

CONNECTICUT AIR QUALITY SUMMARY 1971 - 1973

Department of Environmental Protection

ABSTRACT

The Connecticut Air Quality Summary, 1971-1973 is a presentation of historical data as it was observed; no attempt is made to project future air quality values.

Part I, <u>Introduction</u>, contains comments on air quality trends observed between 1971 and 1973, comments on air pollution stagnation episodes in 1973, and comments on state and federal air quality standards.

Part II, <u>Aerometric Data</u> contains statistics on the ambient or outdoor air. Air pollution concentrations for Sulfur Oxides, Nitrogen Oxides, Particulate Matter, Photochemical Oxidants or Ozone, and Carbon Monoxide are reported. Seven year wind roses showing the frequency of each wind direction are included. Each section starts by describing how the large quantities of raw data have been summarized and organized.

Part III, <u>Air Monitoring Sites</u> contains a narrative describing the development of the air monitoring network, and a comprehensive directory of air sampling sites operating in 1973.

CONNECTICUT

AIR QUALITY SUMMARY

1971 - 1973

PART I

INTRODUCTION

CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION AIR COMPLIANCE MONITORING

ANNUAL ARITHMETIC AVERAGES OF SULFUR OXIDES AT CONTINUOUSLY MONITORED SITES

Secondary Connecticut Standard 60 ug/m³ Primary NAAQS Standard 80 ug/m³

	1973	<u>1972</u>	<u>1971</u>
01	44	61.5	76
02	31	54	
03	50	50	
01	47	49	43
01	53	45	62
04	29	33	43
08	55	43	71
03	69	61	91
Maple Avenue	82	108	- **
Sumner Street	52	79	97
02	25		49
Depot Road	44	53	
02	80.3	120	96
04	54	• 79	84
08	. 38	41	51
05	50	61.5	65
Harbor Avenue	59	79	
03	78	90	11.9
Reeds Lane	50	60	
01	84	93	103
	02 03 01 01 01 04 04 03 03 03 03 02 04 02 04 04 03 03 10 10 10 10 10 10 10 10 10 10 10 10 10	01440231035001470153042908550369Maple Avenue820225022504440280.3045403540454045405501037803780350	014461.5023154035050014749015345042933085543036961Maple Avenue82108Sumner Street52790225Depot Road44530454790280.3120045479055061.5Harbor Avenue5979037890Reeds Lane5060

CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION PAGE 5 AIR COMPLIANCE MONITORING

PARTICULATES

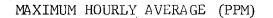
The 1971-1973 historical trend also shows substantial reduction in the concentration of Particulate Matter in the ambient air over Connecticut. The Secondary annual average NAAQS is 60 ug/m³, and the Primary NAAQS is 75 ug/m³.

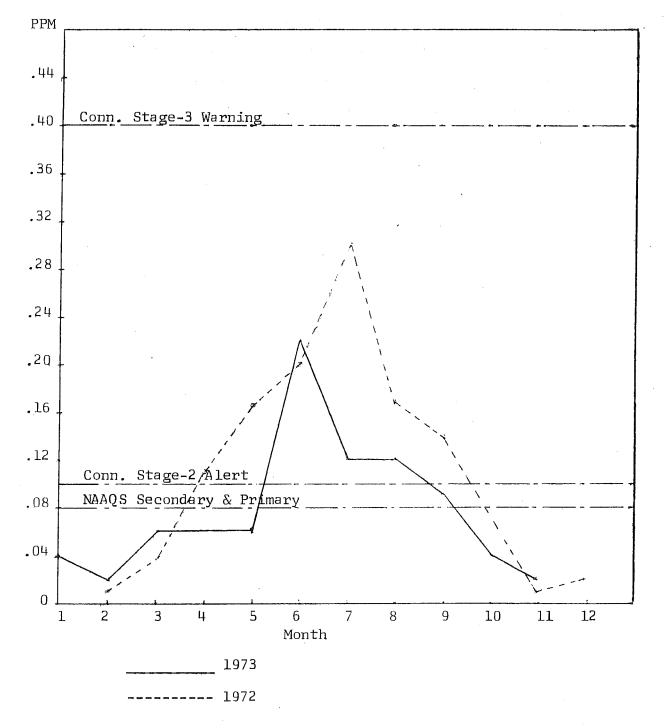
ANNUAL ARITHMETIC AVERAGES AT CONTINUOUSLY MONITORED PARTICULATES SITES

<u>Year</u>	Under Secondary	Under Primary Not Under Secondary	Not Under Primary	Number of Sites
1971	15	14	36	65
1972	22	15 *	23	60
1973	38	22	8	68

From 1971 to 1973 the number of sites under the secondary standard increased by 153%; the number over the primary decreased by 77%.

The eight sites in 1973 still exceeding the primary annual average standard are: Hartford 003, New Britain 002, Meriden 002, Naugatuck 001, Stamford 001, Stamford 004, and Waterbury 001. CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION AIR COMPLIANCE MONITORING


OZONE


Connecticut has a considerable problem with Photochemical oxidants. A graph of the maximum hourly concentration for Hartford follows; It is the only site for which almost two complete years of data are available. Throughout the year, the monthly maximum one-hour concentration of ozone is less in 1973 than in 1972 except for the month of June. A table summarizing 1973 ozone data is also included.

PAGE 6

SITE Hartford

OZONE

	:		IN PARTS PER MILLION	NOIT		,
	JUNE		JULY		AUGUST	EI
City	% of Days Over Standard*	Maximum l-hour	% of Days Over Standard*	Maximum 1-hour	% of Days Over Standard*	Maximum 1-hour
Bridgeport	8 7 1	- 8 1	65.0	.30	65,0	.245
Greenwich	-	9 7 1	82.0	.25	68.0	.24
Hartford	6 . 6	.22	9.6	. 12	22,5	.12
New Haven	8	8	μl,9	.225	54.8	.314
Stamford	-	1 1 1	9 9 9 1	1 1 1 1	81.8	.202
Windsor	19 17 9	9 2 3	9.6	.11	16.1	.125

* Each day reported either has the property that all one-hour average concentrations are below the .08 $ug/m^3~\rm NAAQS$ standard or it does not. The percent of readings without this property is tabulated.

1973

OZONE CONCENTRATIONS IN CONNECTICUT.

CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION AIR COMPLIANCE MONITORING

B. STAGNATIONS

In 1973 the Air Compliance Unit received six air stagnation advisories from the National Weather Service (via the Interstate Sanitation Commission) for the following dates:

> June 26-28 August 17-19 September 4-6 October 9-10 October 24-25 November 23-24

In each instance, internal watch procedures were implemented immediately upon receipt of the air stagnation advisory, and pollutant levels were carefully monitored for rising trends. On June 26, August 17, September 4 and October 24, pollutant concentrations continued to rise, and the Commissioner declared a Stage I Advisory. As required by the regulations, all open burning was banned and all sources of air pollution which had filed preplanned abatement strategies were notified to prepare to implement the strategies necessary for Stage II Alert. In none of these instances, however, did pollutant concentrations rise to Stage II levels before the stagnation advisory was terminated. During the October 9-10 and November 23-24 stagnations the arrival of a frontal system brought an end to the advisory before significant pollutant concentrations were reached, and Stage I Advisory was not declared. CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION PAGE 10 AIR COMPLIANCE MONITORING

C. AMBIENT AIR QUALITY STANDARDS

l.

All ambient air quality standards observed by the State of Connecticut are summarized in this section. National Ambient Air Quality Standards (NAAQS) are specified by the Clean Air Act of 1970 and its amendments; the Connecticut Ambient Air Quality Standards (CAAQS) are specified in section 19-508-6 of the <u>Abatement of Air</u> <u>Pollution Administrative Regulations</u> for the Department of Environmental Protection.

Primary standards are set at levels that ensure the protection of public health; the Secondary standards are set at levels which protect property, vegetation, and aesthetic values.

The Connecticut administrative regulations specify actions that can be taken in an air pollution emergency episode depending on the stage of emergency. For an emergency episode there must be first, a stagnation advisory from the National Weather Service, and second, high air pollution concentrations. The Commissioner, in deciding what actions to take, is guided by the CAAQS Standards defining the stage of emergency.

Part	iculate Matter	ug∕m3	<u>COHS</u>
(a)	Annual Geometric Average		
	 NAAQS Secondary NAAQS Primary 	60 75	
(b)	24-hour Concentration		
	 NAAQS Secondary* NAAQS Primary* Conn. Stage-2 Alert Conn. Stage-3 Warning Conn. Stage-4 Extreme Emergency 	150 260 375 625 875	3.0 5.0 7.0

Standard not to be exceeded more frequently than one time per year.

CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION AIR COMPLIANCE MONITORING

PAGE <u>11</u>

							ug∕m3	ppm	
2.	Sulfu	ur Ox	ides		•				
	(a)	Ann	ual Ari	ithmetic	Average				
	•	(1) (2)		. Seconda 5 Primary			60 80	.02 .03	
	(b)	Dai	ly Aver	rage Conc	entratio	n			
		(1) (2) (3) (4) (5)	NAAQS Conn. Conn.	Seconda Primary Stage-2 Stage-3 Stage-4	* Alert Warning	Emergency	260 365 800 1600 2100	.10 .14 .30 .60 .80	
	(c)	Rum	ning 3-	hour ave	rage				
		(1)	NAAQS	Seconda	cy*		1300	.50	
3.	Sulfu	r Oxi	ide and	Particu	Lates Con	bined			
	(a)	Proc	luct of	SO2 ppm.	, 24-hour	average a	nd COHs		
		(1) (2) (3)	Conn.	Stage-2 Stage-3 Stage-4	Warning	Emergency	0.2 0.8 1.2		
	(b)					m ³ , 24-hou our averag		• •	
-			Conn.	Stage-2 Stage-3 Stage-4	Warning	Emergency	65,000 261,000 393,000		
							ug/m3	ppm	
4.	Carbo	n Mon	oxide	(CO)				•	
	(a)	Runn	ing 8-1	nour Aver	age				
		(1) (2) (3) (4)	Conn. Conn.	Primary* Stage-2 Stage-3 Stage-4	Alert Warning	Emergency	10 17 34 46	9 15 30 40	
	(b)	0ne-1	hour Co	oncentrat	ion				
		(1) (2)		Secondar Primary*	у*		40 40	35 35	
* St	andard	l not	to be	exceeded	more fr	equently t	han one t	ime per	year.

CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTIONPAGE12AIR COMPLIANCEMONITORING

			ug/m ³	ppm
5.	Phot	ochemical Oxidants		
	(a)	One-hour Concentrations		
		 NAAQS Secondary* NAAQS Primary* Conn. Stage-2 Alert Conn. Stage-3 Warning Conn. Stage-4 Extreme Emergency 	160 160 200 800 1600	.08 .08 .10 .40 .60
6.	Hydro	ocarbons		
-	(a)	6:00 - 9:00 A.M. Average Concentration	ons	
		<pre>(1) NAAQS Secondary Guide* (2) NAAQS Primary Guide*</pre>	160 160	.08 .08
7.	Nitro	ogen Oxides		
	(a)	Annual Arithmetic Average		
		<pre>(1) NAAQS Secondary (2) NAAQS Primary</pre>	100 100	
8.	Nitro	ogen Dioxide(NO2)		
	(b)	24-hour average concentration		
		 Conn. Stage-2 Alert Conn. Stage-3 Warning Conn. Stage-4 Extreme Emergency 	282 565 750	.15 .30 .40
	(c)	One-hour average concentration		
		 Conn. Stage-2 Alert Conn. Stage-3 Warning Conn. Stage-4 Extreme Emergency 	1130 2260 3000	0.6 1.2 1.6

* Standard not to be exceeded more frequently than one time per year.

CONNECTICUT AIR QUALITY SUMMARY 1971 - 1973

PART II

AEROMETRIC DATA

CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION PAGE <u>14</u> AIR COMPLIANCE MONITORING

A. SULFUR OXIDE CONCENTRATIONS

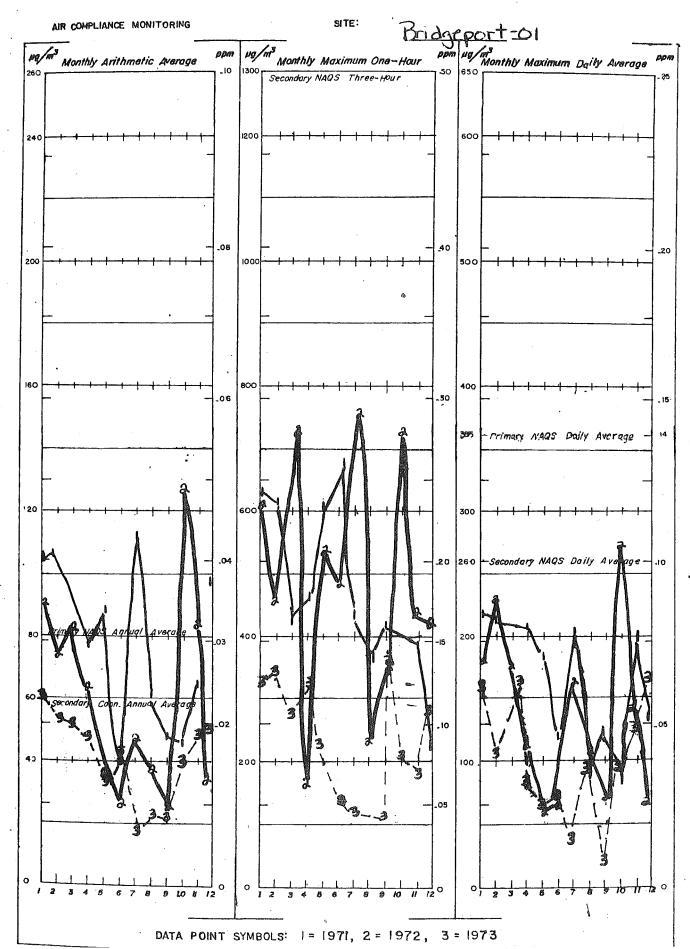
The comprehensive set of graphs following, displays the Sulfur Oxide data available in Connecticut, 1971-1973.

There is one page for each site. The graphs are in alphabetic order by town name, and by site number within the town. Permanent site numbers are assigned by the Environmental Protection Agency for identification purposes. A description of the Connecticut Department Environmental Protection sites is included in Section III of this publication. The Northeast Utilities monitored sites are marked as such.

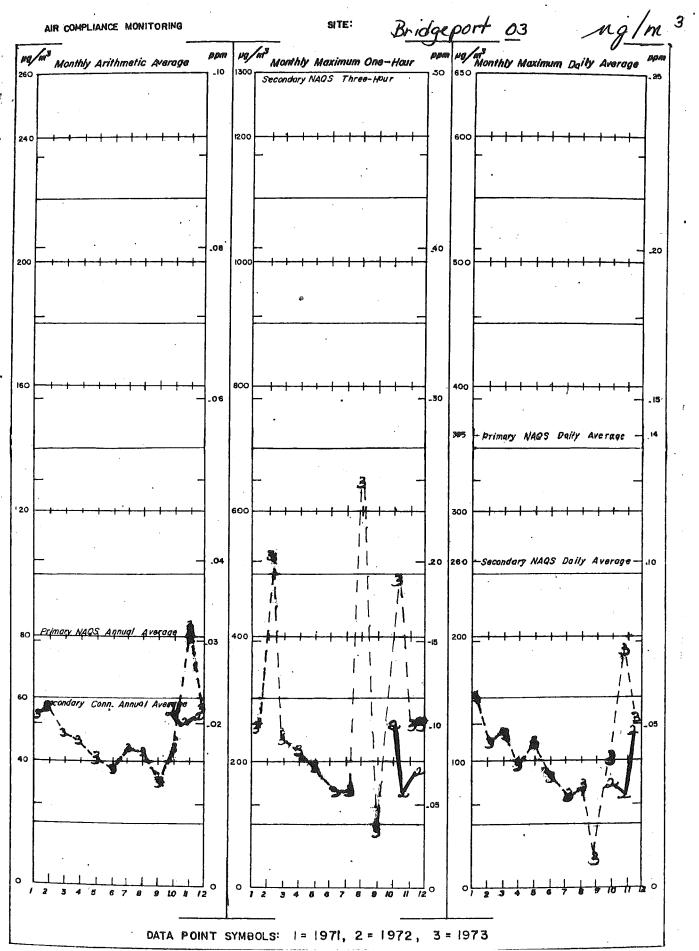
Datawere collected continuously and reported as one-hour average concentrations. On the average there were 600-700 readings per month reported. From these, three summary statistics were developed for the three graphs on each page.

