxide (CO); and lead (Pb). Table 33 shows the attainment status of each AQCR by pollutant. The AQCR's are classified as attainment, non-attainment or unclassifiable. A region is classified non-attainment for a particular pollutant if any monitoring site in the region recorded a violation of any NAAQS for the pollutant at any time during 1981, 1982, or 1983, or if a violation was statistically predicted to have occurred at any site in the AQCR during that period. (For the pollutant lead, only two years of data are examined.) Regions are unclassifiable for a particular pollutant if during the three-year period (two years for lead) there was either no monitoring or insufficient monitoring of the pollutant in a calendar year.

128. 350.54

Pollutant	Primary or <u>Secondary</u>	NAAQS	AQCR 41	AQCR 42	AQCR 	AQCR 44
TSP	Primary	Annua I 24–Hour	A A	A A	A A	A A
	Secondary	Annua I 24–Hour	A A	A X	A X	A A
SO₂	Primary	Annua I 24–Hour	U U	A A	A A	U U
	Secondary	3–Hour	U	Α	A	U
Ozone	Both	1-Hour	х	х	X	U
NO₂	Both	Annual	U	U	U	U
со	Both	1–Hour 8–Hour	U U	A X	A X	Ŭ U
Lead	Both	3-Month	U	Α	A	A

CONNECTICUT'S COMPLIANCE WITH THE NAAQS (BY AQCR) FOR 1983

X = Non-Attainment U = Unclassifiable

A = Attainment

-194-

XI. CONNECTICUT SLAMS AND NAMS NETWORK

On May 10, 1979, the U.S. Environmental Protection Agency made public its final rulemaking for ambient air monitoring and data reporting requirements in the "Federal Register" (Vol. 44, No. 92). These regulations are meant to ensure the acceptability of air measurement data, the comparability of data from all monitoring stations, the cost-effectiveness of monitoring networks, and timely data submission for assessment purposes. The regulations address a number of key areas including quality assurance, monitoring methodologies, network design and probe siting. Detailed requirements and specific criteria are provided which form the framework for ambient air quality monitoring. These regulations apply to all parties conducting ambient air quality monitoring for the purpose of supporting or complying with environmental regulations. In particular, state/local control agencies and industrial/private concerns involved in air monitoring are directly influenced by specific requirements, compliance dates and recommended guidelines.

Quality Assurance

The regulations specify the minimum quality assurance requirements for State and Local Air Monitoring Stations (SLAMS) networks, National Air Monitoring Stations (NAMS) networks, and Prevention of Significant Deterioration (PSD) air monitoring. Two distinct and equally important functions make up the quality assurance program: assessment of the quality of monitoring data by estimating their precision and accuracy, and control of the quality of the data by implementation of quality control policies, procedures, and corrective actions. (See Part E of Section I, Quality Assurance).

The data assessment requirements entail the determination of precision and accuracy for both continuous and manual methods. A one-point precision check must be carried out at least once every other week on each automated analyzer used to measure SO_2 , NO_2 , CO and O_3 . Standards from which the precision check test data are derived must meet specifications detailed in the regulations. For manual methods, precision checks are to be accomplished by operating co-located duplicate samplers. In 1983, Connecticut maintained three co-located TSP monitors (Bridgeport 009, Hartford 003, and Waterbury 005) and two co-located lead samplers (New Haven 123 and Waterbury 123).

Accuracy determinations are accomplished by performing analyzer audits via special audit gases for automated analyzers, via reference flow devices for hi-vols, and via spiked strip analyses for lead. For SLAMS analyzers, accuracy audits must be performed on each analyzer at least once per calendar year. Each PSD analyzer must be audited at least once each calendar guarter.

All precision and accuracy data are derived through calculation methods specified by the regulations, with the results reported quarterly on Data Assessment Report Forms. The NAMS network is actually part of the SLAMS network; so the SLAMS accuracy determinations also apply to the NAMS network. The distinguishing characteristics of NAMS are: 1) only continuous instruments are used to monitor gaseous pollutants; 2) the regulations specify a minimum number and locations for them; and 3) the data, in addition to being included in the annual report, are reported quarterly to EPA.

In order to control the quality of data, the monitoring program must have operational procedures for each of the following activities:

- 1. Installation of equipment,
- 2. Selection of methods, analyzers, or samplers,
- 3. Zero/span checks and analyzer adjustments,
- 4. Calibration,
- 5. Control limits for zero/span and other control checks, and respective corrective actions when such limits are exceeded,
- 6. Control checks and their frequency,
- 7. Preventive and remedial maintenance,
- 8. Calibration and zero/span checks for multi-range analyzers,
- 9. Recording and validating data, and
- 10. Documentation of quality control information.

Monitoring Methodologies

Except as otherwise stated within the regulations, the monitoring method used must be "reference" or "equivalent," as designated by the EPA. Table 34 lists methods used in Connecticut's network in 1983 which were on the EPA-approved list as of 9/18/80. Additional updates to these approved methods are provided through the "Federal Register."

Network Design

The regulations also describe monitoring objectives and general criteria to be applied in establishing the SLAMS networks and for choosing general locations for new monitors. Criteria are also presented for determining the location and number of monitors. These criteria serve as the framework for all State Implementation Plan (SIP) monitoring networks that must be complete and in operation by January 1, 1983.

The SLAMS network must be designed to meet four basic monitoring objectives: (1) to determine the highest pollutant concentration in the area; (2) to determine representative concentrations in areas of high population density; (3) to determine the ambient impact of significant sources or source categories; and (4) to determine general background concentration levels. Proper siting of a monitor requires precise specification of the monitoring objectives, which usually includes a desired spatial scale of representativeness. The spatial scales of representativeness are specified in the regulations for each pollutant and monitoring objective. The 1983 SLAMS and NAMS networks in Connecticut are presented and described in Table 35.

Probe Siting

Location and exposure of monitoring probes has been an area of confusion for a number of years because of conflicting guidelines and a lack of guidance or recommended criteria. The probe siting criteria promulgated in the regulations are specific. They are also sufficiently inclusive to define the requirements for ensuring the uniform collection of compatible and comparable air quality data.

These criteria are detailed by pollutant and include vertical and horizontal probe placement, spacing from obstructions and trees, spacing from roadways, probe material and sample residence time, as well as various other considerations. A summary of the probe siting criteria is presented in Table 36. The siting criteria generally apply to all spatial scales except where noted. The most notable exception is spacing from roadways which is dependent on traffic volume.

For the reactive gases SO_2 , NO_2 , and O_3 , the regulations specify borosilicate glass, FEP teflon or their equivalent as the only acceptable probe materials. Additionally, in order to minimize the effects of particulate deposition on probe walls, sampling probes for reactive gases must have residence times of less than 20 seconds.

U.S. EPA APPROVED MONITORING METHODS USED IN CONNECTICUT IN 1983

	Manual Methods	Automated	Automated Methods
Pollutant	Reference	Reference	Equivalent
TSP	High Volume Method		
soz			Thermo Electron 43 (0.5)
CO		Bendix 8501-5CA (50)	
03		Bendix 8002 (0.5)	
N 0 2		Thermo Electron 14 B/E (0.5) Monitor Labs 8440E (0.5) Bendix 8101-C (0.5)	
Lead	High Volume Method		
() = approved	ved range in nom		

