CONNECTICUT AIR QUALITY SUMMARY 1974

CONNECTICUT

DEPARTMENT OF ENVIRONMENTAL PROTECTION

}

STATE OF CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION

STATE OFFICE BUILDING

HARTFORD, CONNECTICUT 06115

Dear Friend:

The DEP's Connecticut Air Quality Summary, 1974, is the second annual compilation of data on air pollutant levels in Connecticut. I hope the summary will be of use to any citizen or group interested in Connecticut's air pollutant levels and the trends of those levels from one year to the next.

The progress that has been made in cleaning Connecticut's air has been the result of cooperative efforts of state and municipal agencies, the industrial community and private citizens. I appreciate the part each individual has played in our air pollution control efforts.

The Summary indicates that more work is to be done in some areas. I urge you to keep up your concern for Connecticut's air quality and to participate with us in continuing efforts to attain and maintain clean, healthful air.

Sincerely yours, seph IN. Gill mmissioner

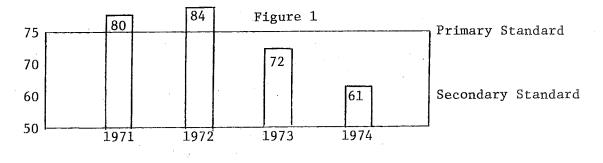
CONNECTICUT AIR QUALITY SUMMARY 1974

TABLE OF CONTENTS

			PAGE
Ι.	INTRO	DUCTION	· 1
	AII	R QUALITY STANDARDS	3
ΙΙ.	AERO	METRIC DATA	
	Α.	TOTAL SUSPENDED PARTICULATE	4
	В	SULFUR OXIDES	17
	С.	OZONE	23
	D.	NITROGEN DIOXIDE	37
	Ē,	CARBON MONOXIDE	42
III.	WIND	ROSES	47

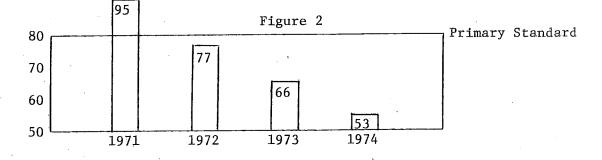
.

I. INTRODUCTION


A. This summary of 1974 ambient air quality levels in Connecticut is a compilation of all air pollutant measurements made at permanent DEP and municipal sampling sites in Connecticut.

B. Trends SO₂ and Particulates:

The long term trend of Set I pollutant (sulfur dioxide and particulate matter) concentrations in Connecticut has been downward since the formation of DEP. This trend can be seen in the average of annual mean concentrations for one site in each of five cities from 1971 through 1974.


TOTAL SUSPENDED PARTICULATE MATTER

Annual Geometric Mean (μ g/m³) Average for Bridgeport, Stamford, New Haven, Waterbury, Hartford

SULFUR DIOXIDE

Annual Arithmetic Mean $(\mu g/m^3)$ Average for Bridgeport, Stamford, New Haven, Waterbury, Hartford

С.

As in past years, the network of measuring devices underwent some minor refinement in 1974. Further refinements are expected in 1975. For 1974, the network consisted of:

- 73 Total Suspended Particulate sites
- 15 Sulfur Oxides sites
- 14 Ozone sites
- 39 Nitrogen Oxide sites
- 7 Carbon Monoxide sites

A complete description of all permanent air monitoring sites in Connecticut operated by DEP and Northeast Utilities in 1974 is available from The Department of Environmental Protection, Air Compliance, State Office Building, Hartford, Connecticut 06115.

D. The following table lists analysis methods and National Ambient Air Quality Standards (NAAQS) for each pollutant. The NAAQS are established by the federal EPA and are divided into two categories: primary, set to protect public health, and secondary, set to protect plants and animals and to prevent economic damage.

Each standard specifies a concentration and an exposure time developed from studies of the effect of various levels of the different pollutants.

*Data presented in this report includes, as well, eight SO₂ sites operated by Northeast Utilities, for a total of 23.

TABLE I

ASSFSSMENT OF AMBIENT AIR QUALITY

	SECONDARY STANDARD	ug/m ³ ppm	60 ¹ 150		1300 .5	Same as Primary	Same as Primary	Same as Primary	mg/m ³ ppm	Same as Primary Same as Primary
	NATIONAL AMBIENT AIR STANDARDS AL PRIMARY STANDARD	an mqq		.03	•14 1	. 05 S	. 08 S	.24	mdd	35 9 8 8
	AMBIENT AIR PRIMARY STANDARD	µg/m ³	75 260	80	365	100	160	160 ²	mg/m ³	10 40
INI AIK NUALII	NATIONAL STATISTICAL BASE		Annual Geometric Mean 24 Hour Concentration*	Annual Arithmetic Mean 24 Hour Average	Concentration* 3 Hour Average Concentration*	Annual Arithmetic Mean	1 Hour Average*	3 Hour Average [*] (6-9 A.M.)		8 Hour Average [*] 1 Hour Average [*]
ASSESSIVENT OF AMBIENT AIR WUALTI	ANALYSIS DATA REDUCTION		24 Hour Average	1 Hour Average		24 Hour Average	1 Hour Average	1 Hour Average		1 Hour Average
ł	METHOD OF ANALYSIS SAMPLING DAT PERIOD REDUC		24 Hour	Continuous		24 Hour	Continuous	Continuous		Continuous
<u>TABLE I</u>	POLLUTANT		Total Suspended Partículates	Sulfur Oxides (Measured as Sulfur Dioxide)		Nitrogen Dioxide	Photochemical Oxidants	Hydrocarbons	•	Carbon Monoxide

*Not to be exceeded more than once per year.

 $^{\rm I}_{\rm A}$ guide to be used in assessing implementation plans to achieve the 24-hour standard. $^{\rm 2For}$ use as a guide in devising implementation plans to achieve oxidant standards.

 $\mu g/m^3$ = Micrograms per cubic meter mg/m^3 = Milligrams per cubic meter Units:

= parts per million mdd

-3-

A. Total Suspended Particulates

I. Conclusions:

Total suspended particulate levels in Connecticut show a general trend toward air quality improvement in 1974 over 1973 (See Table II). The present report includes actual geometric means and geometric standard deviations in contrast to the 1971-1973 report which utilized arithmetic means and a statistical approximation of the geometric standard deviations.

The annual geometric means were lower in 1974 showing improvement over 1973 at 38 sites, with 26 of these decreases being greater than 5 μ g/m³. The means at 25 sites showed increases in 1974 over 1973, but at only 6 of these did the increase exceed 5 μ g/m³. The primary annual standard was not exceeded during 1974 at any site, while the following sites exceeded the standard in 1973:

Hartford	03	Stamford Waterbury	
New Britain	02	waterbury	01
Stamford	01		

The secondary annual standard was exceeded at 12 sites in 1973 and also at 12 sites in 1974.

II. Discussion of data:

There were 73 Total Suspended Particulate sites in 1974 compared to 65 in 1973.

The Particulate Report in Table II provides a means to statistically predict the number of days in a year in which the 24-hour standards would be exceeded. Table II is the product of a computer program which calculates the percent of days that have 24-hour averages over a standard based upon statistical parameters of the data distribution. The secondary National Ambient Air Quality Standard is 150 μ g/m³. The primary is 260 μ g/m³. The results are based on the assumption that the particulate data are lognormally distributed, as are the geometric means and the standards based on them. A percent of greater than .548 indicates two or more days per year over the standard. (Two days is equivalent to .548% of the days in a year). A review of Table II shows 8 sites over .548% in 1973 for the primary standard, and 6 over in 1974. Forty-three sites exceed this % for the secondary standard in 1973 and 52 do

Particulate samples are taken only every sixth day, so many days with high levels may not be sampling days. Mathematical probabilities show that at least twelve days in a year must exceed the standard before there is a 60% chance the sampling schedule will hit two of them.*

*Twenty six days must exceed the standard before there is a 95% probability the sampling schedule will hit two of them. Twenty six days are equivalent to 7.12% of the year. Twelve days are equivalent to 3.29% of the days in a year. Under these criteria no two days over the primary standard are likely to have been observed in 1974 at any site. Two days over the secondary standard were likely to have been measured at 14 sites. The actual data for 1974 (Table III) bears out the theory, showing no sites over the primary standard ard and 14 over the secondary. Of these, 12 are the same ones as those predicted. Naugatuck 01 and New Haven 02 did not exceed the secondary standard as expected and New Britain 05 and Torrington 01 did.

III. Facts about Total Suspended Particulates:

The major sources of particulate matter found in the air are power generation and heating fuel combustion, motor vehicle exhaust and tire wear, and a variety of industrial process sources.

Particulate matter reduces insolation (solar radiation reaching the land surface), reduces visibility, soils clothing and accelerates the corrosion of building materials and paints. In addition particulate matter of the size collected on High Volume Air Samplers is known to enter and be retained in the human respiratory system. Some particulate substances such as lead are intrinsically toxic, others may cause or contribute to respiratory ailments, still others are known carcinogens (cancer-causing).

IV. Method of Collection:

Total Suspended Particulate levels are obtained from High Volume Samplers. These "Hi Vols" resemble vacuum cleaners in their operation, with a large 8" x 10" piece of fiberglass filter paper replacing the vacuum bag. The samplers operate every sixth day from midnight to midnight. The matter collected on the filters is analyzed for weight and type. The flow through the filter is measured before and after sampling and the volume of air which has passed through the filter in 24 hours is calculated. The weight in micrograms (μ g) divided by the volume of air in cubic meters (m³) yields the pollutant concentration for the day, in micrograms per cubic meter.