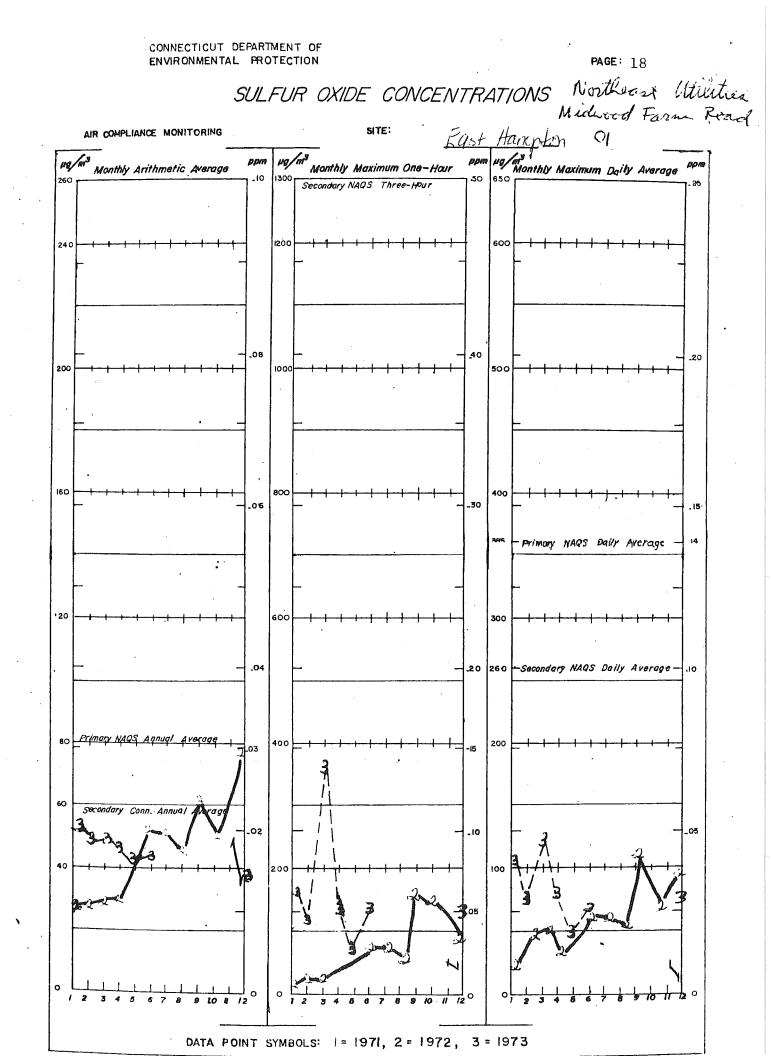
The first statistic was the monthly average concentration: the sum of all the one hour concentrations reported, divided by the number reported. This statistic is graphed on the left side of each page as the "Monthly Average Concentration."

The second statistic was the "Monthly Maximum One-Hour Concentration". This is the highest reading in each month and is graphed in the middle of each page.

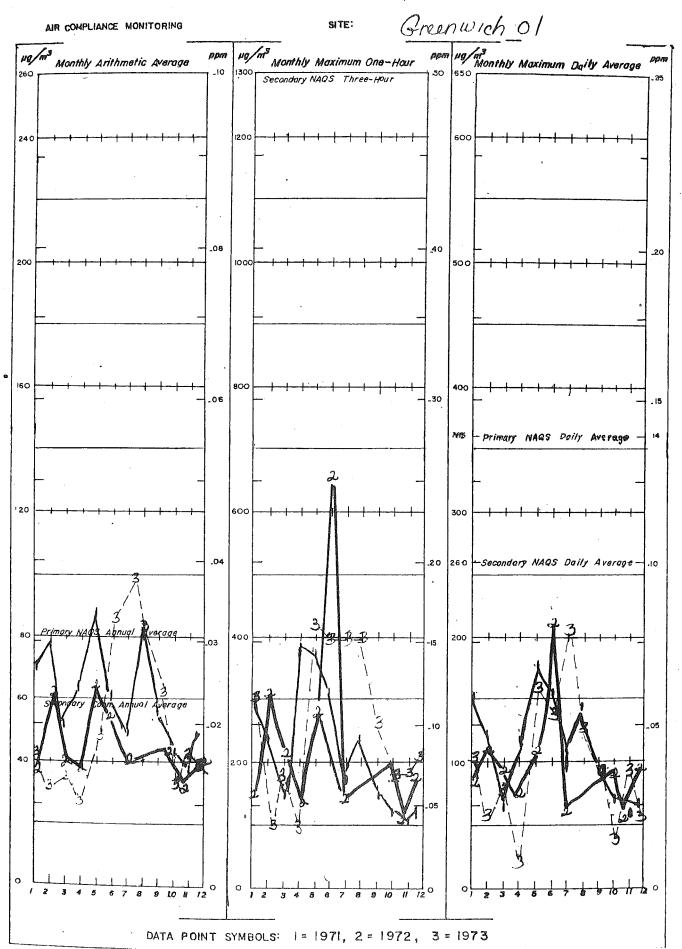

The third statistic developed, the "Monthly Maximum Daily Average", appears in the graph on the right side of each page. The first step was to calculate the average daily concentration for each day of the month. The second step was to pick out the highest of these daily averages and report it as the maximum. CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION · PAGE <u>15</u> AIR COMPLIANCE MONITORING

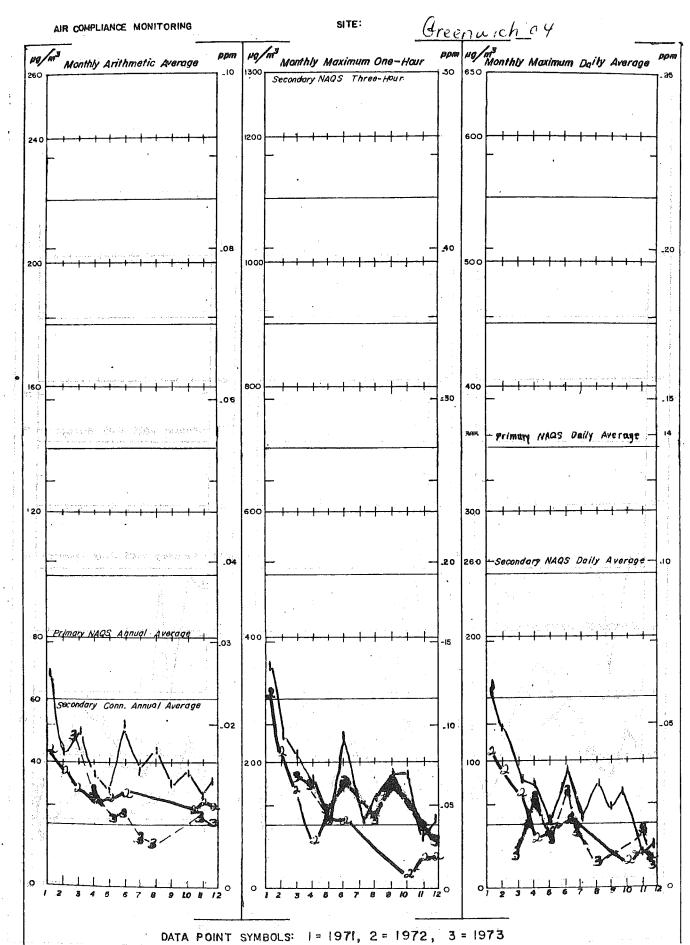
Each of the graphs has a numbered horizontal scale representing the months of the year: "1" for January through "12" for December. For each month three sulfur oxide concentration values are recorded. The last digit of the year is used to mark the data point for the month: the number "1" indicates the concentration in 1971, "2" indicates the concentration in 1972, and "3" in 1973. Thus seasonal trends are readily apparent. Some sites have started up since January 1971 and others have been discontinued but available data has been graphed.


The State and National Ambient Air Quality Standards have been marked on each graph. Although the annual arithmetic average of 60 ug/m³ is no longer a National Secondary Standard, it remains a Connecticut Secondary Standard. The center graph of Maximum onehour concentrations locates the maximum three-hour running average NAAQS of 1300 ug/m³. This standard is seldom exceeded. If the maximum one-hour concentration indicated is less than the standard, then any three-hour running average of these one-hour concentrations in that month must also be under the three-hour standard, so the standard was not violated.¹

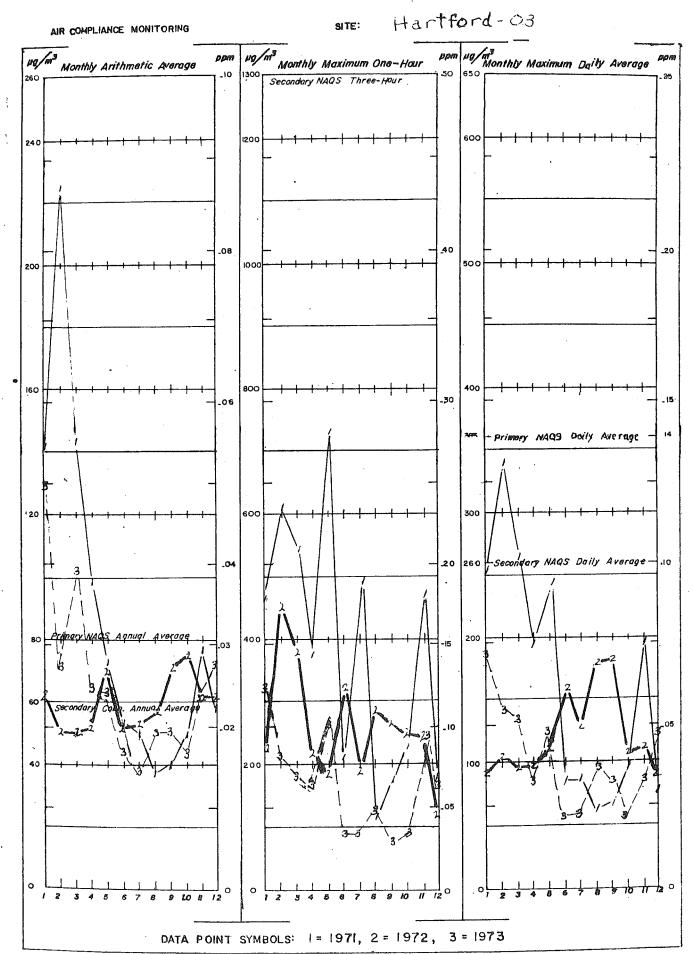

The units of concentration are marked on the vertical axis on both sides of each graph: in micrograms per cubic meter (ug/m^3) on the left, and in parts per million (ppm) on the right. The conversion factor for Sulfur Oxides is 2620 ug/m³ equals one ppm.

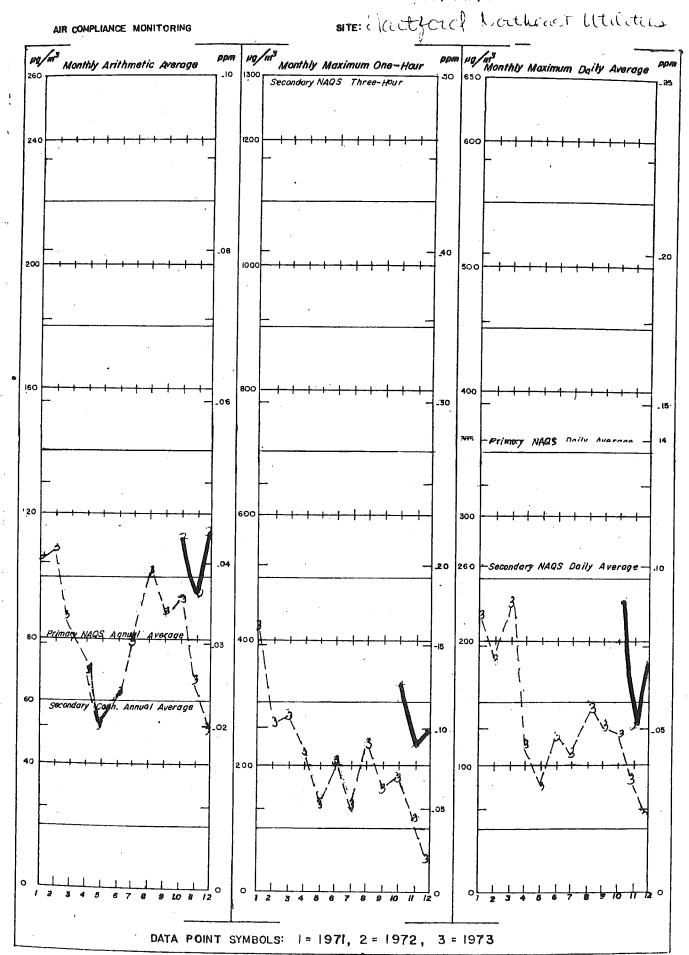
¹ Each running three-hour arithmetic average for a month is, by the definition of "maximum", less than or equal to the maximum running three-hour arithmetic average for the month, which is in turn less than or equal to the arithmetic average of the three highest hourly readings for the month, which is in turn less than or equal to the maximum one-hour reading for the month.