() = approved range in ppm

1983 SLAMS AND NAMS SITES

SULFUR DIOXIDE

				SULFUR DIVIDE			
Town	Urban Area	Site	SLAMS or NAMS	Sampling & Analytic Method	Operating Schedule	Monitoring Objective	Spatial Scale and Representativeness
Bridgeport Bridgeport	Bridgeport Bridgeport	001 012	აა	Pulsed Fluorescence Pulsed Fluorescence	Contin. Contin.	Population Population	Ne i ghborhood Ne i ghborhood
Bridgeport	Bridgeport	123	z۰	s ed	Contin.	High Conc.	Neighborhood
Enfield	Springfield	005	n v	Pulsed Fluorescence	Contin.	Background	kegional Regional
Graanwich An	(Somers CT) Stamford	210	v		, too	Pationograd	
Groton	New London/	007	n v	Pulsed Fluorescence	Contin.	Population	Neighborhood
	Norwich						
Hartford	Hartford	123	s S		Contin.	Population	Neighborhood
Miltord	Bridgeport	200	n :	o e e e	Contin.	Source	Middle
		57-	zι		Contin.	HIGH CONC.	Neighborhood
	Now London /		nu	Puised Fluorescence	Contin.	Population Bachapata	Neignbornood Dogiosoj
	Norwich	400	D	נ		המראקו מתוום	D
Stamford	Stamford	024	S		Contin.	High Conc.	Neiahborhood
Stamford	Stamford	123	S		Contin.	High Conc.	Neighborhood
Waterbury	Waterbury	007	S	Pulsed Fluorescence	Contin.	High Conc.	Neighborhood
Waterbury	Waterbury	123	S		Contin.	Population	Neighborhood
				NITROGEN OXIDES			
Bridgeport	Bridgeport	123	s	Chemiluminescent	Contin.		Ne i ghborhood
E. Hartford	Hartford	003	S	Chemiluminescent	Contin.		Neighborhhod
New Haven	New Haven	123	s	Chemiluminescent	Contin.	High Conc.	Neighborhood
				OZONE			
Bridgeport	Bridgeport	123	z	Chemiluminescent	Contin.	Population	Ne i ghborhood
Danbury		123	s	Chemiluminescent	Contin.	Population	Urban
E. Hartford		003	z	Chemiluminescent	Contin.	Population	Neighborhood
Greenwich Pt.		017	s	Chemiluminescent	Contin.	Background	Regional
Groton	New London	005	S	Chemiluminescent	Contin.	High Conc.	Urban
Middletown	Mertden Marttord	rd 007	z	Chemiluminescent	Contin.	High Conc.	Urban
New Haven	New Haven		ZZ	Chemiluminescent	Contin.	Population	Neighborhood
Stratford	Bridgeport	001	zz	Chemiluminescent Chemiluminescent	Contin.	Hiah Conc.	Urban
- - - -	(NYC down wind)				8 	· · · · · · · · · · · · · · · · · · ·	
				CARBON MONOXIDE			
Bridoenort	Bridgenort	004	ý	ATCN	Contin	Hich Conc	
Hartford New Britain	Hartford New Britain	012	s v v	NDIR	Contin. Contin.	בבה	Micro
New Haven Stamford	New Haven Stamford	007 020	აა	NDIR NDIR	Contin. Contin.	High Conc. High Conc.	Micro Micro
						,	

TABLE 35, Continued

TOTAL SUSPENDED PARTICULATES

.

Spatial Scale and Representativeness	Neighborhood Neighborhood				Neighborhood		Nei	Nei	Neighborhood	•	Ne Igndornood Noi ottoeteee		Neighborhood Neighborhood	יי ט מ		יי- ט ט	ם יו	 U 0		ר - יר ס ע	0 0		5 6) a	5 6	No i abrocha Na i abrocha	5 0	D -)	Nejahhorhood	Neiahborhood	Nejahborhood	Neighborhood	ahbarhon	leuo	Nejahborhood	e i abharha	5 6	5 6	
Monitoring Objective	Population Population	High Conc.	Population	Background	High Conc.	Population	Population	Population	Population	č	5			High Cooo		Population	Population	Population	High Conc		High Conc	High Conc.	м	High Conc.	, н	, na	pu l		High Conc.	High Conc.	Population	Population	Population	Background	Population	Population	Population	High Conc	pulati
Operating Schedule	6-day 6-day	0-0ay 6-day	6-day	6-day	6-day		6-day	D I	6-day		- 1	(90 0 9 - 7 - 9	6-dav	6-dav	1	- 1	1	1	6-dav	6-dav	6-dav		6-day	6-day	ק		6-day	L	6-day		6-day	ק	٦ ١	6-day	- 1	6-day	6-day	ק	6-day
Analytic Method	Gravimetric Gravimetric Gravimetric	Gravimetric	Gravimetric	Gravimetric	Ξ.	Gravimetric	Gravimetric	avimetri	Gravimetric	Cravimatric	avimetri	avimetri	me t	metri	metri	ravimetri	Ľ			ï		Gravimetric	Gravimetric		Gravimetric	Gravimetric	Gravimetric		ravimetri	metri	netri	7	netri	ravimetri	ravimetri	ravimetri	L.,	Gravimetric	Gravimetric
Samp. Meth.		Hi-Vol	Hi-Vol	Hi-Vol	Hi-Vol			- •		Hi-Vol	>	>	Hi-Vol	Hi-Vol	Hi-Vol	Hi-Vol	Hi−Vo1	Hi-Vol	Hi-Vol	Hi-Vol	Hi-Vol	Hi-Vol	Hi-Vol	Hi-Vol	Hi-Vol	Hi-Vol	Hi-Vol		•	•—	Hi-Vol	· • •	•	Hi-Vol	Hi-Vol	•	Hi-Vol	•	Hi-Vol
SLAMS or NAMS	νzz	z	S	s :	z	z (nu	nu	ŝ	z	z	z	S	z	z	S	S	S	z	z	z	z	z	S	z	z	S		z	z	Z	S	S	S	z	z	S	z	S
Site	003	123	100	001	002	54-0				003	013	014	001	002	008	rd 003	c-002	001	007	. <i>،</i> مُ008	600	002	013	001	005	012	001		001	200	021	005	100	001	100	005	006		
Urban Area	Bridgeport Bridgeport Bridgeport	Bridgeport	Bristol	NONE	Darbury		Stamford -		Norwich	Hartford	Hartford	Hartford	Hartford	Meriden	Meriden	Meriden Meride	New Harrien Bride	Waterbury	Hartford) M ₂₀₀	Hartford (Brik	Hartford)	New Haven	New Haven	Norwalk	NOLWOLK	Norwalk	New London/ 001 S Hi-/	LOIMLON	Stamford	stamford	Stamford	Bridgeport	NONE	SONE	New Haven	Waterbury	Waterbury	Waterbury	Waterburd none
ГмоТ	Ansonia Bridgeport Bridgeport	Bridgeport	Bristol	Daburington	Darbury					Hartford			ter			UMO		gatuck	Britair	Britair	Britair	Haven	с		×.	7 Z U Z			Stamtord Stantord	Stamford C. C.			lorrington Vii		wallingtord	waterbury	Waterbury	Waterbury	Willimantic

ĺ

•

TABLE 35, Continued

LEAD

	Spatial Scale and	Representativeness	Nejahbarhaad	Neiahborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neiahborhood	Neighborhood	Middle	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Middle
	Monitoring	Objective	Population	Population	Population	Population	Population	Population	Population	Population	Population	High Conc.	Population	Population	Population	Population	Population	High Conc.
	Operating	Schedule	6-day	6-day	6-day	6-day	6-day	6-day	6-day	6-day	6-day							
	Analytic	Method	Atomic Abs.	Atomic Abs.	Atomic Abs.	Atomic Abs.	Atomic Abs.	Atomic Abs.	Atomic Abs.	Atomic Abs.	Atomic Abs.	Atomic Abs.	Atomic Abs.	Atomic Abs.	Atomic Abs.	Atomic Abs.	Atomic Abs.	Atomic Abs.
	Samp.	<u>Meth.</u>	Hi-Vo1	Hi-Vol	Hi-Vol	Hi-Vol	Hi-Vol	/Hi-Vol	Hi-Vol	Hi-Vol	Hi-Vol	Hi−Vol	Hi-Vol	Hi-Vol	Hi-Vol	Hi-Vol	Hi-Vol	Hi-Vol
SLAMS	L 0	NAMS	s	S	s	S	s S	S) S	S	S	S	S	s	S	S	S	S	S
		Site	003	600	123	001	002	014	002	∿€ 003	007	123	012	100	123	001	007	123
		Urban Area	Bridgeport	Bridgeport	Bridgeport	Bristol	Danbury	Hartford	Meriden	Merider Nerth	New Britain	New Haven	Norwalk	Stamford	Torrington	New Haven	Waterbury	Waterbury
		Тожл	Ansonia	Bridgeport	Bridgeport	Bristol	Danbury	Hartford	Meriden	Middletown	New Britain	New Haven	Norwalk	Stamford	Torrington	Wallingford	Waterbury	- Waterbury

TABLE 36 PROBE SITING CRITERIA	Height Above Ground, Meters Other Spacing Criteria	 15 1. Should be >20 meters from trees. 2. Distance from sampler to obstacle, such as a building, must be at least twice the height the obstacle protrudes above the sampler. 3. Must have unrestricted airflow 270 degrees around the sampler. 4. No furnace or incineration flues should be nearby.^C 5. Must have minimum spacing from roads. This varies with height of monitor and spatial scale. 	 >1 Should be >20 meters from trees. 2. Distance from inlet probe to obstacle, such as a building, must be at least twice the height the obstacle protrudes above the inlet probe. 3. Must have unrestricted airflow 270 degrees around the inlet probe, or 180 degrees if probe is on the side of a building. 4. No furnace or incineration flues should be nearby.^C 	 1. Must be >10 meters from intersection and should be at a midblock location. 2. Must be 2-10 meters from edge of nearest traffic lane. 3. Must have unrestricted airflow 180 degrees around the inlet probe. 	 1. Must have unrestricted airflow 270 degrees around the inlet probe, or 180 degrees if probe is on the side of a building. 2. Spacing from roads varies with traffic.^d 		
SUMMARY OF	He Distance from Supporting A Structure, Meters Gr <u>Vertical Horizontal^a Me</u>	2	3 - 15	3 ± 1/2 >1	3 - 15		·
	Scale	LIA	L F A	Micro	Middle Neighborhaod		
	Pollutant	н С	s02	000			(