РСТ ОVER 260 µg/m ³	Percent of days that Percent of days that could be expected to have concentrations have concentrations above $150 \mu\text{g/m}^3$ if above $260 \mu\text{g/m}^3$ if samples were taken every day instead of every sixth day.
РСТ ОVER 150 µg/m ³	Percent of days that could be expected to have concentrations above $150 \mu\text{g/m}^3$ if samples were taken every day instead of every sixth day.
STD GEOM DEV	Geometric Standard Deviation
GEOM MEAN	Annual Geometric Mean
NUMBER OF SAMPLES	The number of 24 hour samples collected and analyzed. The usual maximum number for sixth day sampling is 61 per year.
YEAR	Calendar Year
SITE	Site Number Calendar Assigned by Year D.E.P.
TOWN	Town Name

10-

The terms explained here are column headings on Table II which follows:

<u>1</u> 1<u>ii</u> Commediicut departhent of emvironemial protection

بطب	PRULUTANT PARTI	PARTICULATES		DISTRIB NTIM OF	DISTRIBUTION L	LUGNDRMAL		PERCENT OVER	PERCENT OVER
	TOWN	SITE	ΥEAR	S	GEOM MEAN	UTS N	GEOM DEV	150 UG/M3	260 UG/M3
	ANSONIA ANSONIA	003 003	73 74	55 51	ىتى م. م 4.		1.7070 1.6140	4 . 4599 2.2699	• 2599
	BERLIN BERLIN	100 100	73 74	56 56			1.5570 1.7220	•0999 •1899	0000.
	BRIDGEPORT BRIDGEPORT	100 100	73 74	59 61	45 .4 4 я .1		1.4660 1.5840	6619 .	• 0000 • 00099
	BRIDGEPORT BRIDGEPORT	002	73 74	60 61	57 .2 45 .7		1.5310 1.6590	1.0699 1.0699	•0199
	BRISTOL BRISTOL	100 100	73 74	58 59	52 -5 42 .3		1.5720 1.6380	1.0699 .4699	• 0199
۰.	BRISTOL BRISTOL	002 002	73 74	19 61	28 .2 29 .4		1.●5830 1.●6950	•0199 •0999	0000
··•	BRISTOL BRISTOL	- 003 - 003	73 74	, 18 59	40 .1 35 .2		1 • 5840 1 • 6530	•1899	
	BRISTOL BRISTOL	004 004	74 74	18 59	50 °3 48 °9		1.7330 1.6070	2.2699 .8199	•1299
	BURL INGTON BURL INGTON	001 001	74	25 56	32 •5 27 •1		1.7290 1.8000	•2599	6600 •
	DANBURY DANBURY	100 100	73	38 51	58 .1 51 .5		1.7820 1.5880	5 • 4799 1 • 0699	6610 *
	EAST HARTFORD	100	74	42	42 。8	· ·	1.6050	•3499	6600•
	EAST HARTFORD	002	74	37	41.2	•	1.5600	.1899	0000
	ENFIELD	100 100	73 74	50 59	55 • 6 50 • 5		1.6270 1.6540	2.•2699 1.•3899	•06499
•	FAIRFIELD FAIRFIELD	002 002	73	45 39	43 .4 43 .8		1.3110 1.3670	0000°	00000
							•		

-1-

TABLE II CONNECTIOUT DEPARTMENT OF ENVIRONMENTAL PROTECTION

																PO
	MANCHESTER	KENT	HARTFORD	HARTFORD HARTFORD	HARTFORD HARTFORD	HARTFORD HARTFORD	HADDAM	GROTON	GREENWICH	GREENWICH GREENWICH	GREENWICH GREENWICH	GREENWICH GREENWICH	GREENWICH GREENWICH	GREENWICH GREENWICH	T () MM GREENWICH GREENWICH	POLLUTANT
	æ				•			· .		• •						PARTI
	001	201 001	005	0004 004	003 003	002	° 002 .	001	014	00.8 008	007 007	004 004	003	002 002	001 001	PARTICULATES
	73	73 74	74	73 74	.73 74	73 74	74	73 74	74	73 74	73 74	73 74	73	73 74	ҮЁ∆२ 73 74	
	25	27 56	45	49 46	5 5 5	11 51	44	79 61	60	59 61	56 60	47 48	58 59	57 59	SAMPLES 56 53	UISTRIB
	44.5	333. 31.• 6	44 • 2	49 .6 46 .1	80 .7 62 .4	54 • 2 50 • 7	.32 .9	00 4 3 5		62 • 7	43 .0	42 40 1	51 .3	ט ש שייים 3.0	GEO현 보급AN 52 .3	DISTRIBUTION LU
- 8-	1.6830	1.9230 1.8590	1.6150	1.6350 1.6890	1.4740 1.5990	1,3290 1.5120	1.6490	1.7310 1.6740	. 1.5010	1.6200 1.6080	1•6070 1•6620	1.7490 1.7330	1.5750 1.5550	1.5700 1.6750	STD GEOM D 1.4910 1.6240	LUGNORMAL
	30 .	000	0	00	õõ	00	0	00	C						υΕV 10 40	т П.,
	1.0699	1.,6199 .6199	6199	1.0699 1.0699	5.4799 2.8699	•0199 •4699	.1299	•1899 •1899	1.7899	33 5899 999	•1299 •8199	6618° 6690° T	,8199 ,8199	1.7899 1.7899	150 UG/M3 -1899 1-3899	PERCENT OVER
: •				•					•	a 2	• • •		•	a •	260	PERCENT OVER
	6 620	•1899 6620	•0099	•0299 0499	.1299 .1299	•0000	0000	0000	0199	1899 1899	66T0 0000	0699 0299	.0199 9610	0499 0999	260 UG/M3 • 0000 • 0499	ÜVER

.

2	PULLITANT PA	PARTICULATES		NTW AP		ើមកម្មកាស	_'		エ 日 天	PERCENT UVER	ਮ ਜ ਪ	ERCENT OVER
	TOWN MANCHESTER	S1TE 001	ҮЕАЧ 74	NUM. UF SAMPLES 37	6EOM MEAN 44 .7		STU	660× 06V 1•5920		150 UG/M3 •4699		260 UG/M3 .0099
	MANSFIELD MANSFIELD	100	73 74	18 47	23 ,2 34 ,3			1.4970 1.6090		6660°		0000.
	MERIDEN MERIDEN	100 100	73 74	36 55	58 .2 50 .3			1.8390 1.6070		5.4799 1.0699		•6199 •0199
	MERIDEN MERIDEN	002 002	73	56 59	67 .1 50 .4			1.7390 1.6550		6•6799 1•3899		•8199 •0499
	MERIDEN MERIDEN	003	73 74	57 53	54 •4 50 •9			1.8900 1.7980		5.4795 3.5895		• 6199 • 2599
4	MERIDEN MERIDEN	005	73 74	52 57	59 .7 63 .4			1.7660 1.8710		5.479 8.075		• 4699 1 • 0699
. *.	MERIDEN	006 006	73	54	49 .7 56 .1			1.8940 1.7550		4 • 455 4 • 455 4 • 455		•4699 3499
	MTDDLETOWN MTDDLETOWN	100 100	73.	60 59	51 .4 34 .6	·.		1.8870 1.6790		4.4534 .2599		• -• 0000
	MUDDLETOWN	003	73 74	59 61	55 .7 51 .3		· · · · ·	1.5290 1.6130		1.0699 1.3899		•0199 •0299
	MIDDLETOWN	004	73	49	51.7		÷	2.2550		9 ° 6799		2.2699
	MILFORD MILFORD	100 100	73 74	49 60	43 .8 46 .7			1•4760 1•5520		•0699 •3499		0000
	MILFORD MILFORD	002 002	73 74	54 54	49 .9 51 .2	••		1.4400 1.5250		•1299 •6199		0000
	MILFORD MILFORD	006 006	73	59	41.4 40 .9		•	1.6120 1.5480	•	•3499 •1299	· ·	6600 •
	MORRIS MORRIS	100	73 74	57 60	31.4	•		1.8120 1.7460		•4699 •1299		.0199 .0000
			•							•		

0

, X

.

•;

6-

TABLE II COMMECTIOUT DEPARTMENT OF EMVIRUMMENTAL PROTECTION

						• •		••••••							ціd
	NORWALK NORWALK	NORWALK NORWALK	NORTH CANAAN	NEW HAVEN NEW HAVEN	NEW HAVEN NEW HAVEN	NEW HAVEN NEW HAVEN	NEW HAVEN NEW HAVEN	NEW HAVEN NEW HAVEN	NEW BRITAIN NEW BRITAIN	NEW BRITAIN NEW BRITAIN	NEW BRITAIN NEW BRITAIN	NEW BRITAIN NEW BRITAIN	NEW BRITAIN NEW BRITAIN	T ÉLAIN NAUGATUCK NAUGATUCK	ριμιταντ ΡΔ
	005	001 001	100	600 600	005 005	003 003	002 002	001 001	005	004 004	003 500	002 002	001 001	SITE 001 001	PARTICULATES
	74	73 74	÷7	73 74	73 74	. 73 74	73 74	73 74	73 74	73 74	73 74	73 74	73 74	74 73 74	
	63 57	53 56	58	61 60	58 58	61 61	51 56	48 61	58 58	60	57 60	56 58	23 61	SAMPLES 57 61	NISTRIE
	66 - 5	52 • 4	38 .0	48 • 8 50 • 7	57 .6 47 .2	43.4 46.4	62 .9 42 .3	56 .2 57 .4	3 4 5 8 • 5	51 .1 37 .0	73 .9 62 .9	77 .7 70 .1	59.4 52.4	GEUM MEAN 69 .4 61 .1	NTM OF LUN
- 10-		• •												STU	LUGNÜRMAL
	1.5940 1.6370	1.5530 1.6090	1.6870	1.4610 1.5440	1.7040 1.6870	1.4890 1.6500	1.7200 2.1500	1.4040 1.5650	1.6380 1.8630	1.7260 1.7440	1.7510 1.6760	1.5600 1.6000	1.7790 1.6170	GEOM DEV 1.6530 1.6460	
			•		• ,										τ Π
	2°8633 4°4233	.813 1.3899 1.3899	• 4699	,1299 .6199	3,5899 1,3899	1,0999 1,0699	5•4799 4•4599	.1899 1.7899	•8199 1•3899	2.2699 .6199	9.6799 4.4599	9,6799 5,4799	5.4799 1.3899	150 UG/M3 6.6799 3.5899	VERCENT UVER
	• 0999 • 2599	•0199 •0499	6600°	6600° 0000°	•2599 •0499	•0000 •0299	•4699 •8199	•0000 •02.99	•0199 •0999	•1299 •0199	1.3899 .3499	,8199 ,2599	• 4699 • 0499	260 UG/M3 ,4699 ,1899	PERCENT UVER

-10-

) Li terre N	SSHOLIOU DURAKIENES	5		2		•			1	
ЪС	POLLUTANT PARTI	PARTICULATES	<u> </u>	ISTRIR	UISTRIBUTION LO	LOGNDRMAL		<u>ъ</u>	JERCENI UVER	
	T DW N NORWICH NORWICH	SITE 001 001	Ү∺АК S 73 74	NUM. UF SAMPLES 48 58	GEOM 4EAN 58 .9 47 .7	S.	STU GEUM DEV 1.5510 1.6750		150 UG/M3 1.7899 1.3899	260 UG/M3 • 0299 • 0499
	OLD SAYBROOK OLD SAYBROOK	001 00 1	73 74	15 60	56 .7 66 .1	· ·	1.4140 1.6410		•2599 4.4599	• 0000 • 2599
	ORANGE ORANGE	003 003	73 74	56 36	46 .6 42.4		1.6190 1.7310		•8199 1.7899	6660 •
	PUTNAM PUTNAM	005 002	73	59	4 9 9		1.7970 1.8350		1.7899 .8199	•0499
•	STAMFORD STAMFORD	100 100	73 74	17 54	99 .3 67 .1	. •	1.4870 1.7210		15.8699 6.6799	,8199 6199
	STAMFORD	0.03	÷7 L	46	47.9		1.7650		2.42699	•1299
	STAMFORD STAMFORD	004 004	73	31 57	83 . 1 455 . 8		1.8640 1.9920		18•4099 4•4599	3•5899 •6199
	STAMFORD	007	74.	46	74 . 2		1.8200		11.5079	E.7899
	STAMFORD	010	73	35	62.1		1.6960		4.4599	.3499
	STRATFORD STRATFORD	001 001	73	14 51	51 •0 38 •8		1.6700 1.7350		1.7899 .6199	•0699 •0199
	STRATFORD STRATFORD	005 005	73	15 44	57 .8 58 .0	· · ·	1.4720 1.6300	ï	. 6199 2 . 8699	6660°
·	THOMAS TON THOMAS TON	003 003 003	73 74	57 59	39 .7 41 .7		1.6250 1.7670		• 3490 1•3894	0000°
	TORRINGTON TORRINGTON	100	73 74	59	47 .3		1.6510 1.6810] =0699 2 - 2695	•0299
	NMOLNITOA NMOLNITOA	Tuộ Luộ	73 74	47 56	29 .3 25 .7		1。8340 1。8420	-	• 3499 • 1899	•0199
	WATERBURY	Tec	73	26	76 .9		1.5560	;	6°6793	• 2599