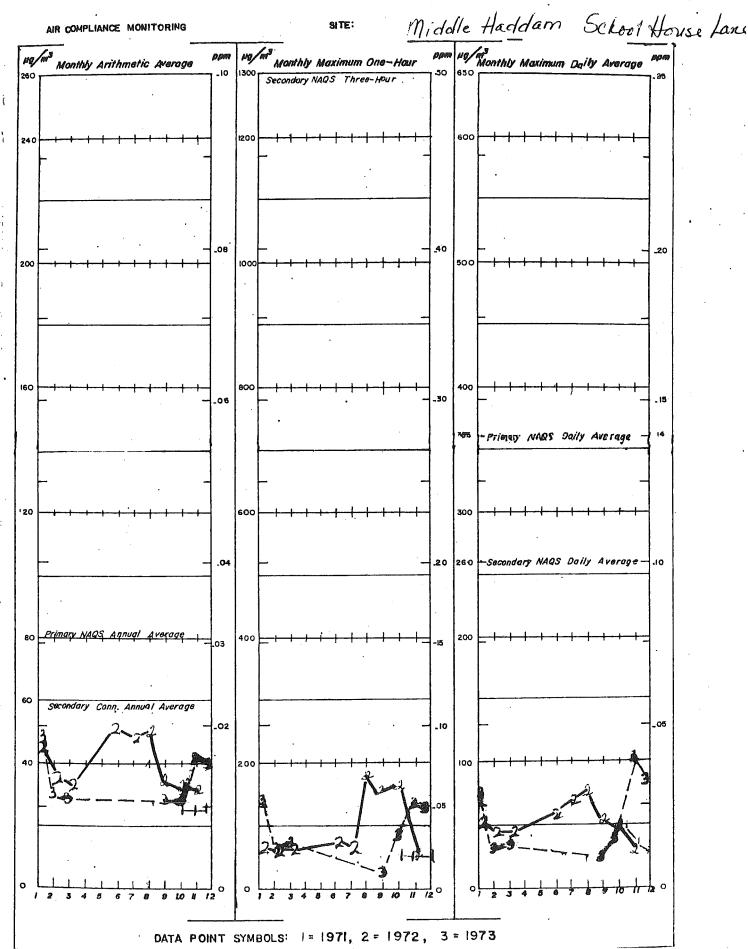


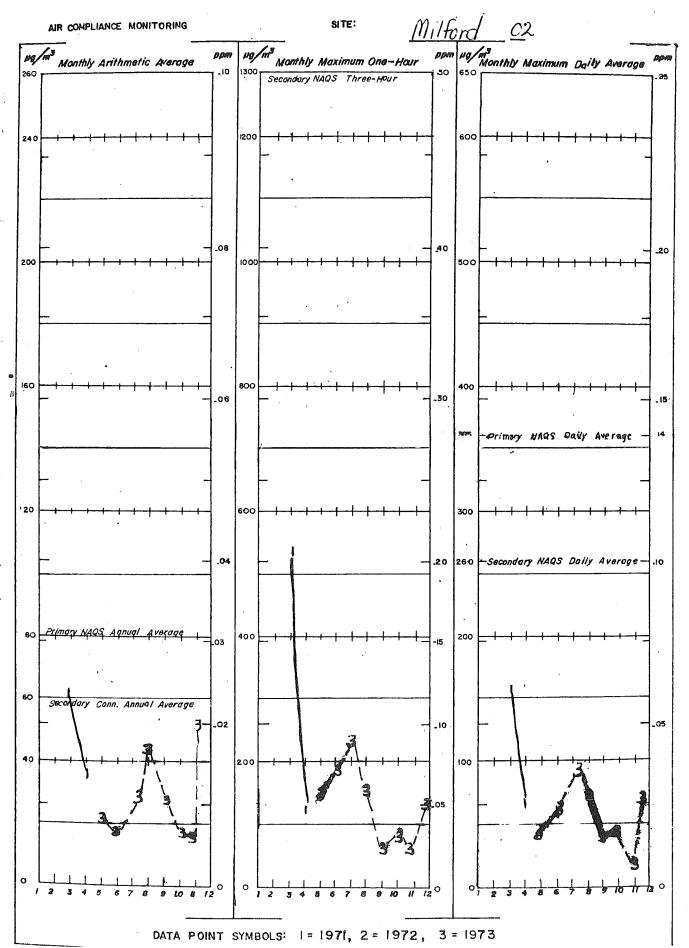

PAGE: 16

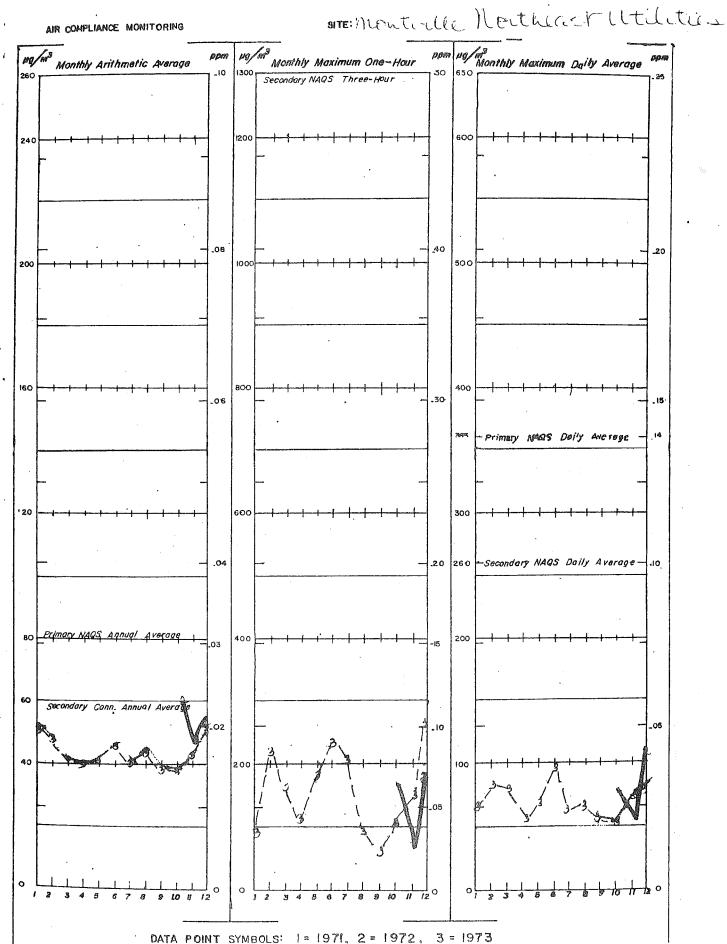


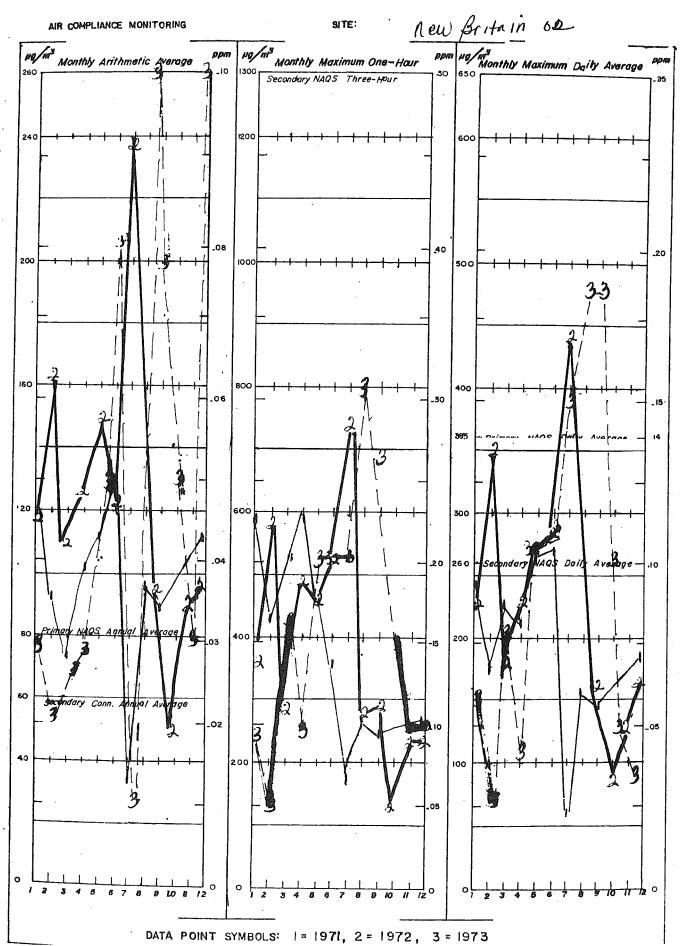


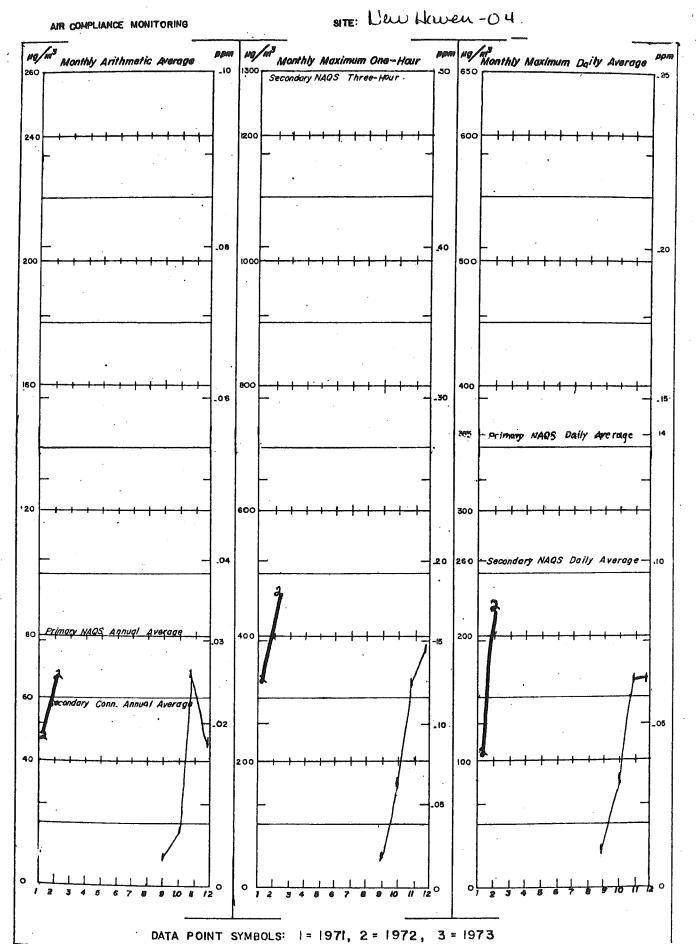

· PAGE: 19

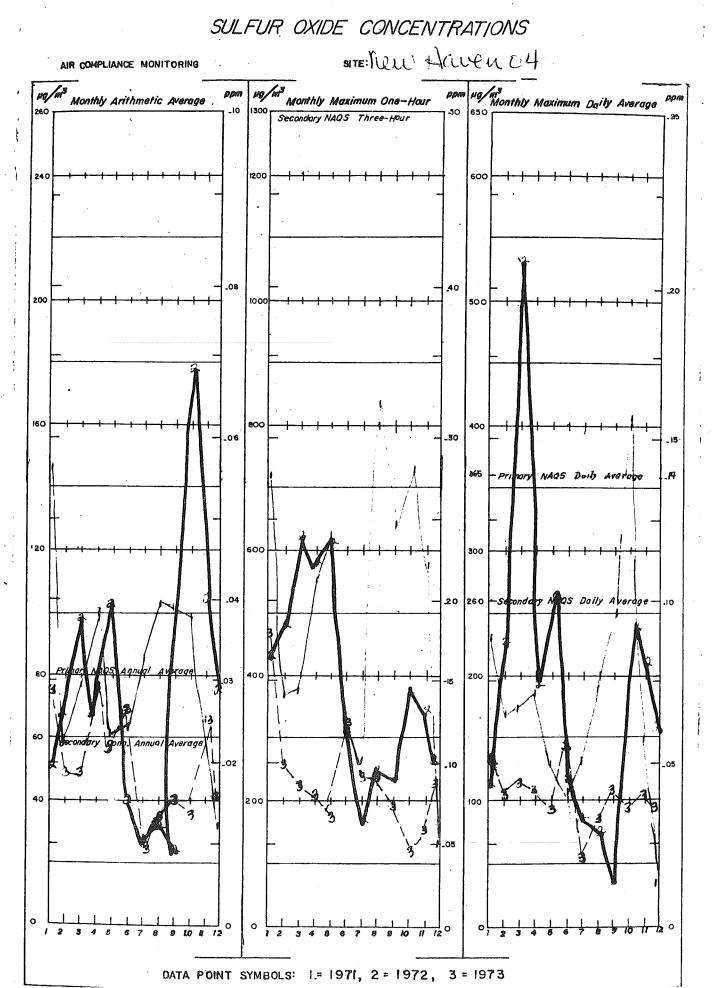


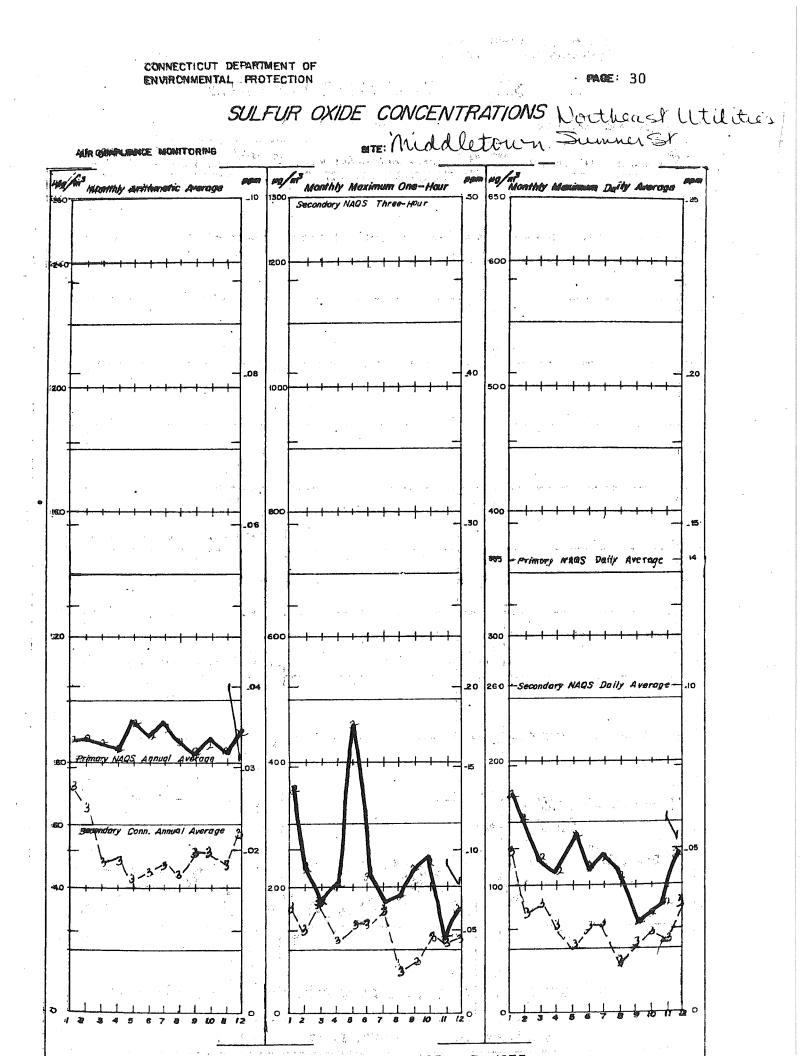


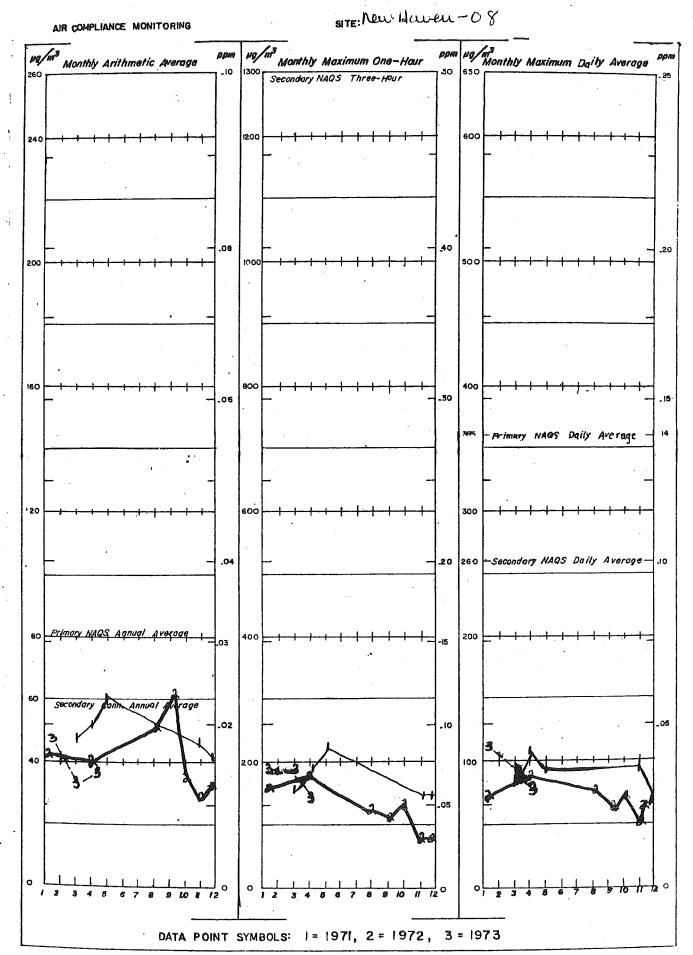


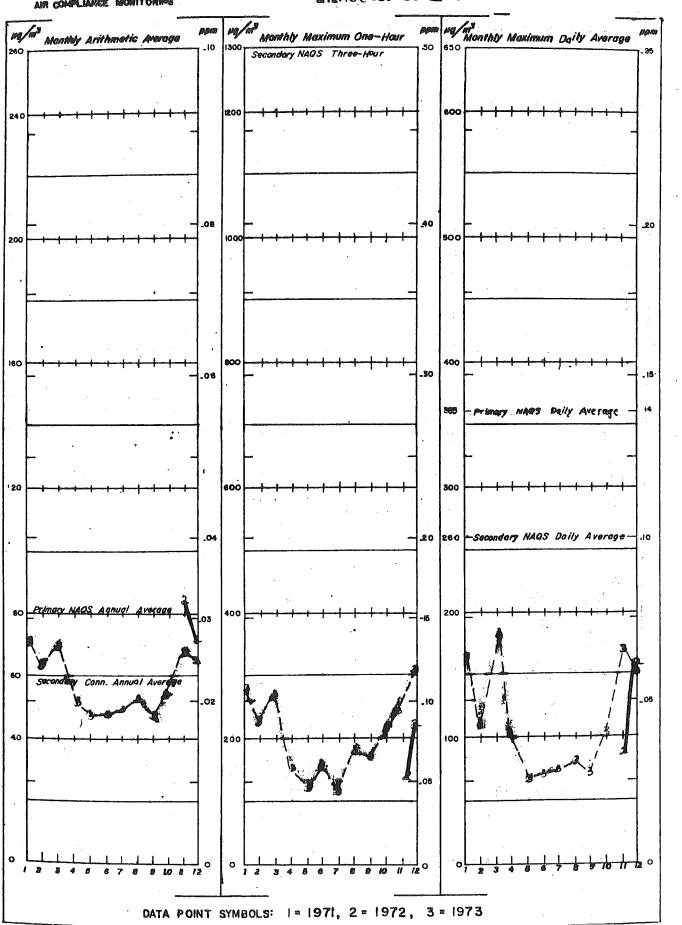



SULFUR OXIDE CONCENTRATIONS Northerest Litities





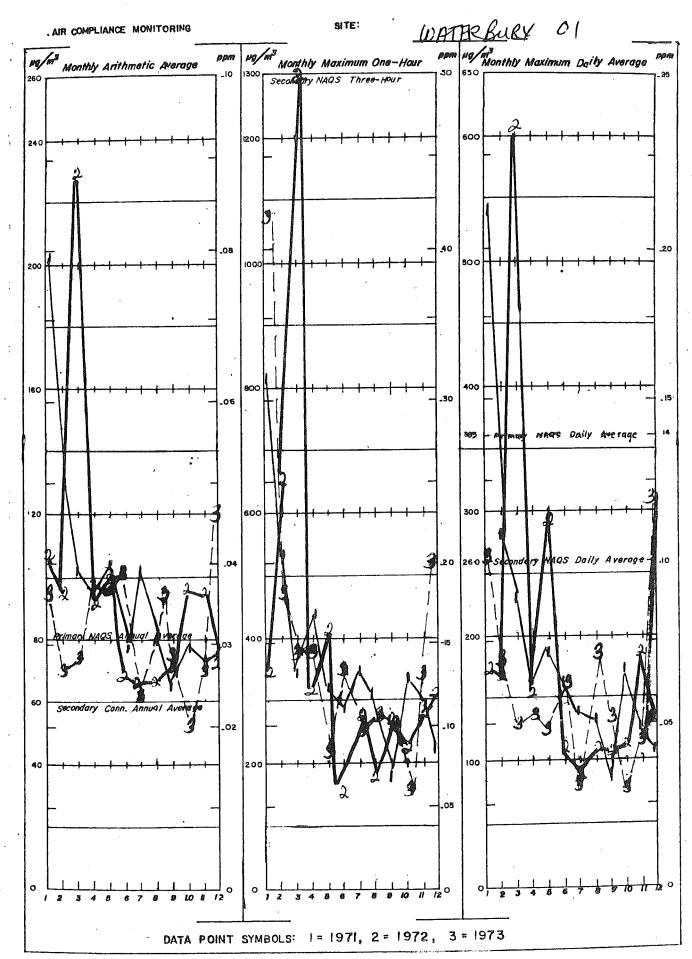


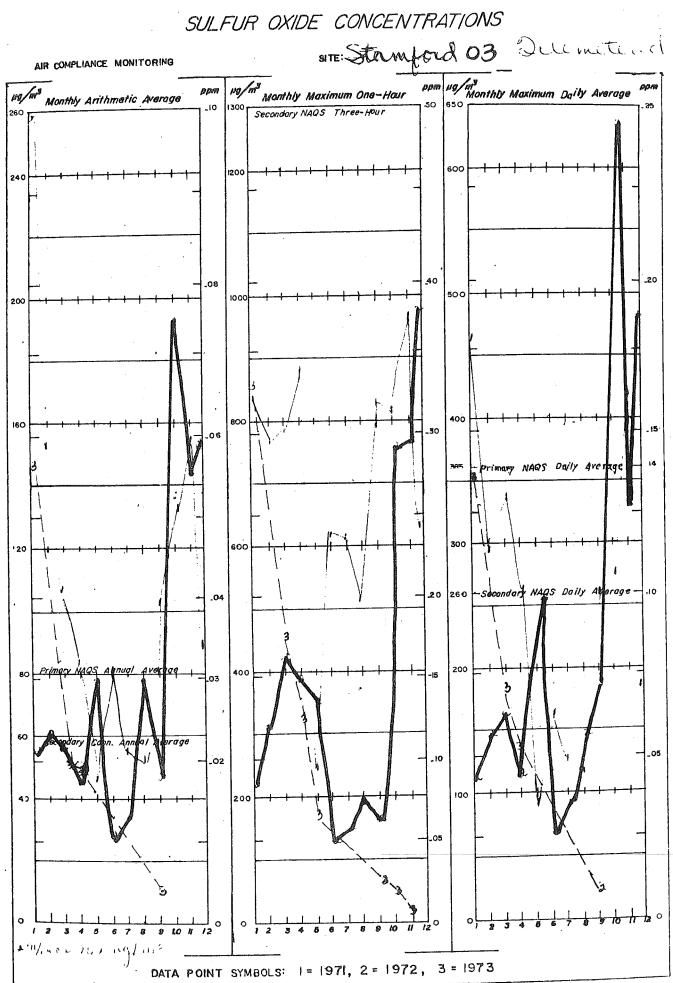


SULFUR OXIDE CONCENTRATIONS

AIR COMPLIANCE MONITORING

an: Nouvalk Northeast Utilities

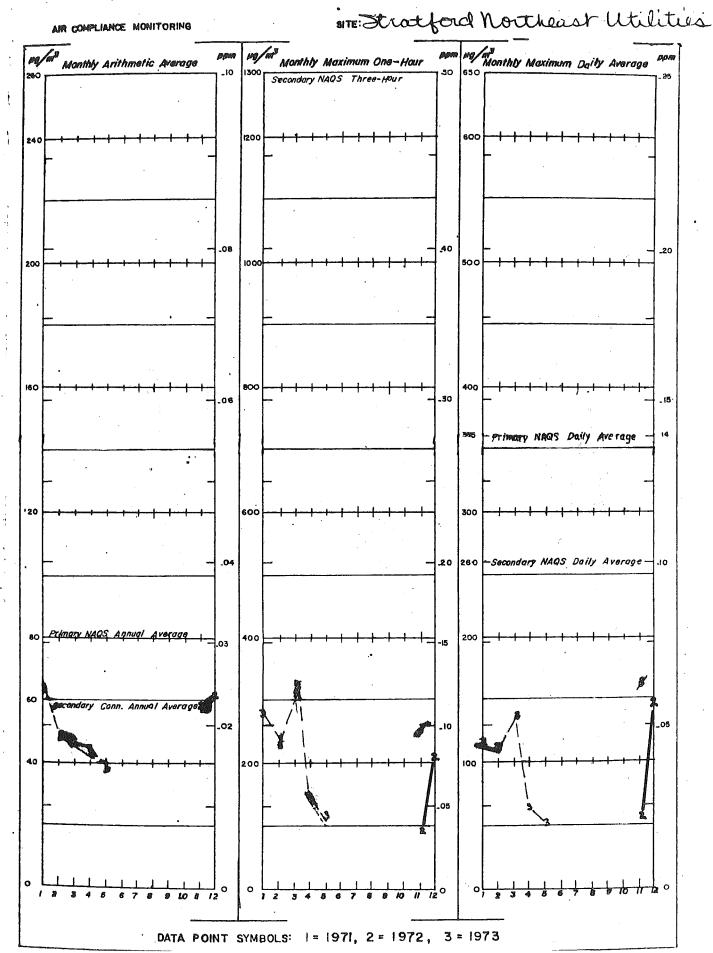

SULFUR OXIDE CONCENTRATIONS SITE: Nouvalle 05 AIR COMPLIANCE MONITORING pom ug m³ Monthly Maximum Dqity Average vg/m³ Monthly Maximum One-Hour *₽*₽*Г*₿ wa ma Monthly Arithmetic Average ppm .10 130 Secondary NAQS Three-Hour 260 600 1200 40 _20 .08 500 1000 200 400 800 160 -30 . 15 .06 - Primery RAQS Daily Average 14 365 300 600 20 20 260 Secondary NAQS Daily Average - 10 .04 200 Average 400 80 -15 .03 60 Ser 05 10 02 Τ 1 100 200 40 V 3 05 †₂ ° 0 120 o 11 1 2 2 8 6 7 8 9 ю 3 12 4 6 6 7 10 ø

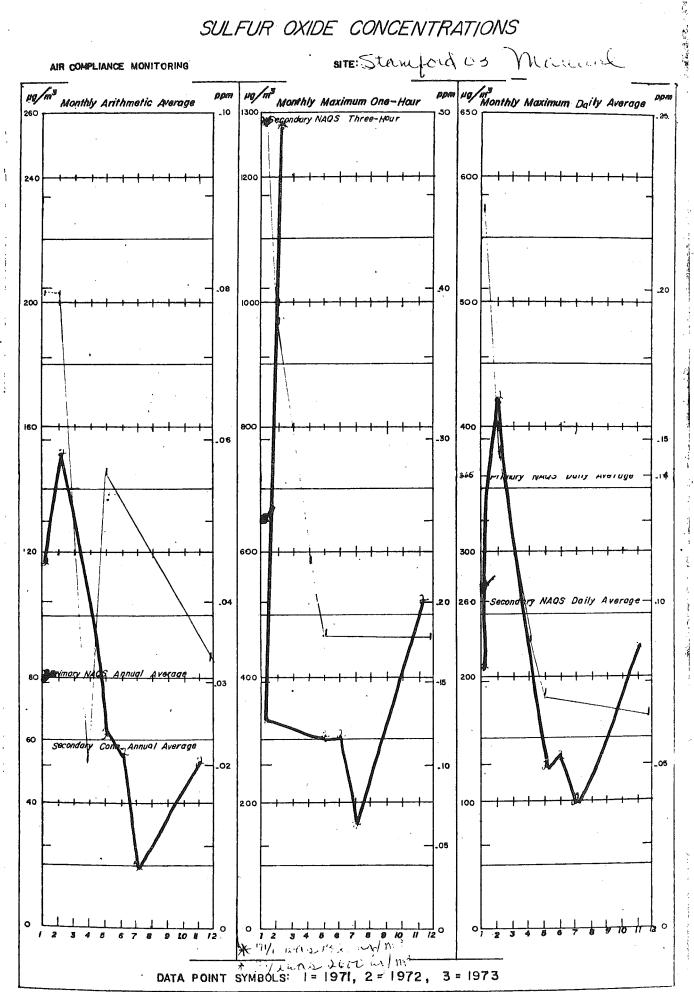

• PAGE: 33

DATA POINT SYMBOLS: 1 = 1971, 2 = 1972, 3 = 1973

PAGE: 34

SULFUR OXIDE CONCENTRATIONS




......

SULFUR OXIDE CONCENTRATIONS

CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION PAGE <u>38</u> AIR COMPLIANCE MONITORING

B. NITROGEN OXIDES

In early 1973, the Connecticut Department of Environmental Protection began an extensive oxides of nitrogen monitoring program. The equipment used is a "bubbler" mechanism which draws ambient air through a solution of NaOH for twenty-four hours. The sample is later analyzed in the laboratory (Christie method) to give a twenty-four hour average concentration. The samplers are operated every sixth day at thirty-five locations around the state. At only three locations - one each in Bridgeport, Norwalk, and Greenwich - were NO_X levels near or above the annual average standard of 100 ug/m³.

The data is summarized and an estimate of the mean and standard geometric deviation is made. Under the assumption of a lognormal probability distribution function the probability of exceeding the Connecticut 24-hour emergency episode standards was calculated. The Connecticut Nitrogen Oxide, Stage-2 Warning standard is 282 ug/m³, and the Stage-3 Alert standard is 565 ug/m³.

The probability calculation is further explained in Appendix A. On the following report, it is expressed as a percent.