TABLE 36, Continued

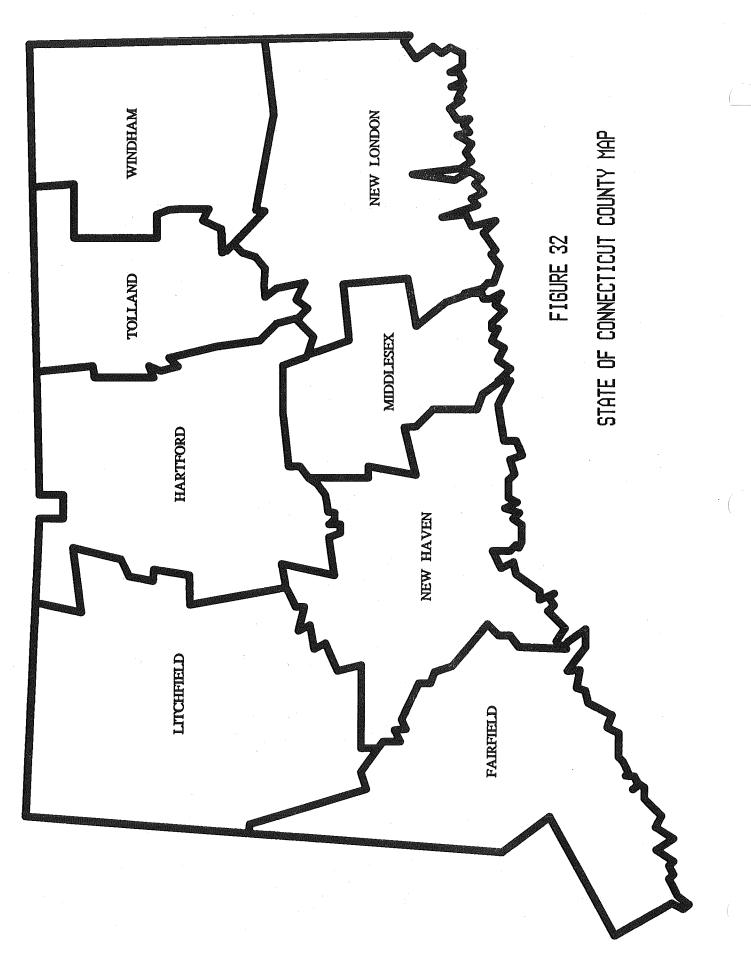
Other Spacing Criteria	 Should be >20 meters from trees. Distance from inlet probe to obstacle, such as a building, must be at least twice the height the obstacle protrudes above the inlet probe. Must have unrestricted airflow 270 degrees around the inlet probe, or 180 degrees if probe is on the side of a building. Spacing from roads varies with traffic.^d 	 Should be >20 meters from trees. Distance from inlet probe to obstacle, such as a building, must be at least twice the height the obstacle protrudes above the inlet probe. Must have unrestricted airflow 270 degrees around the inlet probe, or 180 degrees if probe is on the side of a building. Spacing from roads varies with traffic.^d 	ooftop, this separation distance is in reference to walls, parapets, or penthouses located terion would be classified as middle scale. sight of furnace or incineration flue, type of fuel or waste burned, and quality of fuel This is to avoid undue influences from minor pollutant sources. traffic ADT, pollutant and spatial scale.
Height Above Ground, Meters	0 1	7	aration distance is in refe classified as middle scale. or incineration flue, type d undue influences from min allutant and spatial scale.
Distance from Supporting Structure, Meters Vertical Horizontal ^a	7	7	When probe is located on rooftop, this separation distance is on the roof. Sites not meeting this criterion would be classified as middle Distance is dependent on height of furnace or incineration flu (sulfur and ash content). This is to avoid undue influences f Distance is dependent upon traffic ADT, pollutant and spatial
Distance from Structure, Vertical	7	3 I 1 3	located on rooftop, this sep ing this criterion would be pendent on height of furnace h content). This is to avoi pendent upon traffic ADT, po
Scale	L		When probe is located on rooftop, this sep on the roof. Sites not meeting this criterion would be Distance is dependent on height of furnace (sulfur and ash content). This is to avoi Distance is dependent upon traffic ADT, po
Pollutant	ლ O	NO2	a When probe is on the roof. b Sites not meet c Distance is de (sulfur and as d Distance is de

-203-

XII. EMISSIONS INVENTORY

Connecticut's computerized emissions inventory contains two separate components — a *point* source file of 12,000 stationary sources and an *area* source file of small sources. Area sources, such as home furnaces and transportation activities, are too small to be treated individually. The Compilation of Air Pollutant Emission Factors, designated as AP-42, was used to compute estimated emissions for both point and area sources. Emission factors for motor vehicles were calculated at an annual average temperature of 50°F using MOBILE3.

Table 37 summarizes the actual annual in-state emissions of each of the five (5) major air pollutants in Connecticut -- TSP, SO₂, CO, VOC, and NO₂ -- by county, for 1983. The table reveals two things. First, the most populous counties have the largest pollutant totals; second, excluding SO₂, which is largely generated by utilities, area sources (mobile sources in particular) account for the bulk of the total emissions.

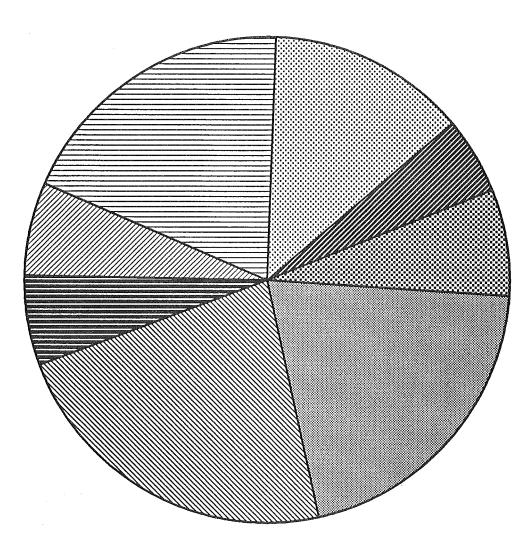

County names and geographic locations are displayed in Figure 32, which also serves as a reference for the charts that follow.

Figures 33 through 47 give various visual displays of the level of emissions for each of the major air pollutants. Figures 33, 36, 39, 42, and 45 are pie charts that show the percent of each air pollutant for Connecticut's eight (8) counties. Figures 34, 37, 40, 43, 46 are pictorial displays of emissions by county, where the darker areas indicate higher emission levels. Figures 35, 38, 41, 44, 47 are three dimensional graphs of each county's contribution to statewide emissions.