T. 2.II CONNECTICUT DEPARTMENT UF ENVIRONMENTAL PROTECTION -11-

Ē

TABLE II CONMECTICUT DEPARTMENT OF EMVIRONMENTAL PROTECTION

WINCHESTER WINCHESTER	WILLIMANTIC WILLIMANTIC	WATERFORD	WATERBURY	TOWN WATERBURY	POLLUTANȚ PARTICULATES
001	001 001	001	002	SITE 001	TICULATES
73 74	73 74	74	74	YEAR 74	
58 40.6 60 44.7	28 45.7 61 39.6	48 31.1	20 53 + 2	SAMPLES GEDM MEAN 5172.3	DISTRIBUTION LUGNURMAN
1.7310 1.7220	1.4760 1.5970	1.7450	1.7150	STD GEOM DEV 1.7250	 Μ Δ ¹
,8199 1,3899	• 0999 • 0999	• 2599	2.8699	150 UG/M3 9.6799	PERCENT ÜVER
• 0699 • 0699	• • 0000	6600 •	. 1899	260 UG/M3 1.0699	PERCENT UVER

TOTAL SUSPENDED PARTICULATES

1974 - CONNECTICUT

TABLE III

SECOND HIGHEST 24-HOUR CONCENTRATION

TOWN	SITE	DATE OF SECOND HIGH	0 50 100 150 200 250 300 MICROGRAMS PER CUBIO METER
ANSONIA	003	4/29	118
BERLIN	001	4/29	
BRIDGEPORT	001	1/24	108
BRIDGEPORT	002	5/ 17	108
BRISTOL	001	4/29	
BRISTOL	002	4/29	90
BRISTOL	003	5/17	82
BRISTOL	004	12/13	121
BURLINGTON	001	5/17	83
DANBURY	001	4/29	119
EAST HARTFORD	001	5/17	<u>97</u> t
EAST HARTFORD	002	12/7	92
ENFIELD	001	4/29	121
FAIRFIELD	002	5/17	83
GREENWICH	001	10/20	
GREENWICH	002	2/28	139
GREENWICH	003	2/28	117
GREENWICH	004	5/17	109
GREENWICH	007	7/10	145
GREENWICH	800	4/29	210
GREENWICH	014	5/17	138
GROTON	001	11/1	93
HADDAM	002	4/29	83
HARTFORD	002	4/29	
HARTFORD	003	1/6	
			SECONDARY PRIMARY
			-13- NATIONAL 24-HOUR STANDARDS

-13-

TOTAL SUSPENDED PARTICULATES

1974 - CONNECTICUT

TABLE III

SECOND HIGHEST 24-HOUR CONCENTRATION

DATE OF 300 100 150 200250 50 SECOND HIGH SITE TOWN MICROGRAMS PER CUBIC METER ł 1 115 004 4/29 1 HARTFORD 118 4/29 005 1 . HARTFORD 98 7/10 001 KENT Т 73 2/28 MORRIS DAM 001 ł 1 102 001 4/29 MANCHESTER ŧ 88 L 001 6/10 MANSFIELD 125_ 3/18 ı MERIDEN 001 129 1 1/29 002 MERIDEN I 206 7/16 003 MERIDEN 205 005 5/17 MERIDEN ł 218 5/17 006 MERIDEN 1 95 11/1 001 MIDDLETOWN I 117 12/7003 MIDDLETOWN I 1 108 5/17 001 MILFORD I 115 Í 5/17 002 MILFORD 100 5/17 006 I MILFORD 1 141 4/29 001 NAUGATUCK 120 12/7 001 NEW BRITAIN 155 10/8 002 NEW BRITAIN ١ 178 11/19 003 NEW BRITAIN ł 116 12/13 004 1 NEW BRITAIN 1 186 10/8 005 NEW BRITAIN I 126 11/1 001 NEW HAVEN 125 1 002 12/13 NEW HAVEN PRIMARY SECONDARY NATIONAL 24-HOUR STANDARDS

-14-

TOTAL SUSPENDED PARTICULATES

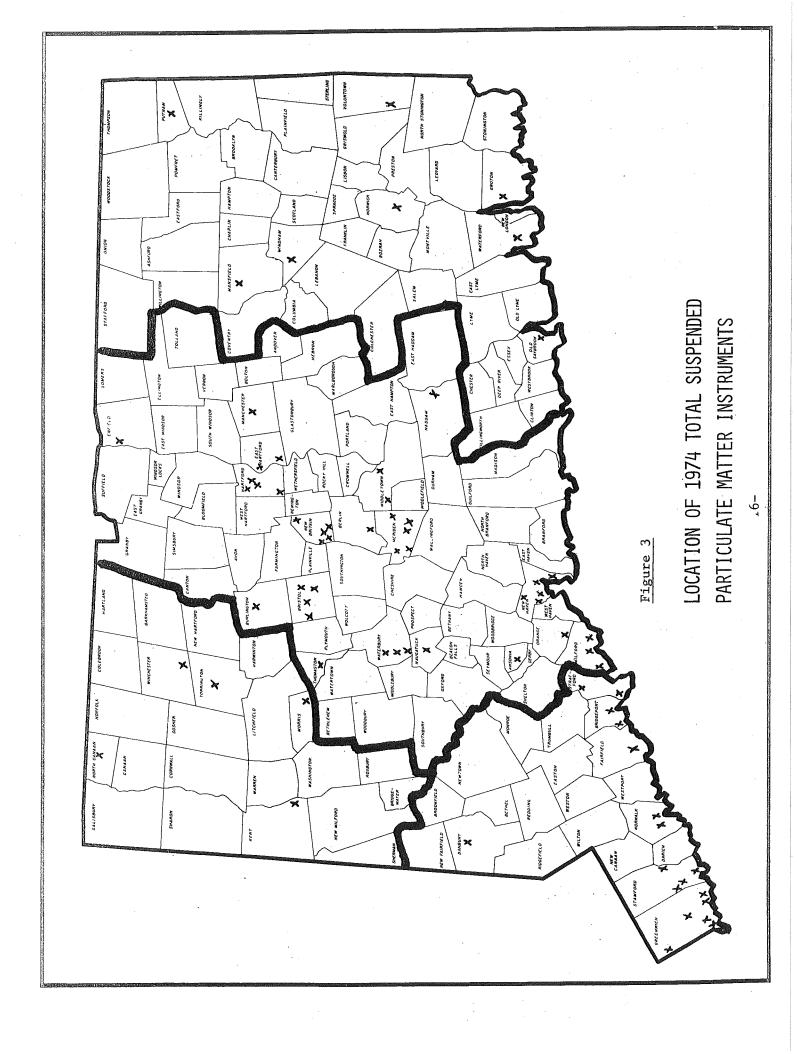

1974 - CONNECTICUT

TABLE III

SECOND HIGHEST 24-HOUR CONCENTRATION

TOWN	SITE	DATE OF SECOND HIGH	0 50 100 150 200 250 300 MICROGRAMS' PER CUBIC METER
NEW HAVEN	003	4/29	121
NEW HAVEN	005	5/17	114
NEW HAVEN	009	5/17	
NORTH CANAAN	001	2/16	93
NORWALK	001	5/17	130
NORWALK	005	1/23	186
NORWICH	001	5/17	106
OLD SAYBROOK	001	2/28	192
ORANGE	003	7/10	125
PUTNAM	002	6/28	121
STAMFORD	001	1/29	157
STAMFORD	003	11/1	128
STAMFORD	004	2/28	163
STAMFORD	007	3/6	235
STRATFORD	001	5/23	139
STRATFORD	005	2/28	127
THOMASTON	003	4/29	102
TORRINGTON	001	2/16	174
VOLUNTOWN	001	4/29	90
WATERBURY	001	3/6	
WATERBURY	002	12/7	116
WATERFORD	001	6/10	101
WILLIMANTIC	001	12/13	90
WINCHESTER	001	4/11	128 SECONDARY PRIMARY
			SECONDARY PRIMARY NATIONAL 24-HOUR STANDARDS
			15_ NATIONAL 24-NOUN STANDANDS

-15-

B. Sulfur Oxides

I. Conclusions:

At no monitoring site in Connecticut in 1974 was the annual sulfur dioxide (SO₂) standard exceeded. However, 2 of the 3 sites that did exceed the standard in 1973 (Waterbury and New Britain) had only partial data in 1974. A few sites (notably in Hartford and New Haven) had lower levels in 1974 than in 1973, in spite of the fact that no new restrictions on the sulfur content of fuel came into effect in 1974. Warm weather and high fuel prices, both resulting in lower fuel use, may explain these decreases since 1973.

No monitoring site in Connecticut recorded a violation of the 24hour or 3-hour ambient standards for SO₂ in 1974.

II. Discussion of data:

Data were received from twenty-three continuous SO₂ monitors for all or parts of 1974. Of these, eight were operated by Northeast Utilities. Because some sites were established late in the year and others had instrument problems, valid annual averages could be compiled at only sixteen sites and estimated at three others.

Some changes in the SO₂ sampling network were made in late 1974, resulting in new sites placed more closely to some of the higher SO₂ concentration locations in the state. Completion of the twelve-unit telemetry system in 1975 will result in further refinement and expansion of the SO₂ network.

III. Facts about Sulfur Dioxide:

Sulfur dioxide is a colorless, odiferous gas with very corrosive qualities. In high concentrations it irritates human mucous membranes, damages vegetation and attacks many materials. The major source of SO₂ in Connecticut is the combustion of sulfur-containing fuel. The areas of highest ambient concentration in Connecticut are usually those areas of highest density of large users of fuel and oil. Short term high levels occur when dispersing conditions are poor. Thus the large coastal cities appear to have less problem than those inland, probably due to the cleansing effect of land-sea breezes.

Highest concentrations are generally found in the colder months when sulfur-containing fuel for heating is used in large quantities. Sulfur dioxide is removed from the atmosphere by a number of natural mechanisms, so no long-term build-up occurs. However, the removal rate is often slow enough that there is some evidence that SO₂ from out of state sources is transported to Connecticut.

IV. Method of collection:

The Air Monitoring Unit uses several types of instruments to continuously measure sulfur dioxide levels. The coulometric method is employed by Philips instruments, the flame photometric method by Bendix instruments and by Meloy instruments operated by Northeast Utilities. The conductometric method is employed by Davis and Scientific Industries instruments, and is believed to be the least accurate of the three types of continuous SO₂ monitors.