EWV ROUMENTAL PROFECTION PAGE I AIR CUMPLIANCL MOM XIDES DISTRIBUTIONLUGNURMAL PERCENT UVER PERCENT UVER PERCENT UVER PERCENT VEAR SG				:	1												-			a ny mananana da manana manana matana a				-	·	•		
EWV IRUNMENTAL PAGE 1 AIR XIDES DISTRIBUTIONLOGNORMAL PERCENT J XIDES DISTRIBUTIONLOGNORMAL PERCENT J YEAR MEAN STD GEOM DEV Z82 73 103-9655 1.05400 1.55333 2000 73 50-5000 1.55333 2000 73 50-5000 1.55333 2000 73 54-6000 1.11047 2000 73 54-6000 1.1403 2000 73 54-6000 1.1403 2000 73 54-8181 1.6004 2000 73 54-800 1.41651 -700 73 54-8181 1.6000 2000 73 54-91 1.6000 2000 73 54-91 1.91707 2.722 73 54-91 1.6000 2.019 73 54-91 1.6000 2.0100 73 54-91 1.6000 </td <td>ICE MONITORING</td> <td>PERCENT UVER</td> <td>565 UG/M3</td> <td>• 0000</td> <td>0000 °</td> <td>0000</td> <td>• 0000</td> <td>• 0000</td> <td>6600°</td> <td>. 0000</td> <td> 0000 *</td> <td>0000 °</td> <td>0000°</td> <td>- 6694°</td> <td>0000</td> <td>.0000</td> <td>• 0000</td> <td>0000</td> <td>• 0000</td> <td>• 0000</td> <td>. 0000</td> <td>° 6199</td> <td>• 0000</td> <td><u>, 0000</u></td> <td>0000 *</td> <td>• 0000</td> <td>• 0000</td> <td>-</td>	ICE MONITORING	PERCENT UVER	565 UG/M3	• 0000	0000 °	0000	• 0000	• 0000	6600°	. 0000	0000 *	0000 °	0000°	- 6694°	0000	.0000	• 0000	0000	• 0000	• 0000	. 0000	° 6199	• 0000	<u>, 0000</u>	0000 *	• 0000	• 0000	-
ENVIRUNMENTAL PROTECTIUN PAGE XIDES DISTRIBUTIONLOGNORMAL YEAR MEAN STD YA 103.9655 STD YA 36.6842 STD YA 13.8877 STD YA 13.8877 STD YA 13.886071 STD YA 69.3725 STD YA SA.6666 STD YA SA.6666 STD YA SA.65666 STD YA SA.65666 STD YA SA.65666 STD YA SA.65666	AIR CUMPLIAN	PERCENT UVER	282 UG/M3	•1299	0000°	0000 *	• 0000	0000 •	- 1299	°01999	• 0000	• 0000	• 0000	5°4799	• 1899 -	。0699	° 0000	2000°_	0199	0000	• 0000	3 5 899	• 0000	• 0000	•1299	• 0000	• 0000	•
ENVIRUNMENTAL PROTECTIUN XIDES DISTRIBUTION YEAR MEAN 73 DISTRIBUTION 73 So.500 73 So.500 7	PAGE 1	(MAI_		1.3877	1.5333	1.1764	1.4047	1.1403	2.7500	1.6904	1.6388	1.1451	1 ° I 707	1.9375	1.6140	1。8000	1.2222	2.0000	1.7428	1。6666	1.5625	2°7727	1.0000	1.5405	1.6206	1.1886	1.4354	
ENVIRUNME XIDES YFAR YFAR 73 73 73 73 73 73 73 73 73 73 73 73 73	PROTECTI	1	MEAN	103,9655	50.5000	36.6842	43 . 2105	54°0000	13.3877	44.8181	35°2800	60° 6000	41°7500	98°6071	69°3725	43。8461	63°0571	15.0689	41°4313 °	22.222	50.3000	45°666	R3 . 0000	38 . 5833	66.8541	53.8750	61。9444	
DEPARTMENT DF ENV T NITRUGEN L WN SITE WN SITE WN SITE WN SITE PDRT 003 L 001 L 001 KTFORD 001 RD 001 RD 001 ICH 001 RTFORD 001 ICH 001 RD 001 ICH 001 ITAIN 002 VEN 001 VEN 001	/IRUNMENTAL		YEAR	73	73	73	73	73	13	-73	73	73	73	73	13	. 73	73	ł	73	73	73	73	73	73	73	, 73	73	
DEPARTHE T NITR PDRT L L L C GTON STER STER STER ICH ICH ICH ICH ICH ICH ICH ICH	NT OF ENV	UGEN AXID	SITE	003	100	002	003	900	100	001	100	001	002	100	400	100	002	100	001	100	003	100	002	006	100	002	100	
CINNNECTICUT PDL_LUTAN TO BRISTO	CONNECTICUT DEPARTMENT OF	PULLUTANT NITR	TOWN	BR I DGE PIJR T	BRISTOL	BRİSTOL	BRISTOL	BRISTOL	BURLINGTON	COLCHESTER	DANBURY	EASTHARTFORD	EASTHARTFORD	GRÉENWICH	GRÉENWICH	GROTON	HARTFORD	KENT	LITCHFIELD	MANSFIELD	MIDDLETOWN	MILFORD	MILFORD	MILFORD	NAUGATUCK	NEW BRITAIN	NEW HAVEN	

;																							
4 	AIR COMPLIANCE MONITURING NI OVER PERCENI UVER	565 UG/M3	•0199	• 000 •	0000 • .	•0199	1.7899	°0499	0000*	6600°	• 0000	0000									-	:	
	AIR COMPLIA PERCENT OVER	282 UG/M3	1.7899	•4699	•0000	• 4699	8.0799	1.3899	•2599	.1299	0000*	•0000											
·	PAGE 2 IRMAL	STU GEUM.DEV	1.5934	1.8148	1.3620	2.0857	2.5438	1.8500	1.8461	2•3125	1.4032	1.4500					• Construction of the second s		i'				
· ·	NIAL PRDIECTION PA DISTRIBUTION- LUGNURMAL	MEAN	106.6833	59.5098	58.9375	42.6818	79.9433	74。9245	51.1568	22.9607	61°7586	54.0000		•	7				-) } `		
×	IR(JNMENT ES DI	YEAK	73	73	73	73	73	73	73	73	73	73					and a subscription of the second second	1	;		•		
a i	T UF EWV GEN OXID	SITE	005	001	002	002	003	005	001	001	100	100									1	•	
	CONNECTICUT DEPARTMENT OF ENVIRONMENTAL POLLUTANT NITROGEN OXIDES DIST	TOWN	NORWALK	NORWICH	OLD SAYBRUOK	PUTNAM	STAMFORD	STRATFORD	I DRR I NGT DN	VOLUNTOWN	WATERBURY	MINDHAM								:	•		

CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION AIR COMPLIANCE MONITORING PAGE 41

C. PARTICULATE MATTER

The suspended particulate network is the oldest and most stable of the pollutant measuring networks operated by the Connecticut DEP and its predecessor, the Environmental Health Services Division of the Department of Health. Current locations of the sampling units are listed in Part III. Annual means are reported for 66 sites in 1973, 53 sites in 1972, and 55 sites in 1971. Of the 53 sites reported in both 1972 and 1973, 43 sites showed improvement.

<u>Sampling Method</u>. Suspended particulate matter is collected by drawing ambient air through an 8" by 10" glass fiber filter by means of a high volume vacuum motor. The motor is operated for a 24-hour period, the total volume of air drawn through the filter is calculated, and the filter weighed in the laboratory. The increase in filter weight divided by the total volume of air equals the average ambient concentration of particulate matter in the area.

The instruments are operated every sixth day from midnight to midnight, the filter is removed the next day and either carried or mailed to the laboratory for analysis.

<u>Particulate Report</u>. The computer report that follows is further explained in Appendix A. The 24-hour National Ambient Air Quality Standards are for the Secondary, 150 µg/m³, and for Primary, 260 µg/m³. The units for the mean is also micrograms per cubic meter. all and the second s Second
A bootstand and a strand A strand and a strand A bootstand and a strand and a str

PDLUTIMT - AATTGU, ATS ITSTREMUTION - LUBUGAAL DEACENT UVEX DEACENT	DUNNED INCL UNDAKIEDSI UT DEV KUNSTALAT	I		. PROTECTION	PAGE I		CUPPLLANCE MUMITORING
4 SITE YEA HEAL STJ GEN UEV 150 (16/A3) 260 901 71 151-81431 1,3805 50,0000 4,4599 54,4499 54,4599 54,4499 54,4499 54,4499 54,4499 54,4499 54,4499 54,4499 54,4499 54,4499 54,4499 54,4499 54,4499 54,4499 54,4499 54,4499 54,4499 51,5499 54,4499 54,5499 54,4499 54,5499 54,4499 54,5499 54,4499 54,5499		TICULATES		[4	און 1 <u>-</u>	PERCENT UVER	PERCENT UVER
0/1 1/1 151.4141 1.3805 50.0000 4.4599 0/3 72 89.4610 1.3443 34.4599 5 0/3 72 89.4610 1.3443 34.4599 5 0/3 72 63.4546 1.3443 34.4599 5 0/1 73 62.4646 1.5412 1.5493 34.4599 0/1 72 63.4590 1.5413 3.4599 21 0/1 72 63.4500 1.5413 1.5494 21 0/1 72 63.4500 1.5016 2.4599 21 0/1 73 63.4500 1.5017 2.5499 21 0/1 73 54.465 1.5016 2.6499 21 0/1 73 63.4500 1.5016 2.6499 21 0/1 73 63.4600 1.5016 2.6499 21 0/1 73 54.4613 1.5016 2.6499 21 0/1 73	TOWN	SITE	YFA≺			150 UG/M3	260 UG/M3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ANSUMIA	100	71	51.818	•	50.0000	4.4599
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ANSNNIA	003	71	23.	•	34-4549	5 A700
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ANSDNIA	003		89.		1	٦ ,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		003		66 • 2982	•	8.0799	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BERLIN	001		٠	• 583	49	• 0000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BR INGEPORT	100		. 62.6666	1.5471	7.7644	0400
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BATDGEPORT	100		63	1.4655	1.3899	
RT 002 72 121.700 2.5538 42.0699 21 001 71 55.4670 1.7307 5.4799 2.1899 001 71 55.4670 1.3342 1.3342 0.299 001 71 55.4670 1.5342 1.6891 3.1899 002 71 89.0000 1.0000 0.0000 0.0000 002 71 89.0000 1.6981 3.18421 1.6981 3.1899 $002 73 42.2105 1.6500 1.6199 2.8699 003 73 42.2105 1.6500 1.0699 2.2699 004 73 56.4444 1.6498 2.2699 3.0699 004 72 50.0000 1.4390 2.1299 2.2699 3.0799 001 73 42.2105 1.6498 2.2699 3.0699 3.0699 001 73 42.9100 1.64930 2.1299$	ЗК 106ЕРОК I	100				•8199	•0199
$(11 \ 0.02 \ 73 \ 62.4474 \ 1.7307 \ 5.4799$ $(.73333 \ 5.4799 \ 1.899 \ 1.8999$ $(011 \ 72 \ 56.5600 \ 1.3355 \ 56.5600 \ 1.3355 \ 1.34639 \ 1.3462 \ 1.34699$ $(.733 \ 59.5000 \ 1.3462 \ 1.4891 \ 3.5899 \ 3.58999$ $(012 \ 71 \ 72 \ 56.5600 \ 1.2000 \ 0.02 \ 73 \ 31.8621 \ 1.9583 \ 1.9583 \ 1.2559 \ 1.9583 \ 1.2559 \ 1.25599 \ 1.25599 \ 1.25599 \ 1.25599 \ 1.25599 \ 1.25599 \ 1.25599 \ 1.25599 \ 1.4340 \ 1.4340 \ 1.4340 \ 1.4340 \ 1.4340 \ 1.4390 \ 1.4390 \ 1.1299 \ 1.2999 \ 1.2999 \ 1.2999 \ 1.4340 \ 1.4340 \ 1.4340 \ 1.4340 \ 1.4390 \ 1.4390 \ 1.4390 \ 1.4390 \ 1.4390 \ 1.4390 \ 1.4390 \ 1.4390 \ 1.4390 \ 1.4491 \ 1.5559 \ 1.25699 \ 1.2999 \ 1.2$	BRIDGEPORT	002		21	2.5538	~	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BRIDGEPORT	002			1.7307	ι. Δ	4
001 72 56,8035 1.3962 1.3962 1.1995 002 71 89,0000 1.0000 3.5899 002 73 94,0000 1.0000 3.5899 002 73 94,0000 1.0528 2.5699 003 73 42.2105 1.66458 2.2699 004 73 56.4444 1.6458 2.2699 003 73 42.2105 1.6458 2.2699 0103 72 50.0000 1.4390 2.2699 011 73 34.9259 2.1481 2.6699 011 73 34.9259 2.1481 2.6699 011 73 34.9259 2.1481 2.6699 011 73 34.9259 2.1481 2.6699 011 73 34.9259 2.1481 2.6699 011 73 51.000 1.65260 1.56999 011 73 62.5909 1.66250 1.56999 011 73 62.5000 1.65260 1.66299 011 <td< td=""><td>BRISTOL</td><td>100</td><td></td><td>56.5600</td><td>1 - 3333</td><td>000</td><td></td></td<>	BRISTOL	100		56.5600	1 - 3333	000	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BRISTOL	100	~	56.8035	1.3962	• 1899	0000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		100		0000-65	1.6981		.2599-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BRISTM	005			1.0000	0000-	0000-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BRISTOL	200		94,0000	1.2528	2.8699	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BRISTOL	005			1.9583	1.0699	• 0666
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BRISTOL	003			1.6500	-6199	• 0166 ·····
109 72 50.0000 1.4340 .1299 10N 001 73 34.9259 2.1481 2.8699 001 71 89.0000 1.4340 2.8699 001 72 91.0000 2.2363 27.4299 9 001 72 91.0000 1.4431 8.0799 9 001 72 91.0000 2.2363 27.4299 9 001 72 91.0000 1.4431 8.0799 9 001 72 91.5909 1.6500 1.6569 1 001 72 90.5909 1.6520 1.5629 1.5669 1 001 72 51.0000 1.8659 1.65699 1 1.6569 1 001 73 62.3000 1.8363 8.0799 1 1.65699 1 001 73 62.5000 1.8365 1.65699 1.65699 1 1.65699 1 002 72 51.0000 1.864953 1.64959 .6199 1 1.69699 1	BRISTOL	004		Ŷ			• 0,999
Inv 001 73 34.9259 2.1481 2.8699 9 001 71 89.0000 2.2363 27.4299 9 9 001 72 91.0000 1.4431 8.0799 8.0799 9 001 72 91.0000 2.2363 27.4299 9 001 72 91.0000 1.4431 8.0799 9 001 71 90.5909 1.65925 8.0799 3 001 72 90.5909 1.65925 13.5699 1 001 72 88.3157 1.65925 13.5699 1 001 72 88.3157 1.65925 13.5699 1 1 001 73 62.3000 1.68363 8.0799 1 1 001 73 62.3000 1.65925 13.56999 8.07799 1 001 73 62.3663 1.6600 1.65926 1.6000 0.0000 1.65926 1.6600 <td< td=""><td>BR I STOL</td><td></td><td></td><td></td><td></td><td>•1299</td><td></td></td<>	BR I STOL					•1299	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BURLINGTON	100		٠			•4699
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ΟΔΝΒURΥ	100	 4	σ	2.2363	27.4299	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U ANBURY	100	\sim		1.4431	6670-8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DANRIJRY	100	73	\sim	2.0943		3.5899
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ENFIELD	100	71	٠	1.6250	15.8699	
0.01 72 51.000 1.8363 8.0799 0.02 72 51.000 1.160 0000 0.04 72 53.5000 3.1153 18.4099 0.04 72 53.5000 1.1600 $.0000$ 0.04 72 53.5000 1.5833 18.4099 0.04 72 53.5000 1.5833 $.6199$ 0.02 72 46.5000 1.5833 18.4099 0.02 71 86.4528 1.6969 15.8699 0.02 72 47.8269 1.3809 0.0000 0.0000	HNTITU) BMRITU)		72	•	1.5925	13.5699	1.0699
FLD 002 72 51.0000 1.1600 .0000 ELD 004 72 53.5000 3.1153 18.4099 RLD 004 72 53.5000 3.1153 18.4099 RLD 004 72 53.5000 1.5833 .6199 FIELD 002 71 86.4528 1.6969 .6199 FIELD 002 71 86.4528 1.5833 .6199 FIELD 002 71 86.4528 1.6969 .6199 FIELD 002 71 86.4528 1.69699 .6199 FIELD 002 72 47.8269 1.69699 .0199 FIELD 002 73 45.1111 1.1860 .0000	ang ler D	TOO	(3	•	1.8363	8 . 0799	•8199
ELD 004 72 53.5000 3.1153 18.4099 8 ELD 004 73 46.5000 1.5833 18.4099 8 FIELD 002 71 86.4528 1.6969 1.58699 15.8699 1 FIELD 002 72 47.8269 1.3809 0.0000 15.8699 1 FIELD 002 73 45.1111 1.1860 0.0000	<u></u>	002	72	0000.		• 0000	• 0000
AIRFIELU 002 71 86.4528 1.6969 15.8699 1 AIRFIELD 002 72 47.8269 1.3809 .0199 AIRFIELD 002 73 45.1111 1.1860 .0000	ENFIELD 01314NB	004 004	NN	3.5000 6.5000	3.1153 1.5833	18.4099 .6199	6600°
AIRFIELD 002 73 45.1111 1.1860 .0000	4 J	002 002	72 72	- - -	1.6969 1.3809	15.8699 0140	1.7899
	4	200	73	LO	1.1860	0000	• 0000