1983 CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION EMISSIONS INVENTORY BY COUNTY*

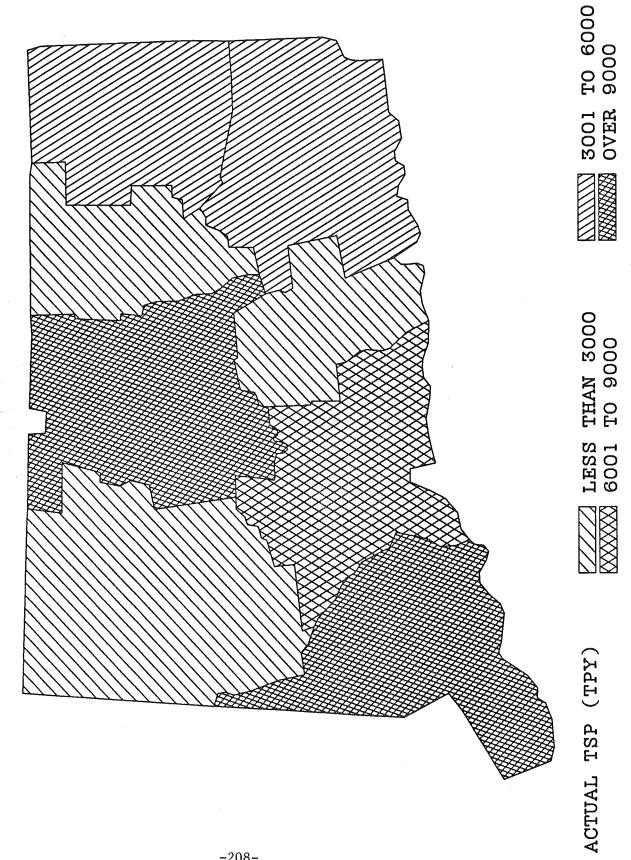
		TONS PER YEAR					
		TSP	SO2	CO	VOC	NOX	
Fairfield	Area Point	7,241.9 <u>1.781.4</u> 9,023.3	6,000.3 <u>29,233.1</u> 35,233.4	193,108.6 <u>3.621.1</u> 196,729.7	36,126.4 <u>5,338.5</u> 41,464.9	26,068.7 <u>9.277.3</u> 35,346.0	
Hartford	Area Point	9,301.4 <u>736.5</u> 10,037.9	6,657.6 <u>3,725.7</u> 10,383.3	220,981.6 <u>658.9</u> 221,640.5	40,494.0 <u>4.357.4</u> 44,851.4	31,087.5 <u>2,954.7</u> 34,042.2	
Litchfield	Area Point	2,381.5 <u>253.1</u> 2,634.6	1,558.3 <u>643.0</u> 2,201.3	41,815.4 <u>55.1</u> 41,870.5	8,893.3 <u>628.9</u> 9,522.2	5,788.3 <u>262.9</u> 6,051.2	
Middlesex	Area Point	2,033.6 <u>681.8</u> 2,715.4	1,208.0 <u>6.605.3</u> 7,813.3	36,778.9 <u>542.2</u> 37,321.1	7,883.2 <u>955.5</u> 8,838.7	5,977.0 <u>5.045.1</u> 11,022.1	
New Haven	Area Point	7,140.5 <u>1.225.7</u> 8,366.2	5,827.6 <u>24.628.2</u> 30,455.8	161,398.1 <u>1.051.8</u> 162,449.9	31,904.0 <u>5,527.8</u> 37,431.8	25,349.6 <u>7.852.3</u> 33,201.9	
New London	Area Point	4,790.2 <u>1.047.1</u> 5,837.3	2,148.7 <u>12.810.3</u> 14,959.0	84,324.4 <u>403.9</u> 84,728.3	17,346.1 <u>1.552.8</u> 18,898.9	10,902.0 <u>3,710.2</u> 14,612.2	
Tolland	Area Point	2,139.9 <u>87.3</u> 2,227.2	1,010.3 <u>853.0</u> 1,863.3	36,484.0 <u>62.4</u> 36,546.4	7,751.3 <u>91.3</u> 7,842.6	5,144.3 <u>389.3</u> 5,533.6	
Windham	Area Point	2,889.4 3,117.3	843.9 <u>653.7</u> 1,497.6	39,018.5 <u>881.1</u> 39,899.6	8,414.9 <u>1.227.1</u> 9,642.0	3,596.7 <u>310.3</u> 3,907.0	
TOTAL	AREA POINT	37,918.3 <u>6.084.9</u> 44,003.2	25,254.7 <u>79.152.3</u> 104,407.0	813,909.5 <u>7.276.5</u> 821,186.0	158,813.3 <u>19.679.3</u> 178,492.6	113,914.0 <u>29.802.1</u> 143,716.1	

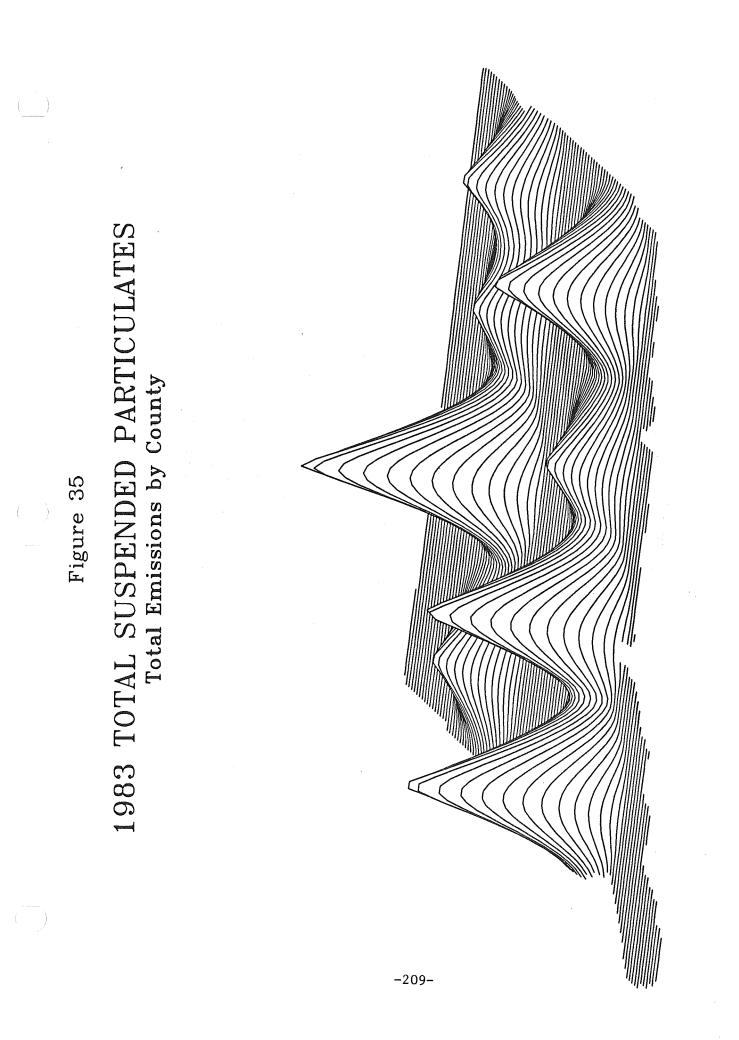
* This inventory is based on actual operating data for 1983, such as actual fuel use and actual material throughputs. MOBILE3 is used to produce mobile source emission factors for an average annual temperature of 50oF. NOX emissions are expressed as NO2.



1983 CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION

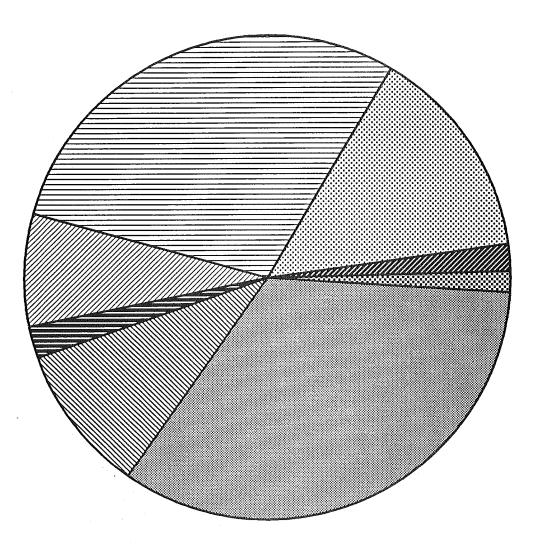
EMISSIONS INVENTORY BY COUNTY


TOTAL SUSPENDED PARTICULATES

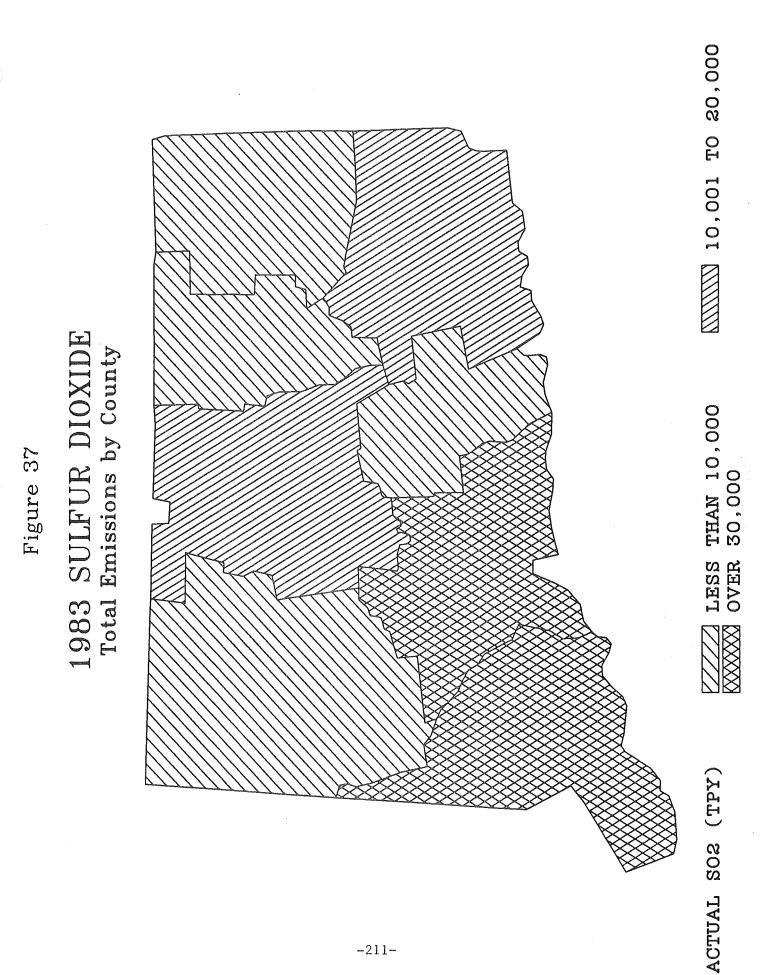

TOTAL TONS PER YEAR - 44,003

FAIRFIELD - 20.5%
B HARTFORD - 22.8%
LITCHFIELD - 6.0%
MIDDLESEX - 6.2%
REW HAVEN - 19.0%
NEW LONDON - 13.3%
7011AND - 5.1%
🕅 WINDHAM - 7.1%