TABLE IV ANNUAL ARITHMETIC AVERAGES OF SULFUR OXIDES AT SITES WITH CONTINUOUS MONITORS

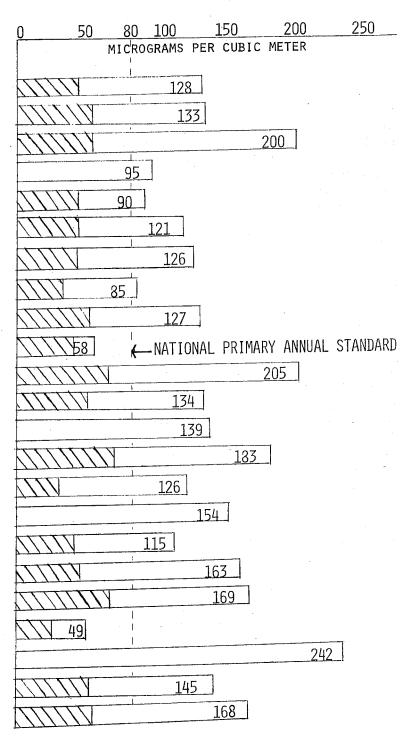
Primary NAAQS 80 µg/m³

Town	Site #	Site Name	1974	1973	1972	1971
Bridgeport	001	City Hall	42	44	62	76
Bridgeport	002	Fairfield Ave. Fire House	51	31	54	70
Bridgeport	003	McKinley School	49	50	50	
Danbury	123	Automated Station	a			
East Hamptor		NU ^e - Midwood Farm Road	42	47	49	43
East Hamptor		NUe - School House Lane	39			
Greenwich	001	Town Hall Annex	37	53	45	62
Greenwich	004	Bruce Golf Course	(29) ^b	29	33	43
Greenwich	008	Cos Cob Fire House	48	55	43	71
Groton	003	NU ^e - Buddington Road	39			
Haddam	001	NU ^e – Connecticut Yankee	63			
Hartford	003	Public Library	48	69	61	91
Hartford	007	Trailer at S.O.B.	a			·
Hartford	008	NU ^e - Maple Ave.	71	82	108	
Middletown	· · · ·	NU ^e - Sumner Street		52	79	97
Milford	002	Devon Community Center	31	(25) ^b	·	
Montville		NU ^e - Depot Road		44	53	
New Britain	002	City Hall	a	2(08)	120	96
New Haven	004	Community Service Bldg.	40	54	79	84
New Haven	008	Agricultural Station		38	41	51
Norwalk	005	Health Department	44	50	62	65
Norwalk	.009	NU ^e - Harbor Ave.	64	59	79	
Preston	001	NU ^e - Eccleston Road	(24) ^b			
Stamford	003/123	Health Department	a	(78) ^b	90	119
Stratford		NU ^e – Reeds Lane	. 51	50	60	
Waterbury	001	City Hall	(56) ^d	84	93	103
		• •				

a - Insufficient data for valid annual average or estimate

b - Estimate based on partial data

c - Based upon questionable data


d - September - December data missing

e - Owned and operated by Northeast Utilities

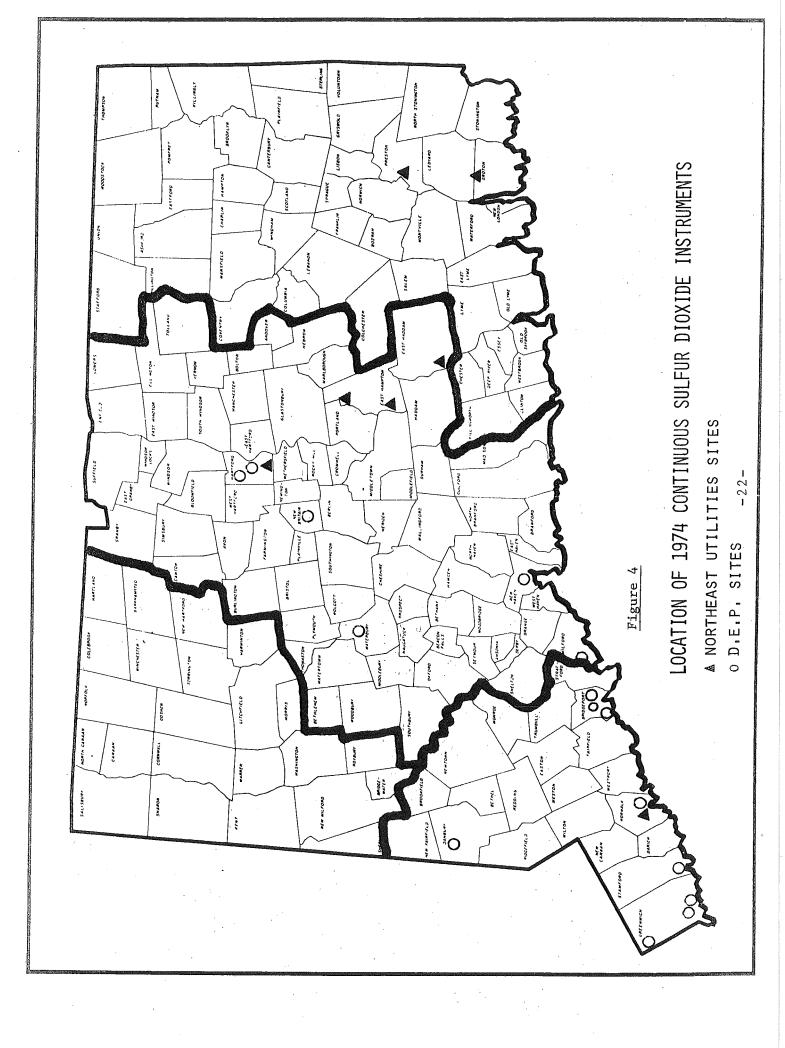
CONNECTICUT 1974 SULFUR DIOXIDE 24-HOUR AVERAGE

TABLE V

TOWN	SITE		DATE OF	Ĥ
BRIDGEPORT	001		1/6	
BRIDGEPORT	002		7/31	
BRIDGEPORT	003		1/7	
DANBURY	123	*	11/18	
EAST HAMPTON	001		2/13	
EAST HAMPTON	003		2/23	
GREENWICH	001		1/16	
GREENWICH	004	*	3/7	
GREENWICH	008		7/4	
GROTON	003		11/18	
HADDAM	001		2/20	
HARTFORD	003		12/27	
HARTFORD	007	*	11/23	
HARTFORD	008		4/17	
MILFORD	002		5/15	
NEW BRITAIN	002	*	10/29	
NEW HAVEN	004		12/6	
NORWALK	005		1/16	
NORWALK	009		2/13	
PRESTON	001	*	12/27	
STAMFORD	003	*	12/29	
STRATFORD	005		3/28	
WATERBURY	001	*	6/30	

ANNUAL ARITHMETIC MEAN

SECOND HIGHEST 24-HOUR AVERAGE


* DENOTES PARTIAL DATA

CONNECTICUT 1974 SULFUR DIOXIDE ONE HOUR AVERAGE TABLE VI 100 200 300 400 500 600 700 800 900 0 MICROGRAMS PER CUBIC METER 427 BRIDGEPORT 001 341 +002 BRIDGEPORT 419 003 BRIDGEPORT 131 DANBURY 123 305 001 EAST HAMPTON 357 003 EAST HAMPTON 341 GREENWICH 001 419_ 004 GREENWICH 367 GREENWICH 008 145 003 GROTON 577 HADDAM 001 246 003 HARTFORD 288_ 007 HARTFORD 338 .008 HARTFORD 419 MILFORD 002 603 002 NEW BRITAIN 713 004 NEW HAVEN 406 005 NORWALK 291 009 NORWALK 121 001 PRESTON 891 STAMFORD 003 404 STRATFORD 005 663 WATERBURY 001

NOTE: THE 1300 ug/m^3 standard was not exceeded at any site.

MAXIMUM HOURLY READING IN 1974

-21-

II. AEROMETRIC DATA

C. Ozone

I. Conclusions:

Connecticut experienced high levels of photochemical oxidants (measured as ozone) during the summer of 1974. At each of the 14 monitoring sites, levels in excess of the National Ambient Air Quality Standard were recorded frequently throughout the summer months. Apparently because of Connecticut's position relative to the New York-New Jersey-Connecticut metropolitan region (predominantly downwind in the summer) higher levels of ozone are measured in Connecticut than elsewhere in the region.

No measureable decrease in levels can be detected since last year. However, the new automobile emission control devices should begin to show some effect and, together with the transportation control program now being developed, should cause the long-term trend of ozone levels to be downward over the next five to ten years.

II. Discussion of data:

A. DEP began using chemiluminescent ozone instruments in 1972. In 1973, seven such instruments were employed and in 1974, fourteen.

B. Because of atmospheric reactions, concentrations of ozone are generally highest in the afternoons of sunny, hot days. Chemical reaction with other substances in the air (notably nitrogen oxides and hydrocarbons) can cause different levels of ozone to be measured at different sites. In order to gather information which will further the understanding of transport, production, destruction and other characteristics of ozone or photochemical oxidants, DEP operated a variety of types of sites in 1974:

- Urban Bridgeport, Stamford, Hartford, Waterbury, New Britain, Middletown
- 2. New York Flux Greenwich, Danbury
- 3. Suburban New Haven, Windsor, Groton
- 4. Rural Morris, Deep River, Eastford

III. Facts about ozone:

A. General:

Ozone or photochemical oxidants are emitted directly only in insignificant amounts. However, various hydrocarbons and oxides of nitrogen react in a complex fashion in the atmosphere to produce and destroy oxidants. In the presence of sunlight, the production dominates (hence, photochemical oxidants), and levels build up during the day and drop at night. Hydrocarbons and oxides of nitrogen are both emitted during combustion of petroleum products, especially automobile fuel.

B. Chemistry:

1. The term ozone is often used interchangeably with the term "smog", though Los Angeles-type smog is chemically somewhat different than Connecticut's.

2. There is an intimate relationship between ozone and oxides of nitrogen, which participate together with hydrocarbons in various forms in both the production and the destruction of ozone. While many factors determine the concentrations of ozone, it is oxides of nitrogen that are primarily responsible for the diurnal (daily) cycle of levels, rising to a peak in the afternoon and falling at night.

3. Other factors that play a part in determining ozone concentrations are: intensity of solar radiation, temperature, mixing volume of the lower atmosphere, and relationship among wind direction, speed and distance and direction to major sources (urban areas).

IV. Method of measurement:

The Air Compliance Unit uses chemiluminescent instruments to measure levels of ozone which is the major constituent of photochemical oxidants in this area. These instruments measure and record instantaneous concentrations of ozone continuously by means of a flourescent technique. Kept properly calibrated, these instruments have been shown to be remarkably reliable and dependable.

V. Data:

Most of the ozone instruments are operated only in the spring and summer months in Connecticut. The following tables are summaries of all Connecticut 1974 ozone data. Table VII - second high hourly average and frequency at all sites; Table VIII - May to September data from all sites; Table IX - Histogram from selected sites.