CONNECTIOUT DEPARTMENT	Т	EalVI RONMENT	AL PROTECTION	PAGE Z	AIR CUMPLI	CUMPLIANCE MUNITURING
אסיביודאיוד אמא	PARTICULATES	ICI	STRIBUTION LUGNORMAL	ikná <u>r</u>	PERCENT UVER	PERCENT UVER
TINWA	SITE	YEAR	MEAN	STD GEDA DEV	150 UG/M3	260 UG7M3
GREENWICH	001	72	65 4000	1、ジ3 #4	2-8699	• 6699
GREENWICH	001	73	50 9090	1、65 11	1-3899	• 0499
GREENWICH	002	71	65.2692	1.5666	2.8699	.0444
GREENWICH	002	72	70.0500	1.66949	8.0799	.6199
GREENWICH	002	73	64.9824	1.6727	5.4799	.3499
GREENWICH	003	71	61.6181	1.4067	•4699	• 0000
GREENWICH	003	72	62.0165	1.4098	•4699	• 0000
GREENWICH	003	73	56.7758	1.7500	4•4599	• • 0000
G⊀EEN⊌ICH	004	73	49.46RO	1.6904	1.7899	6690 •
GREENWICH	700	71	50.2857	1。3265	•0000	• 0000
GREENWICH	700	72	46.1833	1。6585	1•0699	• 0299
GREENWICH	700	73	40.6250	1。7575	1•0699	• 0499
GREENWICH	008	71	81.4400	1.6231	9 • 6799	8199
GREENWICH	008	72	77.4210	1.4189	2 • 8699	9199
GREENWICH	008	73	70.5932	1.5081	3 • 5899	9690
GRATAN	001	71	, 95.9622	1.7058	21.1899	2 • 8699
GRATAN	001	72	53.2142	1.8222	4.4599	• 4699
GRATAN	001	73	38.8888	1.7666	.8199	• 0499
НАКТЕПК!) НАКТЕПКІ)	002	- 71 73	86.0000 56.4000	1.0000 1.5000	•0000	6600 •
ΗΔℝΤΕΠℝIJ ΗΔℝΤΕΠℝIJ	003	71 73	89.9500 86.8787	1.3647 1.3255	5.4799 2.8699	• 0299
HARTFORD HARTFORD HARTFORD	004 004 004	71 72 73	127.3333 56.4390 55.6734	1.7573 1.6458 1.4444	38.2099 2.2699 3499	0000° 6660°
ΗΔRΤΕΛΚΙ)	005	71	140.0000	2•4725	46.0199	24.1999
ΗΔRΤΕΛRI)	005	73	55.0000	1•0000	.0000	.0000
HARTFORD	001	73	61.0000	1.0000	.0000	•0000
KENT			46.0357	3.0000	13.5699	5.4799
AANCHESTER	100	71	90.3600	1•4431	8•0799	•1899
AANCHESTER	100	73	50.5600	1•8536	3•5899	•3499
MANSFIELD MANSFIELD MANSFIELD	100 100	71 72 73	49.1557 56.7407 23.4000	1.2.5.5 2.5.5.5 1.2.6.0 3.6.0 3.	.6199 13.5494 .0000	•000. •0000.

1

.

•

CONNECTION DEPARTERTIN PARTECTIN PAGE S POLLUTANT- PARTICULATES DISTRIAUTIN-LINGORMAL PARA PAGE S
IFFARTMENT UF ENVIRTINGENTAL PROTECTION NT PARTICULATES DISTRIAUTION NW SFFE-VFAR DISTRIAUTION NM DO1 72 DE9.555 EN DO2 71 PL0 EN DO3 71 DI EN DO3 72 DI.816 EN DO3 73 DI DI EN DO3 72 DI DI EN DO3 73 DI DI EN
I)FPARTMENT I)F ENVIRTINME NT PARTICULATES NT PARTICULATES FN 517E FN 501 FN 501 FN 502 FN 502 FN 503 FN 505 FN 505 FN 505 FN 503 FTDMN 503 FTDMN<
I)EPARTMENT I)F NT PARTIGULAT NH- STTE FN STTE STTE STTE STE STE STE <t< td=""></t<>

	POLLUTANT PART	PART I CUL ATË S	013	STRIBUTION	ł	LUGNORMAL	PERCENT UVER	PERCENT UVER	
	TDWN MDRRIS	SITE -001 -	YEAR - 72	. !	MEAN 39-7692	STU GEOM DEV 	150 UG/M3	260 UG/M3	
	MORRIS	100	7,3	1	6.7	2.2142	3.5899	. 6166	
	NAUGATUCK	100			86	0	9.6799	• 1899	
	NAUGALUCK	100	72		÷.	1.4868	œ.	• 25 99 -	
		T C C .			• 7 V	C) C9 • T	11.5099	1.0699	
	RITA	001	71		2 . 1	1.3902	3.5899	.0199	
	EW BRITAI	100	72			1.44400	5。4799	• • 0666 •	
		100 .	5		C•2	1.6792	8•0799	• 61 99	
	ΙŢΔ	002		Ч	03.2	1.3535	11.5099	0000	
	NEW BRITAIN	-0.02			6 • 3-1	<u></u>	<u>15=8699</u>		
	BRITA	002			8.1	1.5000	9•6799	.3499	
	BRITA	003	71		8 3	1 - 6666	21,1800	0070 6	
	NEW BRITAIN	003	72		81.3500	1.8656	5161077 15_R699 -	2.0077 2.8600	
	BRITA	003			6.7	1.7571	15.8699	2.8699	
and a second state of the	EW BRITAI	004		reads the second second	52.5090				
•	BRIT	004			ια	0027 °I 7817 1	2 4 7 0 • 1	0000*	
	EW BRITAI	004	73			1-7551	4.4599	.4699	
			•			:			
	NEW BRITAIN	005	71			1.3725	• 0699	• 0000	•
	EW BRITA	500	72	-	⇒				
						0 T 0 0 • T	T•/879	• 0666	
	NEW HAVEN	100	71		~	1.4444	6 • 6799	•1299	
•		001		1	4	1.3582	+8199	•0000	
		001			\$• ₹	1.3157	• 0299	• 0000	
۰.	NEW HAVEN	002		•	4.58	1.4810	6•6799	•1899	
:		005			92.2166				
	:	1			• •	CCICOT	6614°C	6662.	•
	NEW HAVEN	003	71				•3499	• 0000	
	і 14 Ші				8.33		•4699	0000	
		003	73		46.9500	1.4772	•1299	• 0000	
	NEW HAVEN	005	71		4.0	1.4328	2.2699	• 0199	
		400			∝. •	1 • 4642-	1.0699	6600*	•
		c(i)	(3	!	65 . 0000	1.6034	3.5899	• 1899	
	NEW HAVEN	006	72		56.5000	1.3653	6660 °	• 0000	
	NEW HAVEN	100	71		57.0000	1.0000	• 0000	• 0000	
	NEW HAVEN	009	71		64.0166	1.3166	0000		
					•		, , , , , , , , , , , , , , , , , , ,		

ANCE MONITORING	PERCENT-OVER		•0699	• 000 •	•1299	.0000	0000	2.2699		0000	• 6199	• 0000	•0000		6696°	\$699			8802°	0 8400	18.4099	4699	15.8609	4.4599	3.5899	2599 0 4700		8.0799	2.2699	2.8699	.0299	1.7899
AIR CUMPLIANCE	PERCENT OVER	<u>150-U6/м</u> 3 1•3899	2.8699	I0699	2.8699	.8199	-1-7899	11.5099	2590	2.8699	6°6799	• 0000	0000•	6.6700	4,4599	6629*6	24 1000	3 5800	J.5899	21-1899	50.0000	15+8699	50,0000	38.2099	13.5699	30,8499		38 . 2099	11.5099	11.5099		13.5699
۰C		6E0M-ĐEV 1.6041	1.5438	1.4821	T•0000	1.3200	I.4307	l。9074	1 . 3043	-1.5079	1.7547	1.2631	1.3571	2.0000	1 . 8444	1-5540	1-4211		1.8292	1.6516	1.8015	1.3980	1.7481	1.5000	2.1730	2.1250		1.6857	1.9655	2.0588	1•6041 1.6041	
INTAL PROTECTION PAGE	DISTRIBUTION LOGNORMAL	52•6666	64.7333	58.1894	-	76.6666	70.0166	69.8500		67.5000	65.1132	60.1333	44.4186	54.6600	52 * 2500		114.3269	4.	51.2600	<u>98+409</u>	2	107+4705	46 <mark>.1</mark> 7	132.0833	65.1521 05.0521	1.21	. ۲	1.06	.72	64.9375	52.2000 58.1538	82.7368
ENVIRONMENTAL		YEAR 73	71	7 4 4		71	- 21	5	11		73	73	11	72		-12		72		11	72		12	72	71 71		12	12	73		73	11
PARTMENT UF EN	PARTICULATES	009	100	100		005	005	C N N	001		001	K 002	001	003		001		002		001	001		003	003	004 004	004		010	010	100	100	0.02
CHNNECLICUT DEPART		NEW HAVEN	NORWALK NDRWALK	NORWALK		NORWALK			NORWICH		NUKWICH	DLD SAYBROOK	DRANGE	URANGE	URANGE	PUTNAM	PUTNAM	PUTNAM	- PUTNAM	STAMFORD.	STAMFORD		STAMFORD	SIAMFURD	STAMFORD	STAMFORD	STAMFORD	STAMFORD	STAMFORD	STRATFORD	STRATFORD	STRATFORD

	PARTICULATES	DIS	DISTRIBUTION LOGNO	IGNORMA	DERCENT OVED	DEDCENT OVED
			í i			
	SI IE 005	YEAR 	. MEAN 	STD GEUM DEV	150 UG/M3	260 UG/M3
	100	72			0000 •	• 0000
	6003 6003	77 77	86.7551 73 5333	1.6883 1.6883	15.8699	1.7899
	003			1•7368	1.3899	•1299 •0699
TORRINGTON	001	71	105.1578	1.6875	24.1999	4.4599
TORRINGTON	100	73		1.5217 2.0697	5 •4799 8•0799	• <u>1899</u> 1•3899
TORRINGTON	003	72	86.0000	1.0000	•0000	• 0000
	001	71 72	45•0000 31•8571	1.4117	• 0199	0000*
	100	73	30,7458	2.04.16	1,3899	.1299
WALLINGEORD	100	17	125.000	1.0000	0000	•••0000
	100		0000 • / 6	I = 0000	• 0000	• 0000
	001	71	95。6140 88。6833	1.5730 1.4705	15.48699 8.0799	1.3899 2500
	001	73	85•7307		8.0799	°2599
	002	71	70.2857	1.7118	8.0799	.8199
1	005	11	77.5000	I • 3898	2.2699	6600°
	600	71	49.6428	1.4545	.1299	0000*
WINCHESTER WINCHESTER	100	71	- 62•6034 58 2708	1.4561	1.0699	•0009
WINCHESTER	100	73	46.6428		3.5899	.3499
	001	73	49.1600	1.2500	0000	• 0000
	. · ·				· · · · · · · · · · · · · · · · · · ·	
1	-		and a sublimity of the state of			
			•			

CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION AIR COMPLIANCE MONITORING

PAGE 48

D. OZONE

Ozone (O3), a major constituent of smog, has concentrations that are proportional to the intensity of incoming solar radiation. The concentrations are therefore higher in the summer with more direct sunlight, and higher during hours of the day closer to noon.

During the winter, the .08 ppm NAAQS standard is rarely approached; consequently some of the ozone monitoring instruments are not operated then. Generally, if the standard is exceeded on a given day, it is exceeded in early afternoon. On a monthly basis, the percent of days with one or more hourly averages over .08 ppm has been reported because it will give larger percents and a more accurate picture than the percent of one-hour averages over .08ppm.

The number of one-hour average Ozone concentrations in each of four ranges is tabulated. The endpoints of the ranges are based on the Ambient Air Quality Standards of .08 ppm for the NAAQS, Secondary and Primary Standard, of .10 ppm for the Connecticut Stage-2 Alert, and of .40 ppm for the Connecticut Stage-3 Warning. The .60 ppm Stage-4 Warning Standard was not exceeded in the data from 1971 to 1973.

In past years the neutral potassium iodide method for measurement of total oxidants was used to evaluate photochemical oxidant levels. The technique involves the drawing of ambient air through a solution of potassium iodide, the reaction of any oxidants in the air to form various potassium compounds, the concurrent releasing of free iodine. The free iodine causes current flow at a rate proportional to the amount of reaction of oxidants with potassium atoms.

CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION PAGE <u>49</u> AIR COMPLIANCE MONITORING

It has become apparent that this method is subject to interference from both reducing agents and oxidizing agents and the data recorded is questionable. In 1972, therefore, the Connecticut DEP began using instruments employing the chemiluminescent method. First in Hartford in 1972, and then in several other suspected high oxidant regions around the state in 1973, Bendix chemiluminescent monitors were employed. These instruments react specifically to ozone. Ambient air is passed in the dark across the surface of a chemiluminescent or fluorescent substance such as Rhodamine B and light is emitted at an intensity proportional to ozone concentration. Numerous tests have shown this method to be a very accurate measure of oxidant levels. CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION Air Compliance - Monitoring Section

OZONE DATA

YEAR 1973

lays with ne hour ng over ry std. opm)
5%
5%
0%
0%
8%

Number of 1-hour readings in each range

CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION Air Compliance - Monitoring Section SITE Greenwich 004 OZONE DATA YEAR 1973 .