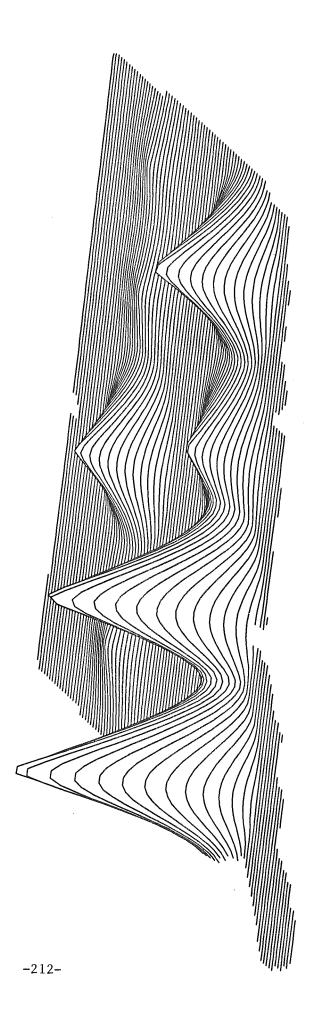
1983 TOTAL SUSPENDED PARTICULATES Total Emissions by County



1983 CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION

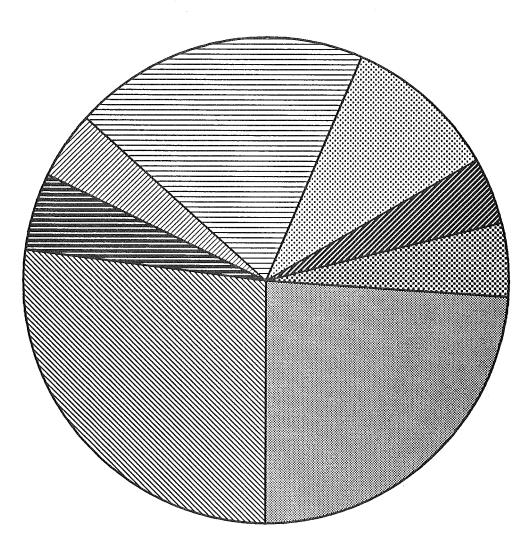

EMISSIONS INVENTORY BY COUNTY

SULFUR DIOXIDE


TOTAL TONS PER YEAR - 104,407

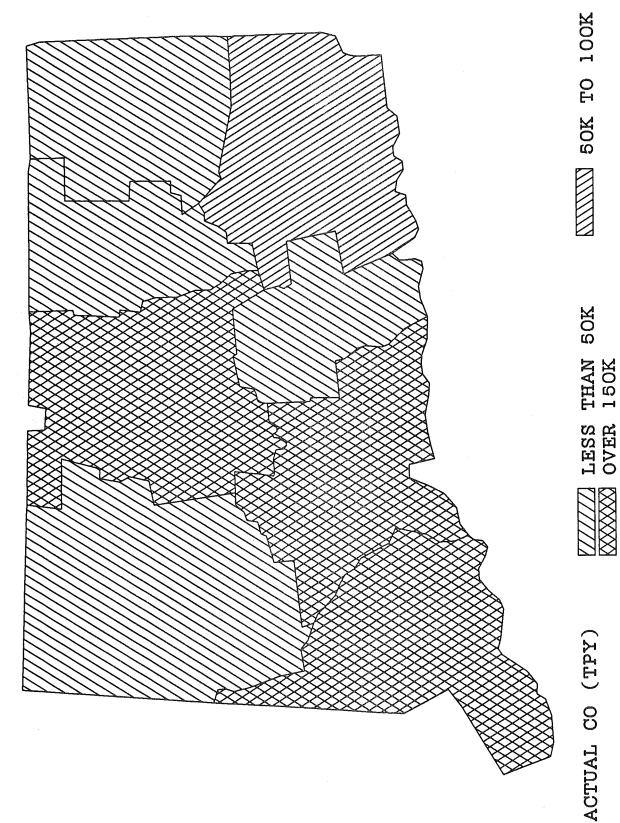
FAIRFIELD - 33.8%
 HARTFORD - 9.9%
 LITCHFIELD - 2.1%
 MIDDLESEX - 7.5%
 NEW HAVEN - 29.2%
 NEW LONDON - 14.3%
 TOLLAND - 1.8%
 WINDHAM - 1.4

1983 SULFUR DIOXIDE Total Emissions by County

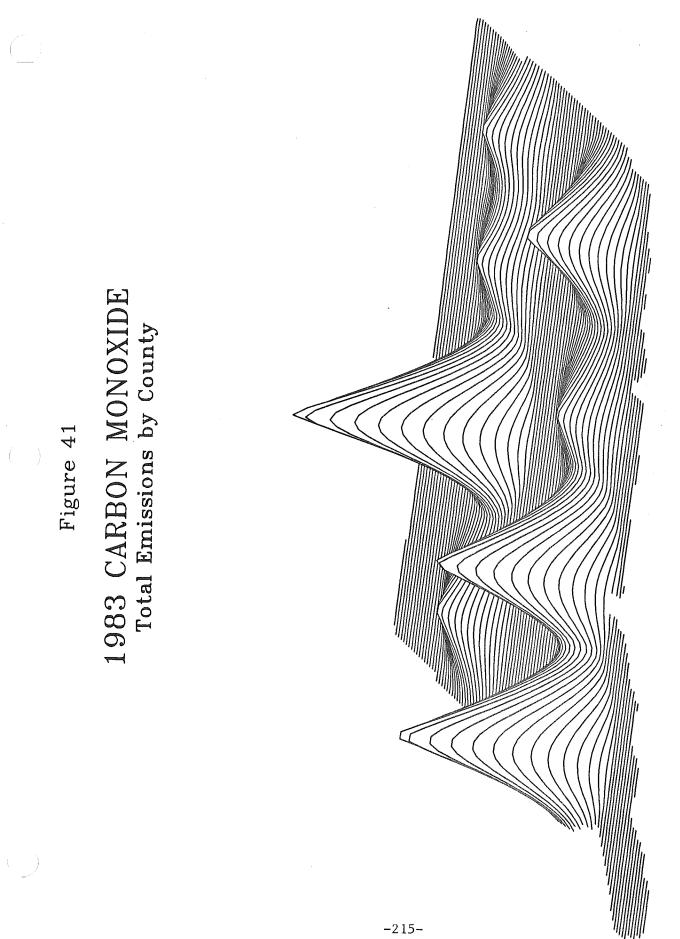

Three Dimensional View of SO2 Emissions

1983 CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION

EMISSIONS INVENTORY BY COUNTY


CARBON MONOXIDE

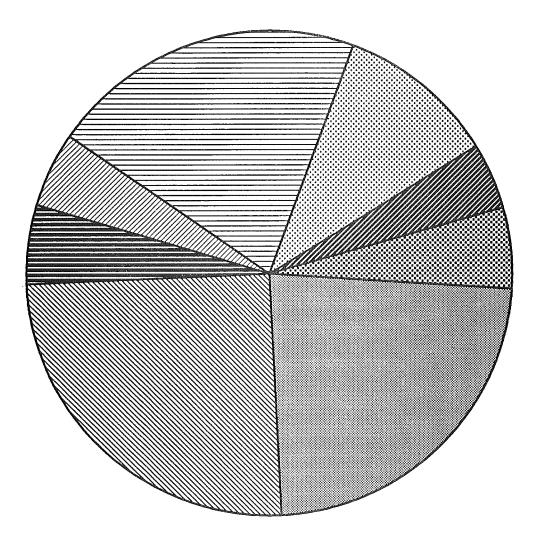
TOTAL TONS PER YEAR - 821,186



FAIRFIELD - 24.0%
 HARTFORD - 27.0%
 LITCHFIELD - 5.1%
 MIDDLESEX - 4.5%
 NEW HAVEN - 19.8%
 NEW LONDON - 10.3%
 TOLLAND - 4.4%
 WINDHAM - 4.9%