		BOVE .08 ppm															40% 50% 60%	
- 1974 SUMMARY	TEMBER)	FREQUENCY OF DAYS WITH MAXIMUM ABOVE .08 ppm															10% 20% 30%	
CONNECTICUT OZONE - 1974 SUMMARY	(MAY - SEPTEMBER)	TOWN	Bridgeport	Danbury	Deep River*	${\tt Eastford}^{\star}$	Greenwich	Groton	Hartford	Morris	Middletown*	New Britain	New Haven	Stamford	Waterbury [*]	Windsor		
	TABLE VII	SECOND HIGH 1-HOUR VALUE															 .4ppm .3ppm .2ppm .1ppm	

107/1 CHIMMARV CONNECTICUT OZONE

-25- `

¹ Time is giv The hour ()	Windsor	Waterbury	Stamford	New Haven	New Britain	Middletown	Morris	Hartford	Groton	Greenwich	Eastford	Deep River	Danbury	Bridgeport.	Towns	TABLE VIII
given in (EST) sp	.113	.175	.240	.273	.240	.365	.090	.202	.228	.210			.255	.250	Max: 1-hr. value (ppm)	
in the following) specifying the	22/19	22/19	22/15	22/16	22/15	22/17	30/16	22/15	17/15	16/16			16/17	22/15	Time ¹ of Max.	
m	.113	.161	.219	.257	.190	.324	.090	.179	.223	.180			.238	.200	2nd High 1-hr. value (ppm)	
rmat of	22/20	22/18	22/16	22/15	22/14	22/16	30/17	22/15	17/14	16/15			16/18	22/16	Tíme ¹ of 2nd High	<u>c</u>
:. The du the aver											•		х			CONNECTICUT
The date of occ averaging hour	415	249	708	417	555	558	178	714	509	475			410	716	Total# hourly values	CUT OZONE
occurrence nour appears							•					,				I
e appears is on the	18	12	30	19	24	24	00	31	22	21			20	30	Total Days ²	MAY - 1974
on th right	16	. 9	21	14	· 17	15	7	25	17	12			11	24	1-hr. .00 to .08	74
e left side	۲.	н Н	ω	щ	2	ω	, r 1	4	2	2		· .	рн Н	H-	.081 .099	
side)f th	در	Ν	Сл	ω	4	Сī _		, <mark>⊢,</mark>	_ اسم	م			7	2		
of the e slash.			H	щ	۲		•	щ	2	اسا	a A		Н	Ч	with max. in each range .2 o to .3 o 99 .299 Abov	. •
slash.					•	ц						•			range .3 or Above	
	2	໌ພ໌	9	Ui	. 7	9	н	6	ഗ	9			9	4	# Days with Maximum Above .08 ppm	

 $^2\mathrm{Total}$ days is the number of days with at least one valid reading.

-26-

CONNECTICUT OZONE - JUNE - 1974

•

TABLE VIII

Towns	Max. 1-hr. value (ppm)	Time ^l of Max.	2nd High 1-hr. value (ppm)	Time ¹ of 2nd High	Total# hourly values	Total Days ²	# 1-hr. .00 to .08	of days reading 081 .1 to t(099 .1		with max. in each r .2 b to 99 .299	.3 or Above	# Days with Maximum Above .08 ppm
Bridgeport	.230	10/16	.190	20/15	717	30	19	რ	7	ы		
Danbury	.270	10/17	.185	5/16	607	29	17		10	ы		12
Deep River												
Eastford										1		
Greenwich	.270	10/15	.190	10/16	705	29	12		16	н		17
Groton	.244	10/17	.183	22/17	705	30	18	ŝ	80			12
Hartford	.306	10/18	.212	30/16	718	30	18	4	9	r-1	н	12
Morris	.225	10/18	.169	19/17	644	27	<u>б</u> .	٢	10	ы		18
Middletown	.267	10/17	.223	10/18	703	30	18	ŝ	7	2		12
New Britain	.235	5/15	.197	22/16	707	30	14	ŝ	10	Ч		16
New Haven	.302	10/17	.231	20/16	708	30	15	4	ø	2	r -1	15
Stamford	.230	10/15	.230	10/16	714	30	14	Ś	11	5	·	16
Waterbury	.252	10/17	.186	10/18	596	26	17	7	9	н		σ
Windsor	.113	22/19	.113	22/20	415	18	16	 .	, r-I			5
¹ Time is given in the following format The hour (EST) specifying the end of	given in (EST) s _I	in the following specifying the	Llowing 1g the (the	. The date of occurrence the averaging hour appears	ce appears ars on the		e left side	: side o of the	on the left side of the right side of the slash.	slash.	

 $^2\mathrm{Total}$ days is the number of days with at least one valid reading.

-27-

							ļ	•				
	Max.		2nd High	Time ¹			# 1-hr.	of days reading		with max. in each range	ange	# Days with
Towns	l-hr. value (ppm)	Time ¹ of Max.	. ₀ .	of 2nd High	Total# hourly values	Total Days ²	.00 .08			.2 to .299	.3 or Above	Maximum Above .08 ppm
Bridgeport	.210	31/15	.200	31/16q	741	31	15	8	7	н		16
Danbury	.157	2/14	.139	2/13	594	27	14	6	7			13
Deep River	.158	31/19	.158	31/20	155	7	ы	щ	H			2
Eastford				•						•		
Greenwich	.190	2/12	.190	22/15	712	30	11	4	15			19
Groton	.206	2/17	.195	4/16	738	31	15	6	9	ц		16
Hartford	.221	2/17	.212	2/18	739	31	21	Ⴠ	4	н		10
Morris	.160	18/15	.150	18/16	727	31	17	9	ъ			14
Middletown	.259	2/15	.243	2/16	743	31	13	7	9	2		18
New Britain	.225	2/16	.225	2/17	709	31	16	6	7	2		15
New Haven	.287	2/15	.236	2/16	396	18	ഗ	ۍ ا	6	2		13
Stamford	.206	4/13	.201	2/14	737	31	12	ω	14	2		1 9
Waterbury	.249	2/17	.224	5/13	733	31	16	ယ	10	2		15
Windsor	.184	2/19	.163	2/20	623	27	24	Ч	2			ω
¹ Time is given The hour (EST)		Hh	owing the e	g format. T end of the	The date of occurrence averaging hour appears	te appears ars on the	on ríg	the left ht side o	t side c of the	of the : e slash.	slash.	

 2 Total days is the number of days with at least one valid reading.

TABLE VIII

CONNECTICUT OZONE - JULY - 1974

-28-

CONNEC

TABLE VIII

CONNECTICUT OZONE - AUGUST - 1974

.08 ppm Maximum # Days Above with 16 15 ŝ 10 13 1218 18 13 13 18 21 17 17 .3 or The date of occurrence appears on the left side of the slash. Above 1-hr. reading in each range # of days with max. The hour (EST) specifying the end of the averaging hour appears on the right side of the slash. .299 ŝ to 2 2 77 .199 13 12 δ 10 σ 12 δ œ ŝ 11 J Ц to -.099 2 m Ś tŝ -.081 4 吕 ť 9 9 ŝ 18 15 13 13 14 25 00, 80 to 12 10 16 13 14 ∞ 17 H Total Days' 25 29 30 29 23 31 26 28 30 31 31 31 31 吕 values Total# hourly 720 669 740 679 562 733 535 733 730 602 644 705 744 711 ¹Time is given in the following format. 11/1816/1631/18 13/15 20/19 2/14 2/1424/14 13/16 2/15 1/1531/17 31.15 13/17Time High 2nd оf l-hr. value .136 (mdd) .169 .240 .146 .122 .158 .182 High .243 .188 .160 .165 .155 .202 .174 2nd 24/15 24/15 2/1324/13 20/18 16/17 13/16 2/12 2/15 2/1113/15 11/1731.17 13/16Time¹ Max. Ч 1-hr. value (mqq) .150 .160 .240 .146 .174 .162 .174 .212 .187 .188 .243 .202 .174 .171 Max. New Britain Bridgeport. Middletown Deep River Greenwich New Haven Waterbury Stamford Eastford Hartford Windsor Danbury Morris Groton Towns

 $^2\mathrm{Total}$ days is the number of days with at least one valid reading.

-29-

¹ Time is gi The hour (²	Windsor	Waterbury	Stamford	New Haven	New Britain	Middletown	Morris	Hartford	Groton	Greenwich	Eastford	Deep River	Danbury	Bridgeport	Towns	TABLE VIII
given in c (EST) sp	.150		.150	.188	.238		.085	.175	.103	.210	.197	.193	.221	.197	Max. 1-hr. value (ppm)	
in the following specifying the	11/17		11/14	12/14	11/16		12/14	11/17	1/14	12/13	12/17	13/16	11/16	12/13	Tíme ¹ of Max.	
owing the (.136		.146	.183	.200		.080	.149	.100	.190	.193	.169	.189	.169	2nd High 1-hr. value (ppm)	
format. T end of the	11/18		12/13	12/15	11/17		12/15	12/17	11/14	11/13	13/18	12/15	12/16	12/13	Tíme ¹ of 2nd Hígh	<u>CONNECTICUT</u>
The date of occ averaging hour	720		720	. 713	658		360	719	535	708	719	720	518	719	Total# hourly values	ICUT OZONE -
f occurrence appears hour appears on the	30		30	30	28		- 15	30	24	29	30	30	23	30	Total Days ²	- <u>SEPTEMBER</u> -
	25	•	21	23	20		14	22	19	19	21	20	14	22	1-hr .00 to	. <u>1974</u>
on the left side of the right side of the slash.	2		4	•	ι L		Ē	ы	2	F1	4	4	ω	ω	# of days <u>1-hr. reading</u> .00 .081 .1 to to to to .08 .099 .1	
side of of the s	ω		G	6	4			ω	ω	Ø	ഗ	6	J	Uī		
of the slash.					<u></u> ⊢.4					. 1			1		with max. in each range .2 o to .3 o 99 .299 Abov	
slash.		•			:										.3 or Above	
	G		9	7	œ		1	00	ហ	10	ę	10	Q	œ	# Days with Maximum Above .08 ppm	•

 $^2\mathrm{Total}$ days is the number of days with at least one valid reading.