	•	Nur	mber of 1-hour	readings in	each range	! 	
IONTH	# READINGS RECORDED	.00 to .079 PPM	.08 to .099 PPM	.10 to .399 PPM	.40 PPM or above	Max. 1-hour	% of days with any one hour reading over primary std.
						· ·	(.08 ppm)
01	0						
02	0			·			
03	, O		-				
04	0						
05	0	· ·					
06	0	•	•				
07	516	389	· 37	90		.250	81.8%
09	744	617	35	92		.240	57 , 7%
09	708	663	25	20 .		.180	20.0%
10	6 46	636	10 ·	0		.090	17.8%
11	490	490 [.]	0	0		.030	0%
12	563		0	··· 0		.070	0%
The Year	3667	3358 91.57%	107 2.91%	202 5.51%		.250	37.0%

CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION Air Compliance - Monitoring Section OZONE DATA

SITE Hartford 002

YEAR _1973

		Nun	ner of 1-hour	readings in	each range		•
Ю NTH	# READINGS RECORDED	.00 to .079 PPM	.08 to .099 PPM	.10 to .399 PPM	.40 PPM or above	Max. 1-hour	% of days with any one hour reading over primary std. (.08 ppm)
•	·						
01	720	720				.04	0%
02	672	672		·		.02	0%
03	732	732				.06	0%
04	0						
۵5	732	732				.06	0%
06	, 720	716	,3 •	1		.22	6.6%
۵7	744	739 •	3	2		.12	9.6%
Ô8	548	633	15			12	22.5%
09	624	622	2			.09	6.6% ,
10	744 .	• 744			1	.04	0%
II,	672	672			· · .	.02	0%
12	0						
The Year	7008	6982	23	3		.22	7.1%
		99.6%	.36%	.04%			
							:
							,
	· •						

Number of 1-hour readings in each range

	COL	NECTICUT	DEPARTMENT OF L PROTECTION	° 02	ONE DATA		SITE	Middletown 004
			ce - Monitori	ng Section	``````````````````````````````````````		YEAR	1973
			· 'Num	ber of l-hour	readings in	each range		
κ ·)NTH	# READINGS RECORDED	.00 to .079 PPM	.08 to .099 PFM	.10 to .399 PPM	1 1	Max. 1-hour	% of days with any one hour reading over primary std. (.08 ppm)
	•							
· 0	1	0						
0		0			•			
0		0		•				
0		0					· · ·	
Ò		0						
0		0						
0		0					;	-
D		Ø			-			с 1
0		556	554	2	•		.090	6., 6% 、
1		216 .	216	·0 ·			.060	^{0%} .
	l	0			-			
12	2	0						
	ne ear	772	770 99.74%	2 .26%			.090	3.3%
								:

CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION Air Compliance - Monitoring Section

OZONE DATA

YEAR _1973

	Number of 1-hour readings in each range						
ЮNTH	# READINGS RECORDED	.00 to .079 PPM	.08 to .099 PFM	.10 to .399 PPM	.40 PPM or above	Max. l-hour	% of days with any one hour reading over
•							primary std. (.08 ppm)
		· ·				·	
01	Ο						
02	0.						
03	• 0 ·						
04	О						
05	0			· · · · · · · · · · · · · · · · · · ·		-	. •
06	0					•••••	· · ·
07	432	353 -	32	Ц 7		. 2 25	5 2 .6%
08	660	493	39	128		.314	64.2%
09	718	695	. 9	14		.175	13,3% ,
• 10 ,	227	227 .				.061	. 0%
11	0			•			
12	0.						•
The							
Year	2037	1768	80	189.		.314	
		86.79%	3.93%	9.28%			
							÷ .
	-						
			-				
				-			
				.t	, Ļ Į		

CONNECTICUT DEPARTMENT OF OZONE DATA ENVIRONMENTAL PROTECTION Air Compliance - Monitoring Section SITE Stamford 019

YEAR 1973

.140

.084

.036

.202

20.0%

6.4%

0%

23.6%

٠,

Number of 1-hour readings in each range % of days with any one hour reading over primary std. .10 to .399 .40 PPM .00 to .079 .08 to .099 Max. **Ю**NTH # 1-hour PPM PPM or above PPM READINGS RECORDED (.08 ppm) 01 0 0 02 03 0 04 0 0 **0**5 0 06 0 07 .202 81.8% 254 183 27 44 08

20

64

3.25%

24

5

56

2.85%

09

10

11'

12

The

Year

719

742 '

253

0

1968

675

737

253

1848

93.90%

CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION Air Compliance - Monitoring Section

OZONE DATA

SITE Windsor 001

.....

YEAR 1973

Number of 1-hour readings in each range

ЮNTH	⊭ READINGS RECORDED	.00 to .079 PPM	.08 to .099 PPM	.10 to .399 PPM	1 1	Max. 1-hour	% of days with any one hour reading over primary std. (.08 ppm)
· ·							
01	0						
02	Ο			· · ·			
03	· 0		•				
04	0						
Ò5	0	•					
06	0					• .	
07	738	725	10	3		.110	9.6%
08	732	715	9	7		.125	16.1%
09	720	.718	2			.095	3.3%
10	254	254		•		.043	0%
11	Ο						
12	0						
The Year	2444	2413	21	10		.125	9.8%
	u.	. 98.72%	.86%	. 42%			
							:
					•		

CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION PAGE 57 AIR COMPLIANCE MONITORING

en generel

的现在分词 的第三人称单数形式

E. CARBON MONOXIDE

Data on carbon monoxide levels is relatively scant in Connecticut. Until very recently the air pollution agencies in Connecticut have concentrated on particulates and SO_X . Beginning in 1973 and reaching full strength in 1974, the carbon monoxide network is being expanded to twelve fixed sites plus several mobile units.

The Air Compliance Unit is concentrating on areas of fairly high traffic density for fixed CO monitoring in most cases, with a few background stations. At the existing urban sites, carbon monoxide levels have occasionally exceeded the one hour standard (35 ppm). Early data from the new sites in Bridgeport and Hartford indicate that the eight hour standard (9 ppm) will be exceeded on a few occasions in 1974.

The tables that follow summarize continuously monitored carbon monoxide data at the monthly level. For each month the number of observations recorded and the maximum one hour reading are reported. The computer programs do not yet calculate the maximum running eight-hour standard.

. .

SITE Greenwich 01

CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION

AIR COMPLIANCE - MONITORING SECTION

UNITS _____PPM

J

(NAAQS 1-Hour Standard 35 ppm)

CARBON MONOXIDE DATA

	10	972	1973		
MONTH	# READINGS RECORDED	MAX. 1-hr. CONCENTRATION	# RFADINGS RECORDED	MAX 1-hr. CONCENTRATION	
01	a Barra anno an		.734	15.0	
02			672		
03	336	10.8	733	55.5	
04	686		717	12.0	
05	704	10.0	693		
06	650	15.0	720		
07	690	8.0		10.0	
08				9.0	
09	706	15.0	····		
10	720	10.0	a		
11	730	· ·	682		
12	744	10.0	744	35.0	
THE YEAR	5,966	15.0	6,628	55.5	
1	1	1			

^{TD-1} 05 SITE Norwal

AIR COMPLIANCE - MONITORING SECTION

PPM UNITS

(NAAQS[°]1-Hour Standard 35 ppm)

CARBON MONOXIDE DATA

		972	1973		
MONTH	# READINGS RECORDED	MAX, 1-hr. CONCENTRATION	#,READINGS RECORDED	MAX 1-hr. CONCENTRATION	
01			662	22.5	
02	V ministration care and and and		583	16.0	
03	360		678		
04	<u> </u>		708	<u>11.0</u>	
05	568		618	-10.0	
06	506	50	670 -	9.5	
07	1.20	23	557	6. . 8	
08			737	<u>8.0</u>	
09	720	55		9.0	
10	744	20			
11		13.5		1 m	
12	682	18.5			
THE YEAR	4,886	50	5,467		
-					
			·		
ł					

SITE Bridgeport 099

CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION

ATR COMPLIANCE - MONITORING SECTION

UNITS _____PPM

(NAAQS 1-Hour Standard 35 ppm)

CARBON MONOXIDE DATA

	10	972	1973			
MONTH	/ READINGS RECORDED	MAX. 1-hr. CONCENTRATION	# READINGS RECORDED	MAX 1-hr. CONCENTRATION		
01						
02						
03.						
04	3			· · · · · · · · · · · · · · · · · · ·		
05		Pargenting - Statistical and a statistical				
0 6 .			·	· · · · · · · · · · · · · · · · · · ·		
07						
08						
09			····			
10						
11	Second			and the state of the		
12	· · ·	· · · · · ·	696	30.0		
THE YEAR	,					
			- dense for a factor dense factor dense for a facto	and the production of the first state of the spin of t		

SITE Hartford 07

UNITS PPM

ATR COMPLIANCE - MONITORING SECTION

(NAAQS 1-Hour Standard 35 ppm)

CARBON MONOXIDE DATA

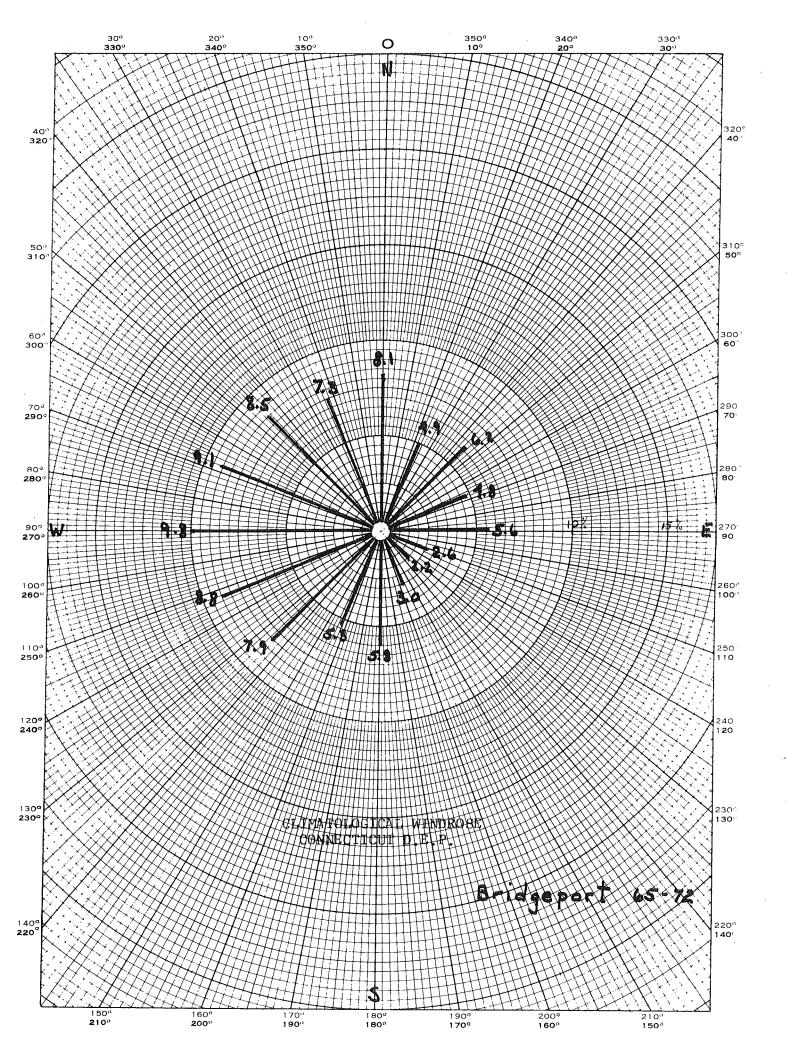
	j	972	1973		
MONTH	A READING I PECORDED	MAX. 1-hr. CONCENTRATION	# RFADINGS RECORDED	MAX 1-hr. COMCENTRATION	
01			· · · · ·	·	
02	A				
03					
04					
05					
06	Many elevision operations and a party				
07					
08					
09	**				
10					
. 11	\$	· · · · ·			
12	Constitution of the second 		0.40		
THE YEAR		and the day of an ended of the opp	_?4?	9,0	
	. 1	· · · · ·	Barriel Tarriel and Security Statistics are an	and a submanifold association (and contraction)	
•	•				

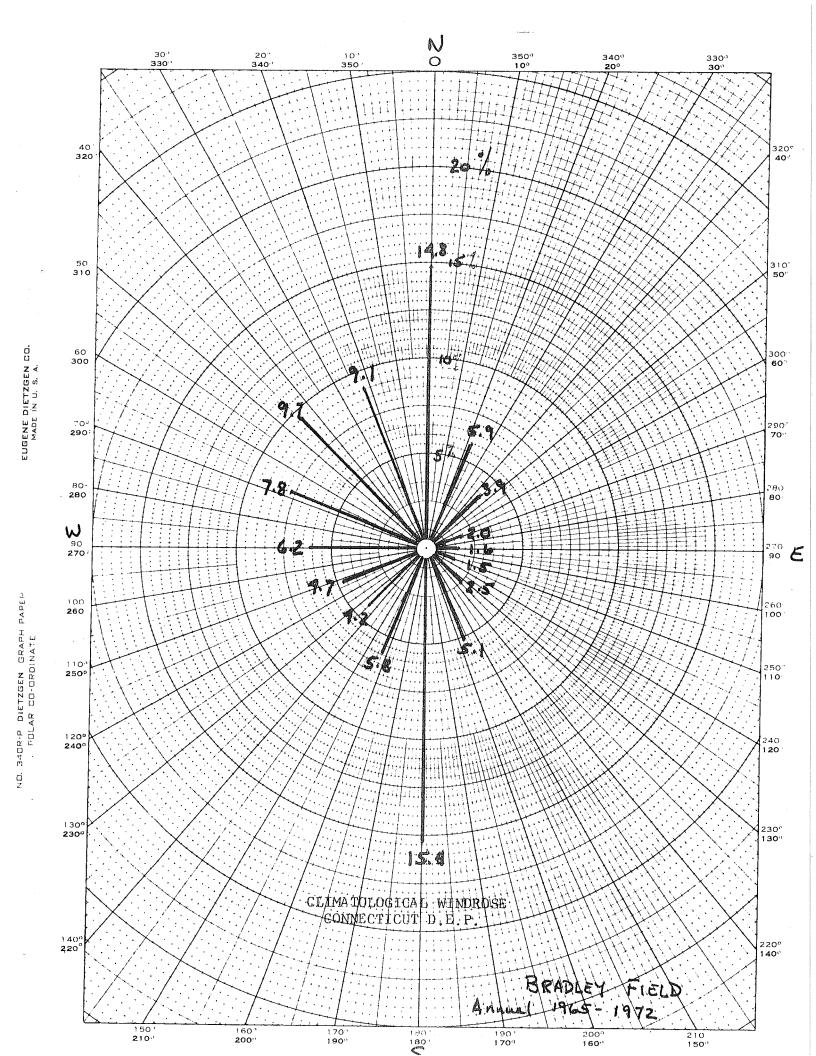
)

CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION AIR COMPLIANCE MONITORING

F. WIND ROSES 1965-1972

Bridgeport Airport and Bradley Airport have recorded wind direction and speed for the years 1965-1972. These wind roses represent the probability that the wind would be blowing in each of the sixteen directions. Of course the wind can only have one direction at a time so the wind rose does <u>not</u> say that the wind is blowing in all of these directions at the same time.


The chart says rather, that when the wind was measured it happened to be blowing from each direction in the proportion indicated. In the long run the chart can be used to estimate the probability that at a given time the wind will be blowing in a given direction.


This is how the figures were developed. Wind direction was measured at 10 meters above the ground at three hour intervals during the time indicated on the face of the graph.

Let:

- i = a wind direction, say a number from 1 to 16 for the directions North, North North East, North East, etc.
- n_i = number of observations during the sample period in which the wind was blowing in direction i.
- N = n₁ + n₂ + . . . + n₁₆ = Total Number of observations. P = $100 \left(\frac{n_i}{P}\right)$ = Percent of observations during which the wind was blowing in direction i.