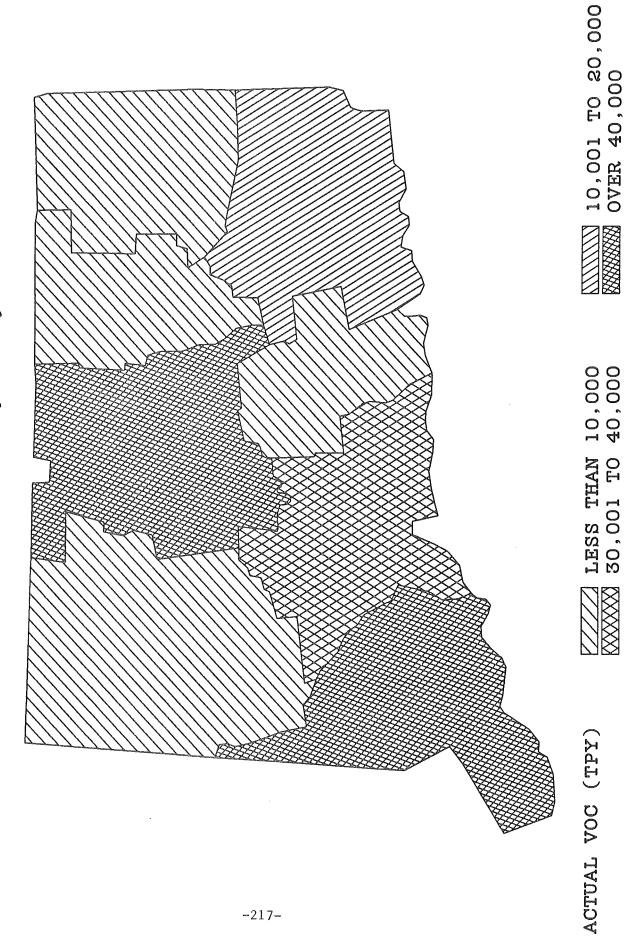
1983 CARBON MONOXIDE Total Emissions by County

-214-

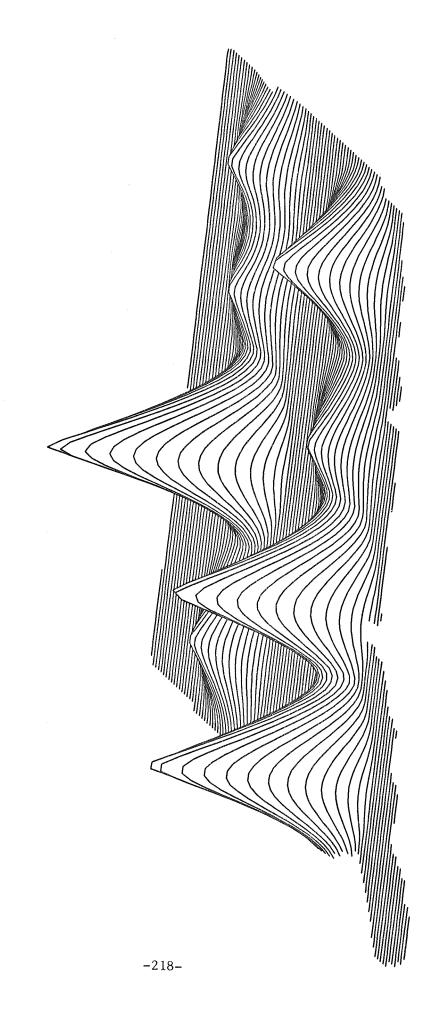


1983 CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION

EMISSIONS INVENTORY BY COUNTY


VOLATILE ORGANIC COMPOUNDS

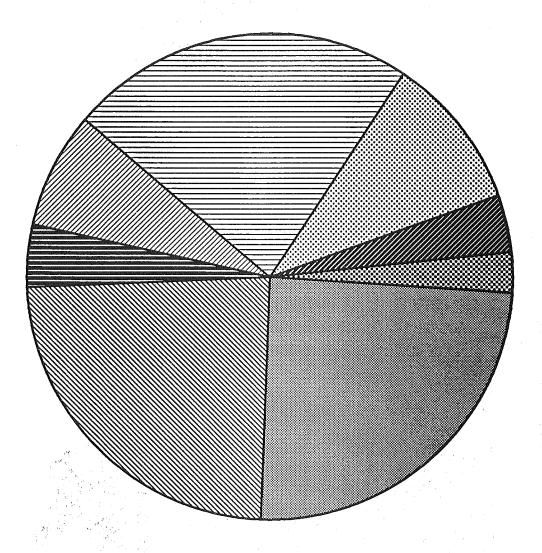
TOTAL TONS PER YEAR - 178,493



FAIRFIELD - 23.2%
 HARTFORD - 25.1%
 LITCHFIELD - 5.3%
 MIDDLESEX - 5.0%
 NEW HAVEN - 21.0%
 NEW LONDON - 10.6%
 TOLLAND - 4.4%
 WINDHAM - 5.4%

1983 VOLATILE ORGANIC COMPOUNDS Total Emissions by County

1983 VOLATILE ORGANIC COMPOUNDS Total Emissions by County

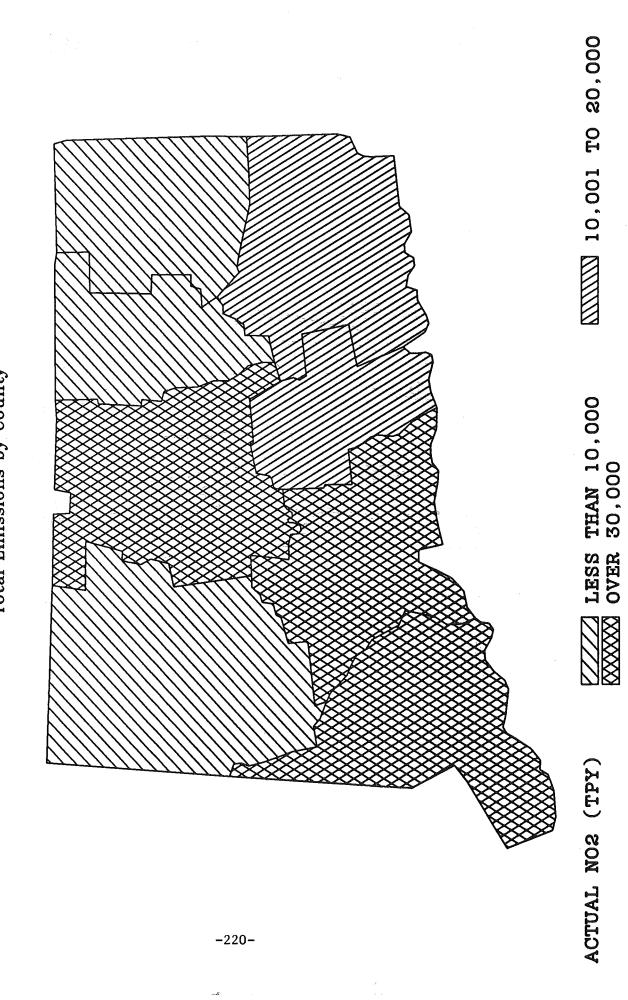

Three Dimensional View of VOC Emissions

1983 CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION

EMISSIONS INVENTORY BY COUNTY

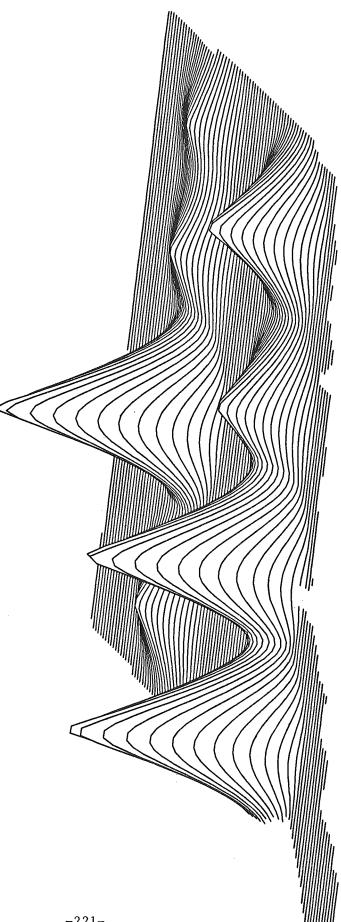
NITROGEN OXIDES, EXPRESSED AS NO2

TOTAL TONS PER YEAR - 143,716



FAIRFIELD - 24.6%
 HARTFORD - 23.7%
 LITCHFIELD - 4.2%
 MIDDLESEX - 7.7%
 NEW HAVEN - 23.1%
 NEW LONDON - 10.2%
 TOLLAND - 3.8%
 WINDHAM - 2.7%

S.



1983 NITROGEN OXIDES (Expressed as Nitrogen Dioxide) Total Emissions by County

1983 NITROGEN OXIDES (Expressed as Nitrogen Dioxide) Total Emissions by County

XIII. PUBLICATIONS

The following is a partial listing of technical papers and study reports dealing with various aspects of Connecticut air pollutant levels and air quality data.