-30-

										GF	REEN	GREENWICH												
	UIW .	7	ς	4	2	9	6	ω	6	10	11	9 10 11 NOON 13 14 15 16 17 18 19 20 21 22 23	13	14	15	16	17	18	19	20	21	22	23	TOTAL BY MONTHS
APR																								
MAY										7	7	9	7		14 6	,Ω	4	7	н	H	н	ч		52
NUL									•	ę	11	12	13	14	13	13	10	7	4	Ч				101
JUL							•		Ś	ŝ	12	12	13	15	12	11	7	9	ς	7		5	н	109
AUG				•	·				Н	Н	7	6	15	17	14	12	12	. QI	4	7		Ч		104
SEPT								н. Н	Н		ŝ	9	. 00	9	6	9	7							45
OCT														5	Ч	, H								4

PHOTOCHEMICAL OXIDANTS

NUMBER OF HOURS ABOVE THE STANDARD BY MONTH AND TIME OF DAY

TABLE IX

-31-

TOTAL 415

Ч

4

Ч

ഗ

12

24

35

48

55

71

56

45

35

7 14

-

TOTAL BY HCURS

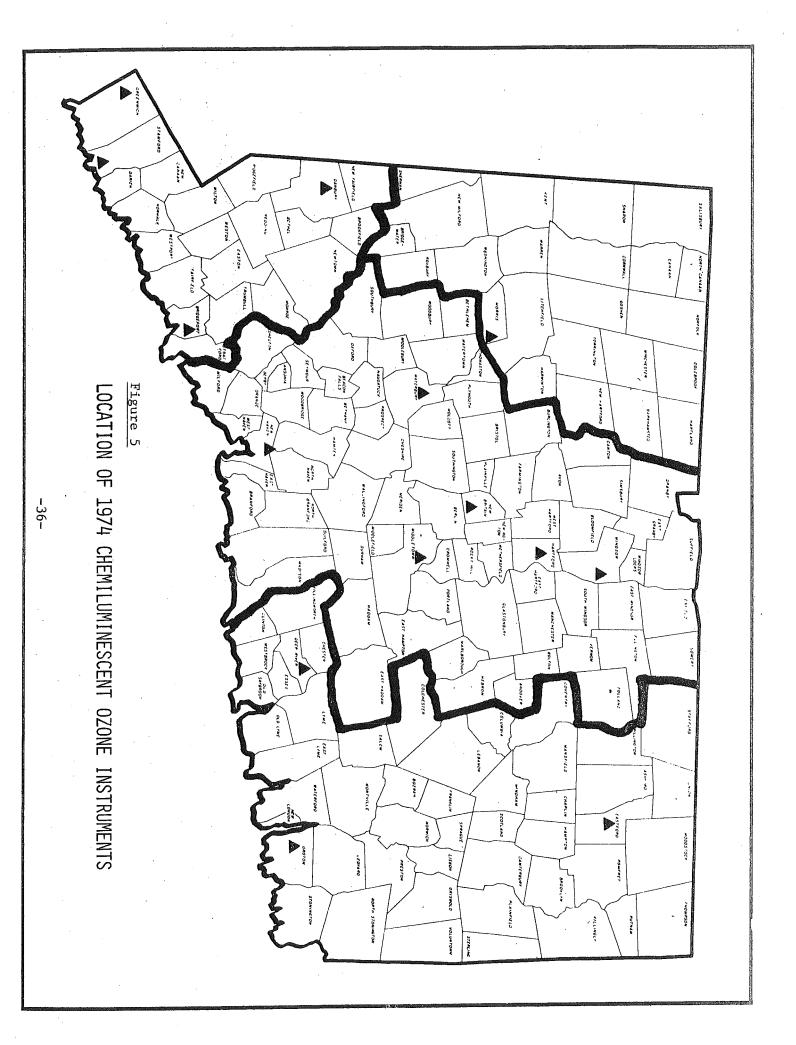
· · ·	TOTAL BY HOURS	OCT	SEPT	AUG	JUL	JUN	MAY	APR			TABLE IX
									MID		•
· .						-	•				
									1 2		
	· ·					•			ω	NUMB	
	. 1								4	SER (
•									Сл.	OF H	
	÷								6	OURS	
									7	NUMBER OF HOURS ABOVE THE STANDARD BY MONTH AND TIME OF DAY NEW HAVEN	
			•						∞	VE	РНОТ
	Ч			•	· [9 10	THE .	FOCHI
• •	37			н	2 3	ω			0 11	NEW	EMIC
	20								. NOON	STANDARD J NEW HAVEN	PHOTOCHEMICAL OXIDANTS
			Р	4	G	7 1	ω. ·			N BY	XIDA
	30 42		4	U1	7 1	10 13	4		13 1	MON	ANTS
	2 43		67	6 6	0 11	3 11	4 5		14 15	TH A	
	38	н	7	8	œ	11	ω		16	UN T	
	36	щ	7	6	9	10	ω		17	IME	
	28		2	7	7	9	ω		18	٩ ٩	
•	18	•		6	S	G	Ν		19	DAY	
	13			4	G	4			20		
	ω			μ	Ц	Ч			21		
	2			н		Н			22 2		
									23		
	TOTAL 284	2	34	62	74	85	27		TOTAL BY MONTHS		

-32-

TABLE IX

PHOTOCHEMICAL OXIDANTS

NUMBER OF HOURS ABOVE THE STANDARD BY MONTH AND TIME OF DAY


HARTFORD

	. MID	ы	2	ς	4	Ś	9	7	ω	6	10	11	NOON	13	14	15	16	17	18	16	20	21	22	23	TOTAL BY MONTHS
APR											- - -														
MAY										•		Ч	, ,	Н	ŝ	ω	ŝ	ŝ	ŝ	7	5				23
JUN	~										7	ŝ	10	6	6	7	ø	œ	δ	۲.	4	, H	3		82
, JUL				Н	Ч				•		2	ŝ	5	9	9	9	8	7	Ŋ	4	7	7			58
AUG										•		4	5	7	6	6	∞ .	9	9	4	ŝ	ŝ		۰.	64
SEPT		•			•				•				5	5	2	ŝ	S	ŝ	4	2					27
OCT												• •			٣٩			Ч	. '						ς Γ
			÷.,																						
TOTAL BY HOURS			·	H	H .						ъ Л	13	23	26	30	30	32	30	27	19		6	5	-	TOTAL 257
								. ,																	,
											•														

-33-

			TOTAL BY HOURS		SEPT OCT	AUG	JUL	JUN	MAY	APR			TABLE IX	
			•								MID .			
											н			
·										·	2	_		
											ω	NUME		
											4	NUMBER OF HOURS ABOVE THE STANDARD BY MORRIS DAM		
• • •								а			ഗ			
											6	IOUR		
											7	S AB		
					•						ω	OVE	PHO-	
			4			н ,	2	<u>н</u> ,			9 1	тне М	PHOTOCHEMICAL OXIDAN	
		•	10 1			ω	2				10 1	ST/ ORR]	EMIO	
-34-			15			4	ί	6			11 N	ie standard Morris DAM	AL	
	ţ		17			ហ	4	8			NOON	RD E	II XO	
			21			6	ų	9	ц		13)ANT	
•••			29		łł	ഗ	10	12	н		14	MONTH AND TIME	S	
			26			9	9	10	Н		15			
			25			7	U	12	فسز		16			
			16			4	Ν	9	Ч		17 1	ME		
,			13			Ч	ω	9			18 1	OF D		
			œ			н		7			19 20	DAY		
·			4				4	ω ·			0 21			
		-	4				Ч	3 2			1 22			
			2 1					2 1			2 23			
				·				ı						
3 			TOTAL 195			43	49	97	ы		TOTAL BY MONTHS			

)	•	}								1	
TABLE IX	OHA	PHOTOCHEMICAL OXIDANTS	L OXIDA	NTS							
	NUMBER OF HOURS ABOVE THE STANDARD BY MONTH AND TIME BRIDGEPORT	THE STANDARD BRIDGEPORT	dard by Port	NOM .	TH AI	IL QN	ME OF	а рау			
QIM	1 2 3 4 5 6 7 8	9 10 11	NOON 1	13 14	15	16]	17 18	19	20 21	1 22 23	TOTAL BY MONTHS
APR											
МАҮ			2	4 4	ຕິ		. •				13
JUN		н	9	7 8	6	. 00	8	Н			50
JUL		7	9	7 8	10	10	~ 00 ~	ŋ	H		63
AUG		£ 	6 1	12 14	14	12	80	9	7		85
SEPT			4	4 6	7	. 9	2		•		31
ОСТ				н Н	H	H.	r-I		• . •	•	'n
TOTAL BY HCURS		9	24 3	35 41	44	37 2	27 20	10	ε		TOTAL 247
			• •		1. 1. 1 .						
	•							· •		·	
				•	÷ .					: •	
		•			· .					* 	
		-35	-				•				
		. •									

II. AEROMETRIC DATA

D. Nitrogen Dioxide

I. Conclusions:

Nitrogen dioxide levels at all sampling sites in Connecticut were lower than the annual average air quality standard of 100 μ g/m³.

II. Discussion of data:

There were 39 nitrogen dioxide sites in 1974 as compared to 34 in 1973. The sites are distributed in a network which covers urban, residential and suburban locations.

III. Facts about Nitrogen Dioxide:

Nitrogen Dioxide (NO2) is formed whenever air, which contains both oxygen (O2) and nitrogen (N2), is subjected to high temperatures. Thus any fuel combustion leads to the formation of NO2; space heating, industrial and power generation, and automobile engines are the primary sources. Some fuels contain nitrogen compounds which also react during combustion to form NO2. There are a few minor non-fuel-combustion sources of NO2 as well.

Nitrogen dioxide in the atmosphere can aggravate respiratory problems. Nitrogen dioxide and other oxides of nitrogen (primarily nitric oxide) with which it exists in equilibrium, play a primary role in the production of photochemical oxidants.

IV. Method of Collection:

The Air Monitoring Unit uses gas bubblers employing the NASN Sodium Arsenite method. These instruments sample for twenty-four hours every sixth day, the same schedule as the suspended particulate instruments. The samples are later analyzed in the laboratory.

EPA has not formally approved any continuous method for measurement of NO2, though reportedly an approval of one method is soon forthcoming.

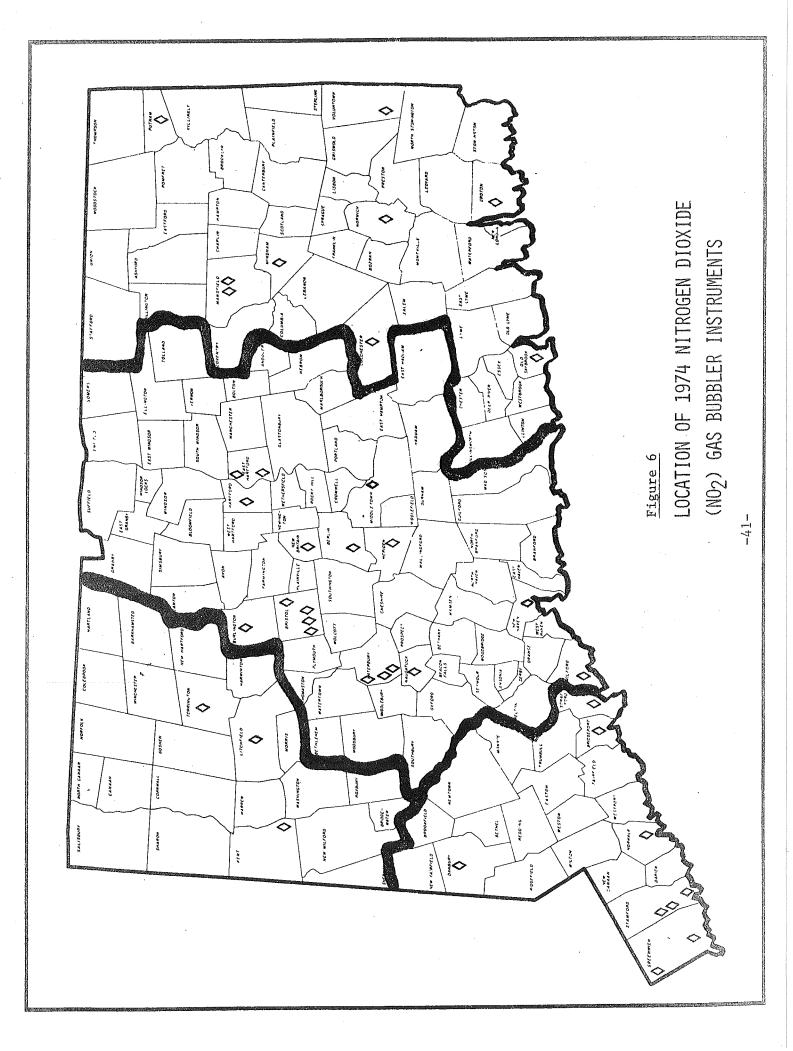
		Town Name	TOWN	
•		Site Number assigned by D.E.P.	SITE	· · ·
		Calendar Year	YEAR	The terms exp
	Average	Annual Arithmetic Mean or		explained here are
		Standard Deviation	STD DEV	e column headings
	above 100 µg/m if samples were taken every day instead of every sixth day	Percent of days that could be expected to have concentrations	PCT 0	ings on the following table.
	above 282 µg/m if samples were taken every day instead of every sixth day	Percent of days that could be expected to have concentrations	РСТ OVER 282 µg/ш3	ble.

•

-38-

KENT	HARTFORD	GROTON	GREENWICH	GREENWICH	EAST HARTFORD	EAST HARTFORD	DANBURY	COLCHESTER	BURLINGTON	BRISTOL	BRISTOL	BRISTOL	BRISTOL	BRIDGEPORT	BERLIN	TOWN	
001	002	001	004	001	002	001	001	100	100	004	003	002	001	001	001	SITE	
14.4	53.4	37.9	39.9	55.8	52.3	57.7	44.3	31.4	12.4	45.0	28.6	26.8	33.3	56.3	17.3	MEAN	
10.3	29.8	13.6	23.5	38.5	19.3	19.8	27.0	16.2	12.9	21.2	19.7	20.1	23.6	23.4	15.4	STD DEVIATION	
.00	5.48	.00	•47		.62	1.7	1.7	.00	.00	- 47	- 02	.02	.26	2.87	.0000	PERCENT OVER 100 μg/m ³	
.00	• 00	.00	.00	.00		.00	.00	.00	.00	.00	.00	.00	• 00	.00	.00	PERCENT OVER 282 µg/m ³	

-39-


TABLE X

POLLUTANT - NITROGEN OXIDES

TABLE X

POLLUTANT - NITROGEN OXIDES

TOWN	SITE	MEAN	STD DEVIATION	PERCENT OVER 100 µg/m ³	PERCENT OVER $282 \ \mu g/m^3$
LITCHFIELD	001	30.1	18.2	.01	.00
MANSFIELD	001	29.0	14.0	.00	.00
MANSFIELD	002	19.4	11.3	.00	.00
MERIDEN	002	42.9	28.7	2.27	.00
MIDDLETOWN	003	56.3	25.4	4.46	.00
MILFORD	001	49.0	31.5	5.48	.00
NAUGATUCK	001	46.3	24.1	1.39	.00
NEW BRITAIN	002	48.2	32.7	5.48	.00
NEW HAVEN	001	66.7	25.3	9.68	.00
NORWALK	005	72.1	31.5	18.41	.00
NORWICH	001	45.0	18.9	.19	.00
OLD SAYBROOK	001	62.0	30.7	11.51	.00
PUTNAM .	002	28.3	12.8	.00	.00
STAMFORD	003	60.0	17.8	1.39	.00
STAMFORD	007	28.9	33.1	1.79	.00
STAMFORD	123	63.5	30.8	11.51	.00
STRATFORD	005	66.9	26.7	11.51	.00
TORRINGTON	001	36.0	18.7	.03	.00
VOLUNTOWN	001	17.8	11.1	.00	.00
WATERBURY	001	63.7	25.7	8.08	.00
WATERBURY	002	30.6	14.5	.00	.00
WATERBURY	003	38.0	21.2	.19	.00
WILLIMANTIC	001	41.9	19.5	.13	.00

II. AEROMETRIC DATA

E. Carbon Monoxide

I. Conclusions:

The eight hour ambient air quality standard was frequently exceeded in many places in Connecticut. The one hour standard however, was not exceeded.

II. Discussion of data:

The network of carbon monoxide monitors has expanded to seven sites since 1973 and will continue to grow in 1975. Attempts are made to place instruments in high traffic areas, though often special short-term projects must be undertaken to investigate particular problem areas. The data reported here represents only that from the permanent network of sites which will be used primarily for long-term trend evaluation.

III. Facts about Carbon Monoxide:

The major source of carbon monoxide (CO) is the automobile. This pollutant is found in ambient concentrations high enough to cause concern in areas of high traffic density. City centers, where tall buildings constrain air flow and where traffic jams are common, are of particular concern. In contrast to ozone, carbon monoxide is very much a local problem.

Carbon monoxide disperses to innocuous concentrations rapidly, and while it is fairly stable in the atmosphere, there is no evidence of a long-term global build-up of CO.

IV. Method of Collection

The Air Monitoring Unit uses instruments employing non-dispersive infrared techniques (NDIR) to measure carbon monoxide levels. The instruments measure and record instantaneous CO levels continuously.

TABLE XI

CO ANNUAL SUMMARY

Towns	Maximum Annual 8-hr. Average	Time ^l of Maximum 8-hr.	2nd High Annual 8-hr. Average	Time ^l of 2nd High 8-hr.	Maximum Annual 1-hr. Average	Time ² of Maximum 1-hr.	2nd High Annual 1-hr. Average	Time ² of 2nd High 1-hr. Average
Bridgeport	20.3	1/15/19	19.8	1/24/01	27.0	1/10/14	25.0	1/15/15
Greenwich	19.4	3/04/14	19.2	1/15/21	40.0	2/13/08	35.0	12/16/17
Hartford 07	16.9	9/25/02	14.5	3/24/23	28.0	3/20/15	21.0	6/23/24
Hartford 09	13.0	12/13/14	11.0	11/18/22	22.0	11/18/19	18.5	12/13/07
New Britain	25.1	6/21/24	24.2	6/22/12	28.0	6/21/23	28.0	6/22/06
Norwalk	16.0	11/19/24	14.6	11/24/02	25.0	11/25/08	22.0	10/24/08
Stamford	12.9	6/27/10	12.3	6/27/02	15.0	10/23/08	15.0	10/31/19
				: •				

 $^{
m l}$ Time of 8-hr. averages is reported as follows: Reading from left to right, the first number indicates the month, the middle number indicates the day within that month and the last indicates the hour (EST) specifying the end of the 8-hr. averaging period.

²Time of 1-hr. averages is reported as follows: Reading from left to right, the first number indicates the month, the middle number indicates the day within that month and the last indicates the hour (EST) specifying the end of the 1-hr. averaging period.

Note: All concentrations are in p.p.m.

-43-

8

85

TABLE XII

CO 8-HR. MAXIMUM BY MONTHS

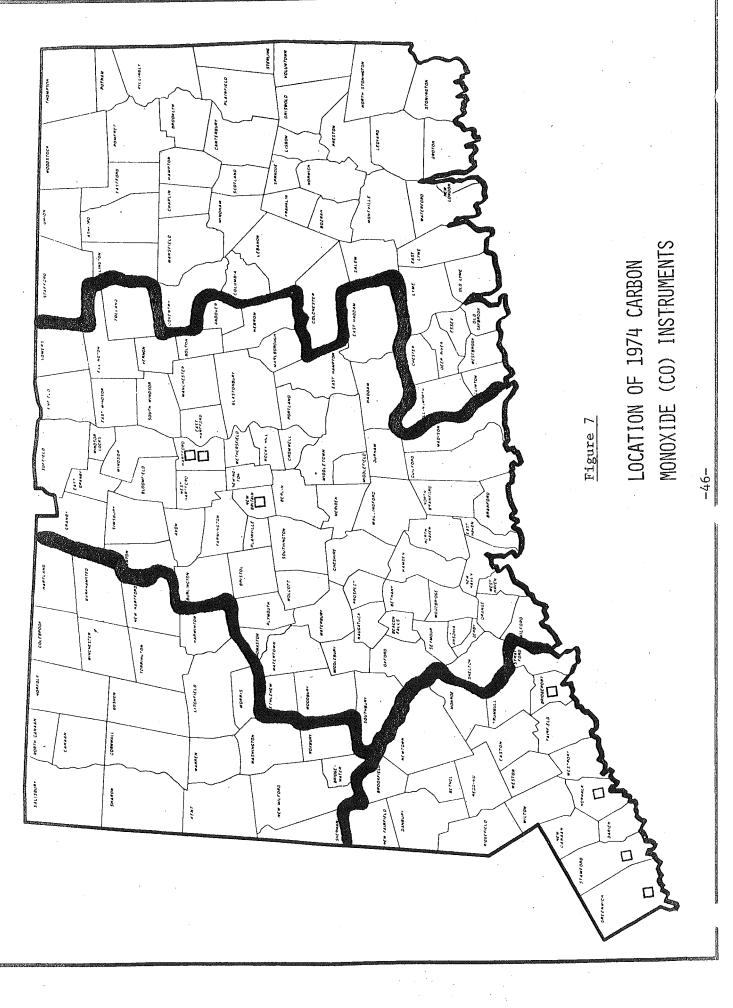
i F	-Jec	13.1	665	16.3	566	8.4	656	13.0	743			14.4	726	10.0	247
	- AOM	10.1	687	11.2	598	7.6	660	11.0	719	•	· , ·	16.0	429	9.6	266
	UCL.	17.9	730	9.	744	5.8	519	8.1	178			11.6	730	11.8	433
, , ,	sept.	15.9	717	9.6	169	16.9	665	5.4	81		-	8.2	119	с г	656
	Aug.	7.9	696	6.9	728	6.8	681			13.5	489	4.9	742	4.0	474
	July	7.6	743	4.1	744	4.1	740	•		17.8	709	7.3	482	°.3	715
	June	12.4	597	4.8	720	4.8	680	;		25.1	715			12.9	712
	May	16.5	607	6.9	732	6.2	722	•		18.8	662			i	
	Apr.	19.1	475	10.8	720	11.2	683	•		19.7	676			•	
1. 1.	Mar.			19.4	732	14.5	585					· · · .		•	
	Feb.	17.1	34	14.6	667			· · ·							
	Jan.	20.3	647	19.2	722	8,5	504	· .				• .		•	
	Towns	Bridgeport	Count	Greenwich	Count	Hartford 07	Count	Hartford 09	Count	New Britain	Count	Norwalk	Count	Stamford	Count

¹Count is the number of valid 1-hr. readings within the month.