- 1. Bruckman, L., Asbestos: An Evaluation of Its Environmental Impact in Connecticut, internal report issued by the Connecticut Department of Environmental Protection, Hartford, Connecticut, March 12, 1976.
- Lepow, M. L., L. Bruckman, R.A. Rubino, S. Markowitz, M. Gillette and J. Kapish, "Role of Airborne Lead in Increased Body Burden of Lead in Hartford Children," Environ. Health Perspect., May, 1974, pp. 99-102.
- 3. Bruckman, L. and R.A. Rubino, "*Rationale Behind a Proposed Asbestos Air Quality Standard*," paper presented at the 67th Annual Meeting of the Air Pollution Control Association, Denver, Colorado, June 9–11, 1974, J. Air Pollut. Cntr. Assoc., 25: 1207–15 (1975).
- 4. Rubino, R.A., L. Bruckman and J. Magyar, "Ozone Transport," paper presented at the 68th Annual Meeting of the Air Pollution Control Association, Boston, Massachusetts, June 15–20, 1975, J. Air Pollut. Cntr. Assoc: 26, 972–5 (1976).
- 5. Bruckman, L., R.A. Rubino and T. Helfgott, "*Rationale Behind a Proposed Cadmium Air Quality Standard*," paper presented at the 68th Annual Meeting of the Air Pollution Control Association, Boston, Massachusetts, June 15–20, 1975.
- Rubino, R.A., L. Bruckman, A. Kramar, W. Keever and P. Sullivan, "Population Density and Its Relationship to Airborne Pollutant Concentrations and Lung Cancer Incidence in Connecticut," paper presented at the 68th Annual Meeting of the Air Pollution Control Association, Boston, Massachusetts, June 15–20, 1975.
- 7. Lepow, M.L., L. Bruckman, M. Gillette, R.A. Rubino and J.Kapish, "Investigations into Sources of Lead in the Environment of Urban Children," Environ. Res., 10: 415–26 (1975).
- 8. Bruckman, L., E. Hyne and P. Norton, "A Low Volume Particulate Ambient Air Sampler," paper presented at the APCA Specialty Conference entitled "Measurement Accuracy as it Relates to Regulation Compliance," New Orleans, Louisiana, October 26–28, 1975, APCA publication SP-16, Air Pollution Control Association, Pittsburgh, Pennsylvania, 1976.
- 9. Bruckman, L. and R.A. Rubino, "High Volume Sampling Brrors Incurred During Passive Sample Exposure Periods," J. Air Pollut. Cntr. Assoc., 26: 881-3 (1976).
- 10. Bruckman, L., R.A. Rubino and B. Christine, "Asbestos and Mesothelioma Incidence in Connecticut," J. Air Pollut. Cntr. Assoc., 27: 121-6 (1977).
- 11. Bruckman, L., Suspended Particulate Transport in Connecticut: An Investigation Into the Relationship Between TSP Concentrations and Wind Direction in Connecticut, internal report issued by the Connecticut Department of Environmental Protection, Hartford, Connecticut, December 24, 1976.

- 12. Bruckman, L. and R.A. Rubino, "Monitored Asbestos Concentrations in Connecticut," paper presented at the 70th Annual Meeting of the Air Pollution Control Association, Toronto, Ontario, June 20–24, 1977.
- 13. Bruckman, L., *"Suspended Particulate Transport,"* paper presented at the 70th Annual Meeting of the Air Pollution Control Association, Toronto, Ontario, June 20–24, 1977.
- 14. Bruckman, L., "A Study of Airborne Asbestos Fibers in Connecticut," paper presented at the "Workshop in Asbestos: Definitions and Measurement Methods" sponsored by the National Bureau of Standards/U.S. Department of Commerce, July 18-20, 1977.
- 15. Bruckman, L., "Monitored Asbestos Concentrations Indoors," paper presented at The Fourth Joint Conference of Sensing Environmental Pollutants, New Orleans, Louisiana, November 6–11, 1977.
- 16. Bruckman, L., "Suspended Particulate Transport: Investigation into the Causes of Elevated TSP Concentrations Prevalent Across Connecticut During Periods of SW Wind Flow," paper presented at the Joint Conference on Applications of Air Pollution Meteorology, Salt Lake City, Utah, November 28 – December 2, 1977.
- 17. Bruckman, L., E. Hyne, W. Keever, "A Comparison of Low Volume and High Volume Particulate Sampling," internal report issued by the Connecticut Department of Environmental Protection, Hartford, Connecticut, 1976.
- 18. "Data Validation and Monitoring Site Review," (part of the Air Quality Maintenance Planning Process), internal report issued by the Connecticut Department of Environmental Protection, Hartford, Connecticut, June 15, 1976.
- 19. "Air Quality Data Analysis," (part of the Air Quality Maintenance Planning Process), internal report issued by the Connecticut Department of Environmental Protection, Hartford, Connecticut, August 16, 1976.
- 20. Bruckman, L., "Investigation into the Causes of Elevated SO: Concentrations Prevalent Across Connecticut During Periods of SW Wind Flow," paper presented at the 71st Annual Meeting of the Air Pollution Control Association, Paper #78-16.4, Houston, Texas, June 25-29, 1978.
- 21. Anderson, M.K., "Power Plant Impact on Ambient Air: Coal vs. Oil Combustion," paper presented at the 68th Annual Meeting of the Air Pollution Control Association, Paper #75-33.5, Boston, MA, June 15-20, 1975.
- 22. Anderson, M.K., G. D. Wight, "New Source Review: An Ambient Assessment Technique," paper presented at the 71st Annual Meeting of the Air Pollution Control Association, Paper #78-2.4, Houston, TX, June 25-29, 1978.
- 23. Wolff, G.T., P.J. Lioy, G.D. Wight, R.E. Pasceri, "Aerial Investigation of the Ozone Plume Phenomenon," J. Air Pollut.8 Control Association, 27: 460-3 (1977).
- 24. Wolff, G.T., P.J. Lioy, R.E. Meyers, R.T. Cederall, G.D. Wight, R.E. Pasceri, R.S. Taylor, "Anatomy of Two Ozone Transport Episodes in the Washington, D.C., to Boston, Mass., Corridor," Environ. Sci. Technol., 11-506-10 (1977).

- 25. Wolff, G.T., P.J. Lioy, G.D. Wight, R.E. Meyers, and R.T Cederwall, "Transport of Ozone Associated With an Air Mass," In: Proceed. 70 Annual Meeting APCA, Paper 377-20.3, Toronto, Canada, June, 1977.
- 26. Wight, G.D., G.T. Wolff, P.J. Lioy, R.E. Meyers, and R.T.Cederwall, "Formation and Transport of Ozone in the Northeast Quadrant of the U.S.," In: Proceed. ASTM Sym. Air Quality and Atmos. Ozone, Boulder, Colo., Aug. 1977.
- 27. Wolff, G.T., P.J. Lioy, and G.D. Wight, "An Overview of the Current Ozone Problem in the Northeastern and Midwestern U.S.," In: Proceed. Mid-Atlantic States APCA Conf. on Hydrocarbon Control Feasibility, p. 98, New York, N.Y., April, 1977.
- 28. Wolff, G.T., P.J. Lioy, G.D. Wight, R.E. Meyers, and R.T.Cederwall, "An Investigation of Long-Range Transport of Ozone Across the Midwestern and Eastern U.S.," Atmos. Environ. 11:797 (1977).

XIV. ERRATA

During the preparation of this document, a number of errors were discovered and corrected. In order to prevent any confusion in the mind of the reader over conflicting data presented in this and previous editions of this document, the errors and corrections are presented below:

- Regarding 1968 TSP data, all references to site Greenwich 003 should be ignored. This site had insufficient data for a valid annual average concentration.
- Regarding 1969 TSP data, the annual geometric mean concentration for site Naugatuck 001 has been changed from 92.6 to 92.5 ug/m³.
- Regarding 1971 TSP data, the annual geometric mean concentration for site Norwalk 001 has been changed from 57.0 to 57.1 ug/m³.
- Regarding 1972 TSP data,
 - 1. The annual geometric mean concentration for site New Haven 001 has been changed from 54.8 to 54.9 ug/m³, and
 - 2. All references to site Enfield 003 should be ignored. This site was not part of the official particulate sampling network.
- Regarding 1968–1972 TSP data, all references to the following monitoring sites should be ignored: Bridgeport A 001, Hartford A 001, New Haven A 001, and Waterbury A 001. Questions about the handling of the sample filters are serious enough to invalidate all data from these sites.
- Regarding 1977 TSP data, the annual geometric mean concentration for site Ansonia 003 has been changed from 63.1 to 57.3 ug/m³.
- Regarding 1978 TSP data, the annual geometric mean concentration for site Norwalk 005 has been changed from 57.0 to 59.0 ug/m³.
- Regarding 1979 TSP data, the following corrections have been made:
 - 1. For site Ansonia 003, the number of samples for the year has been changed from 115 to 116 and the standard geometric deviation of the data is 1.525.
 - 2. For site Burlington 001, the number of samples for the year has been changed from 116 to 117; the annual geometric mean concentration has been changed from 24.4 to 24.2 ug/m³; and the standard geometric deviation of the data is now 1.746.
- Tables and figures in pre-1983 editions of this document that include data from the foregoing sites should be appropriately footnoted. In addition, where it is appropriate, versions of such tables or figures should be ignored in favor of their counterparts in the 1983 Air Quality Summary.