Note: All concentrations are in p.p.m.

-44-

TABLE XIII				<u>CO</u> <u>1-H</u>	R. MAXI	CO 1-HR. MAXIMUM BY MONTHS	SHTNOM		,			
Towns	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Bridgeport	27.0	17.5		23.8	17.0	13.5	0.6	21.5	18.5	25.0	22.0	18.0
Time ¹	10/14	28/06		18/06	3/07	19/08	19/12	27/08	24/20	29/23	24/23	6/18
Greenwich	27.5	40.0	30.0	25.0	15.0	12.0		20.0	30.0	24.0	25.0	35.0
Time	15/16	13/08	6/07	3/07	23/15	8/07		19/16	26/06	23/08	27/16	6/17
Hartford 07	13.0		28.0	20.0	12.5	21.0	7.5	9.5	20.0	0.6	15.0	12.0
Time	4/15		20/15	3/08	3/16	23/24	24.04	30/16	25/08	21/16	18/19	6/18
Hartford 09							•		7.5	13.0	22.0	18.5
Time									27/16	25/16	18/19	13/07
New Britain		2		22.0	23.0	28.0	20.5	23.5				·
Time				2/22	28/06	21/23	26/10	12/16				
Norwalk	[*] .	4 19 - 19 10					10.5	7.5	12.5	22.0	25.0	20.0
Time							30/17	7/06	19/17	24/08	25/08	2/09
Stamford						I3.0	0.6	8.0	7.5	15.0	13.0	14.0
Time						27/04	1/21	8/13	16/07	23/08	1/17	23/08
				·								


7

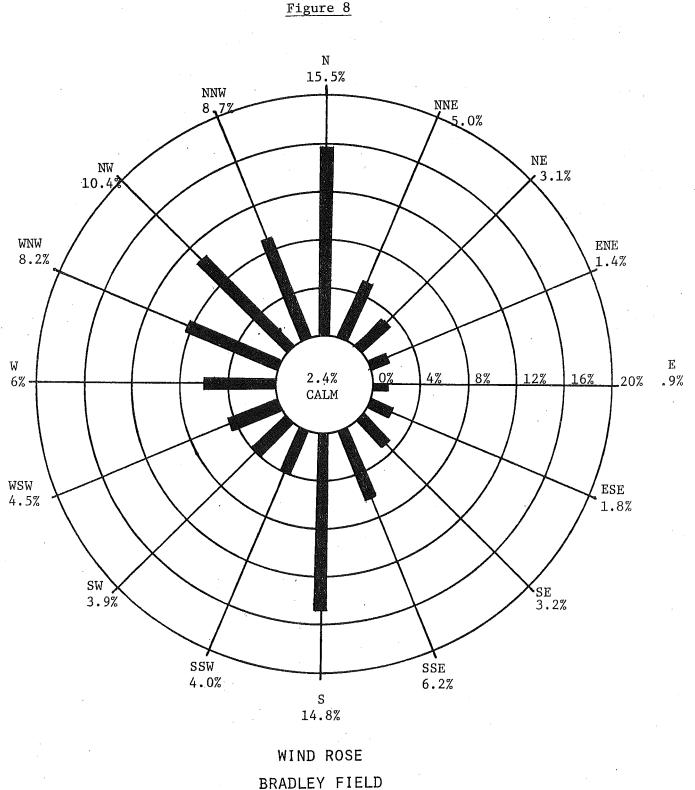
¹For all sites, time is given in the following format: The date of occurrence appears on the left side of the slash. The hour (EST) specifying the end of the averaging hour appears on the right side of the slash.

•

Note: All concentrations are in p.p.m.

-45-

III. WIND ROSE COMPARISON

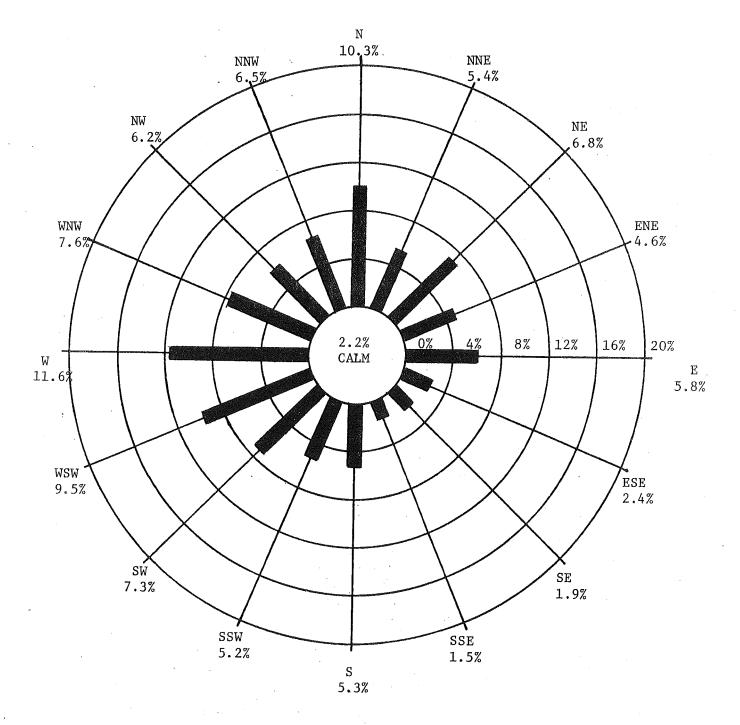

The effects of wind are quite important in air pollution studies. Wind disperses air pollution and is a fundamental factor in the design of models of air pollution like the Air Quality Display Model (AQDM).

The direction of wind is recorded every 3 hours at Bradley International Airport and at Bridgeport Airport. Each measurement falls into one of six-teen compass point directions.

The number of observations at each compass point and the total number of observations are both known, so we can calculate the percent of time the wind direction was from each point. A wind rose is a diagram in which a bar is drawn from the center of the circle toward each point. The length of the bar represents the percent of readings from that direction. During a calm the wind has no direction so the percent calm is noted in the center of the diagram.

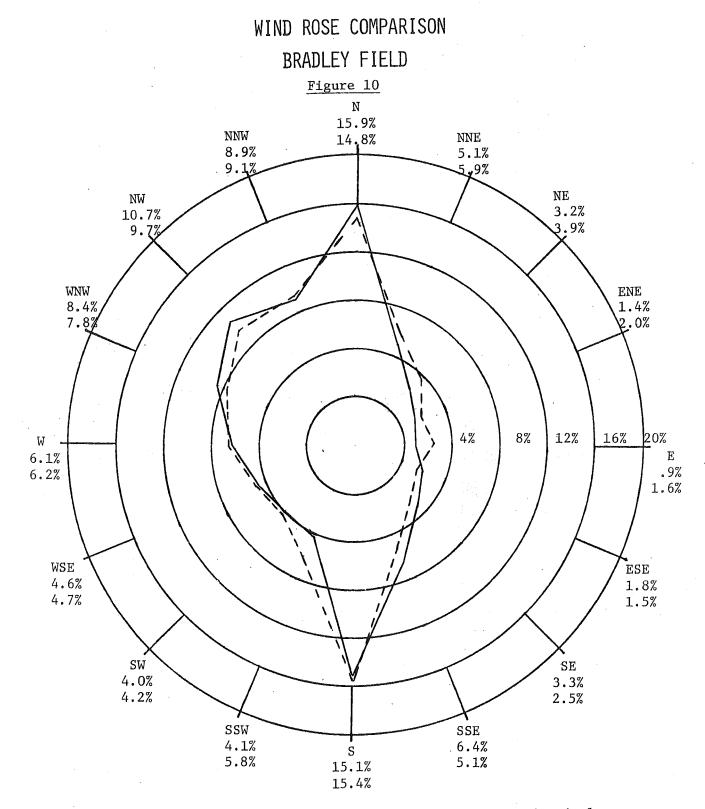
For the wind rose comparison, a line is drawn to connect the ends of adjacent bars, thus forming an irregular shape. The bars themselves have not been drawn in so that the shapes from different time intervals can be compared on the same chart. (Figures 10 and 11).

The Chi-square test is used at each site to test the hypothesis that the 1965-72 wind rose is the same as the 1974 wind rose. In both cases the difference was statistically very significant (ρ <.005).

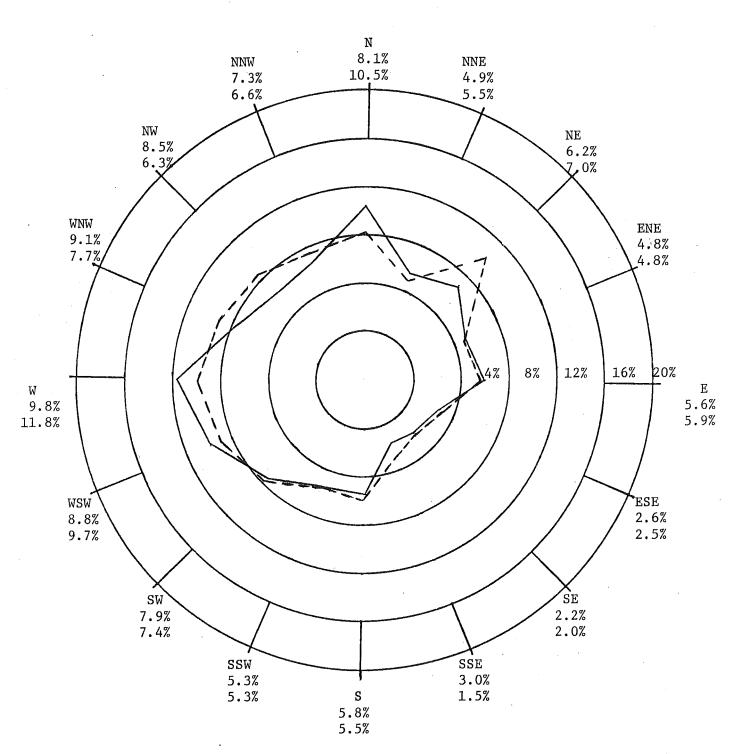


annual 1974

WIND FREQUENCY APPEARS BENEATH EACH DIRECTIONAL ABBREVIATION


-48-

WIND ROSE BRIDGEPORT AIRPORT ANNUAL 1974


WIND FREQUENCY APPEARS BENEATH EACH DIRECTIONAL ABBREVIATION

Key: Scale is indicated by numbers to the right of the concentric circles. ---- Values from the 1965-1972 annual wind rose. Values from the 1974 annual wind rose. For the 1965-1972 annual wind rose, frequency appears as the upper figure beneath each directional abbreviation. For the 1974 annual wind rose, frequency appears as the lower figure beneath each directional abbreviation.

WIND ROSE COMPARISON BRIDGEPORT AIRPORT

Figure 11

Key: Scale is indicated by numbers to the right of the concentric circles. ---- Values from the 1965-1972 annual wind rose.

Values from the 1974 annual wind rose.

For the 1965-1972 annual wind rose, frequency appears as the upper figure beneath each directional abbreviation.

For the 1974 annual wind rose, frequency appears as the lower figure beneath each directional abbreviation.

•