- Regarding the 1982 Air Quality Summary:
 - 1. In Section I.A.5 on page 3, the third sentence should read: "The standard was exceeded twice at Hartford 012, three times at New Britain 002, and twice at Stamford 020."
 - 2. In Table 1, for carbon monoxide, the number of times the standard was exceeded should read "2/-" for Hartford 012 and "2/-" for Stamford 020. Also, for total suspended particulates, the number of times the secondary 24-hour standard was exceeded should read "-" for Wallingford 001.
 - 3. In Section I.B. on page 6, a portion of the third sentence in the third paragraph should be rewritten to read: "...the statewide average and standard deviation of the mean pollutant concentrations at the sites..."
 - 4. In Section I.B.1 on page 7, all references to low-volume samplers should be deleted from the third paragraph.
 - 5. In Table 2:
 - a. For the 1968–1969 period: the number of sites is 16; the averages of the annual geometric means are 74.9 and 67.8, respectively; the standard deviations are 21.7 and 18.7, respectively; and the actual significance of change is 0.00671.
 - b. For the 1975–1976 period: the average of the annual geometric means for both years is 53.3; the standard deviation for 1976 is 9.5; and the actual significance of change is 0.93101.
 - c. For the 1976–1977 period: the average of the annual geometric means for 1977 is 53.6; the standard deviation for 1977 is 9.1; and the actual significance of change is 0.85049.
 - d. For the 1977–1978 period: the averages of the annual geometric means are 54.6 and 52.8, respectively; the standard deviation for 1977 is 9.8; and the actual significance of change is 0.03330.
 - e. For the 1978–1979 period: the average of the annual geometric means for 1978 is 51.5; the trend at the 95% level is significantly down; and the actual significance of change is 0.04065.
 - 6. In Figure 1, a number of changes were made and a number of errors were discovered in the data for the years 1968 and 1975–1982. The correct data for this figure are reflected in Figure 1 in the 1983 Air Quality Summary.
 - 7. In Table 3A:
 - a. For the 1978–1979 period: the number of sites is 9; the averages of the yearly means are 9.10 and 8.14, respectively; the standard deviations are 2.34 and 2.04, respectively; and the actual significance of change is 0.10.
 - b. For the 1979–1980 period: the number of sites is 10; the averages of the yearly means are 8.30 and 7.56, respectively; the standard deviations are 1.74 and 1.99,

respectively; the trend at the 95% level is significantly downward; and the actual significance of change is 0.022.

- c. For the 1980–1981 period: the number of sites is 8; the averages of the yearly means are 8.04 and 7.97, respectively; the standard deviations are 1.58 and 1.67, respectively; and the actual significance of change is 0.30.
- d. For the 1981–1982 period: the number of sites is 8; the averages of the yearly means are 7.97 and 8.01, respectively; the standard deviations are 1.67 and 1.70, respectively; and the actual significance of change is 0.27.
- 8. In Section I.C on page 19, the first sentence in the second paragraph should include nitrogen dioxide as one of the measured pollutants, and the fourth paragraph should show that there were 41 particulate hi-vol sites and 6 nitrogen dioxide sites in 1982.
- 9. In Section I.E on page 20, the references to carbon monoxide in the first paragraph and to CO in the second paragraph should be deleted.
- 10. In Section I.F.2. on page 24, the reference to lead in paragraph a. should be deleted from the heading. Paragraph b. should be changed to c. Also, a new paragraph I.F.2.b. should be inserted - it can be found in the 1983 Air Quality Summary as paragraph I.E.2.b.
- 11. In Table 9, the sections on sites Torrington 123 and Waterbury 123 should be either deleted or footnoted to indicate that these two sites are no longer considered to be valid TSP hi-vol sites.
- 12. In Table 10, the pH reading for Putnam 002 in December is given as 0.09. This should be considered spurious.
- 13. In Table 12, the 1982 annual arithmetic averages for several of the sites have been amended as follows: Bridgeport 001 is 31; Danbury 123 is 20; Greenwich 017 is 21; Hartford 123 is 36; Milford 002 is 37; New Haven 123 is 32; Stamford 123 is 31; and Waterbury 123 is 21.
- 14. In Table 13, the standard deviation for the site New Haven 123 is 24.665.
- 15. In Table 19, the number of hours the standard was exceeded in 1982 should be 24 for Danbury 123 and 62 for Groton 005.
- 16. In Table 22, all the data are erroneous. The correct data can be found in Table 22 in the 1983 Air Quality Summary.
- 17. In Table 23, "1-HOUR" should replace "24-HOUR" in the heading.
- 18. In Section VIII on page 177, the last sentence in the second paragraph should be deleted.
- 19. In Table 28:

16

- a. In the section titled "Precipitation In Inches Water Equivalent," the subheading "Mean" should have the superscript "a";
- b. In the section titled "Number of Days with More Than .01 Inches of Precipitation," the subheading 'Mean' should have the superscript "c";

- c. In the section titled "Average Wind Speed (MPH)," the subheading 'Mean" should have the superscript "c";
- d. The footnote "b" should read "1960-1982"; and
- e. The footnote "c" should read "1955-1982."
- 20. In Table 29, the footnote "f" should read "1960-1982."

21. In Table 32:

- a. The operating schedule for TSP site Norwalk 001 should be "6-day";
- b. The operating schedule for TSP site Norwalk 005 should be "3-day";
- c. The spatial scale and representativeness for the sulfur dioxide site Milford 002 should be "middle"; and
- d. The monitoring objectives for a number of sites should be changed as indicated below:

Pollutant	Town/Site	Objective
NO2	Bridgeport 123 East Hartford 003 New Haven 123	High Conc. High Conc. High Conc.
Ozone	New Haven 123 Stratford 007	Population High Conc.
TSP	Bridgeport 009 Danbury 002 Danbury 123 New Britain 007	Population High Conc. Population High Conc.
	New Britain 008 Stratford 007 Waterbury 005 Waterbury 007	Population High Conc. Population High Conc.
SO₂	Bridgeport 123 Milford 002 New Haven 123	High Conc. Source High Conc.

- Regarding previous Air Quality Summaries:
 - 1. In Section I.B. of the 1978–1981 editions, a portion of the third sentence in the third paragraph should be rewritten to read: "...the statewide average and standard deviation of the mean pollutant concentrations at the sites..."

- 2. Figure 1 and all references thereto should be ignored in favor of their counterparts in the 1983 edition.
- 3. Table 2 in the 1978–1981 editions should be ignored in favor of relevant portions of Table 3 in the 1983 edition.
- 4. Paragraph I.F.2.b in the 1983 edition should be inserted into the appropriate areas of Section I.F in the 1978-1981 editions.
- 5. Table 7 in the 1981 edition is incomplete. The site Stamford 021 should be inserted with a first high of 85 on July 9 and a second high of 83 on March 29.
- 6. Table 22 in the 1981 edition contains erroneous data. The correct data can be found in Table 22 in the 1983 edition.
- 7. In the 1978-1981 editions, the last sentence in the second paragraph should be deleted.
- 8. In the 1981 edition, the same corrections should be made to Table 32 that were listed in Item 21 of the foregoing section regarding the 1982 Air Quality Summary.

Items originally listed in the 1982 Air Quality Summary

- Regarding the 1975 TSP data, all references to the following monitoring sites should be ignored: Enfield 123, Enfield 001/123, Danbury 001, Danbury 123, Danbury 001/123, Groton 001, Groton 123, Groton 001/123, Torrington 001, Torrington 123, Torrington 001/123. These sites either had insufficient data for a valid annual average concentration or they included data from two different sites.
- Regarding 1976 TSP data, all references to the following monitoring sites should be ignored: Stamford 003, Stamford 123, Stamford 003/123. These sites either had insufficient data for a valid annual average concentration or they included data from two different sites.
- Regarding 1980 TSP data, the following corrections have been made:
 - 1. Bridgeport 001: The number of samples for the year has been changed from 57 to 58, and the annual geometric mean concentration has been changed from 47.8 to 47.6 ug/m³.
 - 2. Bridgeport 123: the annual geometric mean concentration has been changed from 64.2 to 63.8 ug/m³.
 - 3. Greenwich 016: All references to this site should be ignored. This site is considered to have been unsuitably located for acceptable particulate monitoring.
 - 4. Morris 001: The standard deviation of the sampling data has been changed from 1.567 to 1.557.
- Regarding 1981 TSP data, the following corrections have been made:
 - 1. Bristol 001: The number of samples for the year has been changed from 55 to 58, and the annual geometric mean concentration has been changed from 34.1 to 34.6 ug/m³.

- Regarding TSP data for the years 1975 through 1981, all references to sites Torrington 123 and Waterbury 123 should be ignored. These sites are now considered to have been unsuitably located for acceptable particulate monitoring.
- The above corrections, where relevant, are implicit in Table 2 and Table 8 of the 1982 Air Quality Summary. Accordingly, versions of these tables found in post-1974 (and pre-1982) editions of this document contain erroneous information and should be ignored or appropriately footnoted.
- Regarding Table 2, some of the earlier editions of this document have contained versions of this table which appeared to present annual "arithmetic" mean data. This is incorrect. All versions of this table contain annual "geometric" mean data.