The wind roses graph P_1 for each direction i. Note that $P_1 = P_2 = \ldots + P_{16} = 100\%$. PAGE 62

CONNECTICUT AIR QUALITY SUMMARY

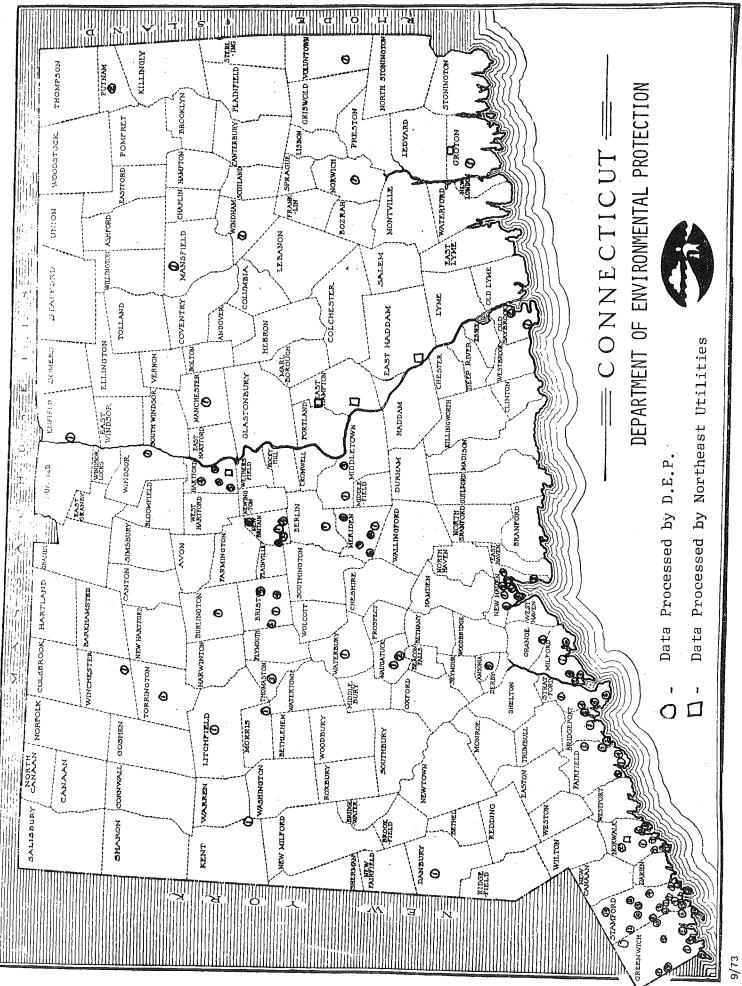
1971 - 1973

PART III

AIR MONITORING SITES

PAGE 66

A. CURRENT NETWORK DEVELOPMENT


The Connecticut Air Monitoring Network is in the midst of substantial upgrading as twelve mobile trailer sites are added. Each site will have continuous monitoring instruments that will telemeter aerometric data into an IBM System/7 computer. This computer will compile the data, develop a data base, and perform the calculation necessary to signal air pollution episodes as they are actually occuring. The data collected can be passed to the IBM System/360 for the production of monthly reports.

The trailers are projected to be on-line by the end of 1974; for the most part these will supplement existing sites. In 1974 there will be twelve Carbon Monoxide and thirteen Chemiluminescent Ozone continuous monitoring instruments.

A map of the air sampling sites follows.

and a start of the start of t

.

shr

B. DIRECTORY OF AIR SAMPLING SITES: Guide to Codes

The Directory of Air Sampling Sites contains labeled columns of information. Some of the columns are self-explanatory, but each will be discussed proceeding from left to right across the page.

"TOWN" A Connecticut town name.

"SITE" Within a town the site number is unique and permanent.

It is used to label the site as well as the data collected from the site. Numbers are not sequential, nor are they all assigned.

"STATION" and "TYPE" Describe two codes which defined by the Environmental Protection Agency to describe the general characteristics of the area surrounding an air monitoring site.

"BUILDING" Describes the type of building in which the monitoring site is located.

"LOC & ELEV" Tells the approximate location and elevation of

the site within the building relative to the ground level. "POLLUTANT" Contains a chemical formula or abbreviation decoded

in the table below which tells what pollutants are being measured.

"METHOD" Contains an abbreviation of a standard chemical test for the pollutant being measured. Abbreviation are decoded below.

11.534

B. DIRECTORY OF AIR SAMPLING SITES GUIDE TO CODES

Туре

Code	Station
CC REM RUR SUB	Central City Remote Rural Suburban

· · · · · ·	
AGR	Agricultural
COM	Commercial
IND	Industrial
MOB	Mobile
NON	None
N. UR	Near Urban
RES	Residential

Code	Pollutant
CO	Carbon Monoxide
HC	Hydrocarbon
O _X	Ozone
NO2	Nitrogen Oxides, Bubblers
NO _X	Nitrogen Oxides, Continuous
PART	Particulates
SO2	Sulfur Oxides, Bubblers
SO _X	Sulfur Oxides, Continuous

Code

Code

Method

В	Gas Bubblers
Chemi.	Chemiluminescence
Color.	Colorimetric
Cond.	Conductometric
Coul.	Coulometric
F.I.	Flame Ionization
Fl. Pho.	Flame Photometric
HiVol	High Volume
IR	Infra-red
Wind	Wind Speed & Direction

CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION PAGE 70______ ATR COMPLIANCE MONITORING AIR COMPLIANCE MONITORING

TOWN	SITE	STATION	TYPE	BUILDING	LOC & ELEV.	POLLUTANT	METHOD
Ansonia	03	CC	СОМ	Martin Bldg.	Roof 20'	Part.	HiVol
Berlin	01	RUR	A GR	State Fish Hatchery	Lawn 3'	Part. SO2 NO2	HiVol B B
Bridgeport	01	CC	СОМ	City Hall	Roof 50'	Part. SO2 NO2 Part. O _X SO _X	HiVol B B Tape Chemi. Coul.
	02	SUB	СОМ	Fire House	Roof 40'	Part. Part. SO _X	HiVol Tape Cond.
·	03	CC	RES	McKinley School	Roof 40'	Part. SO _X	Tape Coul.
	04	CC	СОМ	McLevy Hall	East Window 15'	CO	IR
Bristol	01	CC	СОМ	City Hall	Roof 35'	Part. SO2 NO2	HiVol B B
4 ^{- 1}	02	RUR	N.UR	Water Dept.	Lawn 10'	Part. SO2 NO2	HiVol
	03	СС ,	COM	Stafford School	Roof 20'	Part. SO2 NO2	HiVol B B
	04	CC	IND	Callen School	Roof 27'	Part. SO2 NO2	HiVol B B
Burlington	01	REM	NON	State Fish Hatchery	Lawn 3'	Part. SO2 NO2	HiVol B B

PAGE _____71

TOWN	SITE	STATION	TYPE	BUILDING	LOC & ELEV.	POLLUTANT	METHOD
Colchester	01	RUR	À GR	Town Hall	Roof 14'	SO2 NO2	B B
Danbury	01	CC	СОМ	West Ct. State College Wiggins Hall	Roof 45'	Part. SO2 NO2 Part.	HiVol B B Tape
East Hartford	02	SUB	RES	Hockanum School	Shed 6'	SO2 NO2	B B
Enfield	01	SUB	СОМ	Fire House	Roof 30'	Part.	HiVol
Fairfield	01	CC	СОМ	Fire House	Roof 30'	Part.	Tape
	02	SUB	RES	Warde High School	Roof 30'	Part. Part.	HiVol Tape
	05	SUB	СОМ	SNETCO Bldg.	Roof 40'	Part.	Таре
Greenwich	01	CC	СОМ	Town Hall Annex	Roof 45'	Part. SO2 NO2	HiVol B B
					West Window 15'	CO NO _X SO _X Part.	IR Color. Cond. Tape
	02	SUB	СОМ	Cos Cob Fire House	Roof 30'	Part.	HiVol
	03	SUB	RES	Byram Fire House	Roof 30'	Part.	HiVol
	04	REM		Bruce Golf Course	Lawn 3'	Part.	HiVol
					Shed Roof 10'	SO2 NO2 O _X SO _X Part.	B B Chem. Cond. Tape

				· .			
IOWN	SITE	STATION	TYPE	BUILDING	LOC & ELEV.	POLLUTANT	METHOD
Greenwich	07	RUR	NON	Witherell Hosp.	Roof 30'	Part.	HiVol .
	08	SUB	RES	Cos Cob Pump	Roof 20'	Part.	HiVol
			· · · .		West Window 8'	SO _x Part.	Cond. Tape
Groton	01	RUR	СОМ	City Hall	Lawn 3'	Part. SO2 NO2	HiVol B . B
lartford	02	CC	СОМ	State Health Dept.	Roof 50'	Part. SO2 NO2	HiVol B B
	· ·	• •			South Window	О _х НС	Chemi. F.I.
	03	CC	СОМ	Library	Roof 30'	Part. Part. SO _x	HiVol Tape Coul.
	04	CC	RES	Hartford Health Dept.	Roof 30'	Part.	HiVol
(ent	01	REM	. *	Lake Waramaung Park	Lawn 3'	Part. SO2 NO2	HiVol B B
itchfield.	01	RUR	COM	County Agr. Center	Roof 15'	SO2 NO2	B B
lanchester	01	, CC	RES	Town Hall	Roof 40'	Part.	HiVol
fansfield	01	RUR	AGR	Agr. Eng. Bldg.	Roof 60'	Part. Part.	HiVol Tape
	02	RUR	AGR	Ski First Aid Bldg.	East Window 15'	SO2 NO2	B B

.

PAGE <u>73</u>

CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION AIR COMPLIANCE MONITORING

TOWN		SITE	STATION	TYPE	BUILDING	LOC & POI ELEV.	LUTANT	METHOD
Meriden		01	SUB	СОМ	East Side Fire House	Lawn 3'	Part. Part.	HiVol Tape
		02	CC	IND	Stoddard Bldg.	Roof 30'	Part. Part.	HiVol Tape
		03	SUB	СОМ	Ben Franklin School	Roof 30'	Part. Part.	HiVol Tape
	·	05	SUB	СОМ	52 Hicks St.	Roof 15'	Part.	HiVol
		06	SUB	RES	Waste Treatment Plant	Stair Landing 6'	Part. Part.	HiVol Tape
Middletown		01	SUB	RES	Moody School	Roof 10'	Part.	HiVol
	•	03	CC	IND	City Hall	Roof 20'	Part. SO2 NO2 Part.	HiVol B B Tape
		04	REM	IND	P&WA Aircraft Pier	30' over river	Part. Part. O _X	HiVol Tape Chemi.
Milford	• •	01	SUB	RE S	Milford High School	Roof 30'	Part. Part. SO2 NO2	HiVol Tape B B
		02	SUB	IND	Devon Grammar	Roof 40'	Part. Part. SO _X	HiVol Tape Coul.
		06	RUR	AGR	Health Dept.	Roof 10'	Part.	HiVol
Morris		01. '	REM	·	Morris Dam	Lawn 3'	Part.	HiVol
Naugatuck		01	CC	COM	Town Hall	Roof 40'	Part. SO2 NO2	HiVol B B

PAGE 74

TOWN	SITE	STATION	TYPE	BUILDING	LOC & ELEV.	POLLUTANT	METHOD
New Britain	01	CC ·	СОМ	Herald Bldg.	Roof 32'	Part.	HiVol
	02	CC	СОМ	City Hall	Roof 40'	Part. NO2 SO2 Part.	HiVol B B Tape
· ·	÷ .					SO_X NO _X	Cond. Color.
	03	CC	СОМ	Mid-Atlantic Trans. Co.	Roof 25'	Part.	HiVol
	04	CC	RES	Smith School	Roof 20'	Part. Part.	HiVol Tape
	05	CC	RES	Pulaski High	Roof 20'	Part. Part.	HiVol Tape
New Haven	01	CC	COM	Bullard Bldg.	Roof 50'	Part. SO2 NO2	HiVol B B
	02	CC	IND	Clinton School	Roof 30'	Part.	HiVol
	03	SUB	RES	New Haven Airport	Roof 25'	Part.	HiVol
	04	CC	COM	C.S.B. Building	Roof 30'	Part. SO _X	Tape Coul.
	05	CC	IND	Truman School	Roof 45'	Part.	HiVol
	07	CC	СОМ	City Hall	Roof 40'	Part.	Tape
	08	SUB	RES	Agr. Expermental Station	Roof 40'	SO _x O _x	Cond. Chemi.
	09	CC	RES	Beecher School	Roof 30'	Part.	HiVol

TOWN	SITE	STATION	TYPE	BUILDING	LOC & ELEV.	POLLUTANT	METHOD
Norwalk	01	CC	COM	ASC Building	Roof 35'	Part. Part.	HiVol Tape
	02	SUB	СОМ	Winnipauk School	South Window 10'	Part.	Таре
	05	SUB	RES	Health Dept.	Roof 30	Part. SO2 NO2 Part. CO	HiVol B B Tape IR
						SO _X	Cond.
Norwich	01	CC	СОМ	Norwich Savings & Loan Bank	Roof 65'	Part. SO2 NO2	HiVol B B
Old Saybrook	01	SUB	RES	Old Toll House	Roof 15'	Part. SO2 NO2	HiVol B B
Orange	03	REM		Nike Site	Lawn 3'	Part.	HiVol
Putnam	02	SUB	RES	Superior Court	Roof 40'	Part. SO2 NO2	HiVol B B
Stamford	01.	CC	COM ·	Central Fire House	Roof 50'	Part.	HiVol
	02	СС	СОМ	American Cyanamid	Roof 25'	Part.	Tape
	03	CC	COM	Health Dept.	Roof 30'	Part. SO2 NO2	HiVol B B
	, 03	•				Part. SO _X	Tape Cond.
	04	CC	COM	Dolan School	Roof 55'	Part. Part.	HiVol Tape

PAGE 76

TOWN	SITE	STATION	TYPE	BUILDING	LOC & ELEV.	POLLUTANT	METHOD
Stamford	06	SUB	RES	Museum	Roof 30'	Part.	Таре
:	10	SUB	RES	Rippowam High School	Roof 30'	Part. Part.	HiVol Tape
	16	SUB	RES	Murphy School	Roof 70'	Part.	Таре
	19	SUB	RES	Sterling Golf Course	South Window 8'	0 _X	Chemi.
Stratford	01	SUB	RES	Bunnell High	Roof 35'	Part.	HiVol
· · · · · · · · · · · · · · · · · · ·	05	CC	COM	Health Dept.	Roof 35'	Part. SO2 NO2 Part.	HiVol B B Tape
Thomaston	03	SUB	COM	St. Thomas School	Roof 30'	Part.	HiVol
Torrington	01	SUB	COM	City Hall	Roof 50'	Part. SO2 NO2	HiVol B B
Voluntown	01	REM		Pachaug State Forest	Lawn 3'	Part. SO2 NO2	HiVol B B
Waterbury	01 ,	CC	СОМ	City Hall	Roof 55'	Part. SO2 NO2 Part. SO _X	HiVol B B Tape Coul.
Willimantic	01	CC	IND	Eastern Ct. State College	Roof 45'	Part. SO2 NO2	HiVol B B

CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTE	CTION PAGE 77
AIR COMPLIANCE MONITORING	

DIRECTORY OF AIR SAMPLING SITES OPERATING IN 1973

TOWN	SITE	STATION	TYPE	BUILDING	LOC & ELEV.	POLLUTANT	METHOD
Winsted	01	SUB	СОМ	Northwest Comm. College	Roof 20'	Part.	HiVol
Windsor	01	SUB	AGR	Agr. Exp. Station	North Window 30'	0 _x	Chemi.

: 3

CONNECTICUT

AIR QUALITY SUMMARY

1971 - 1973

APPENDIX A

How to Use the Computer Report for Nitrogen Oxides and Particulates.

HOW TO USE THE COMPUTER REPORT FOR NITROGEN OXIDES AND PARTICULATES

PAGE 79

By Andrew W. Godfrey

In Part II of this report, <u>AEROMETRIC DATA</u>, the Nitrogen Oxide and Particulate sections contain a computer program report that requires further explanation.

The report is in alphabetic and numeric order by town, site, and year. The column labeled "TOWN" contains the name of a Connecticut town. The "SITE" column contains the number of the site location within the town. A more detailed description of each site can be found in <u>AIR MONITORING SITES</u>, Part III of this report.

The column labeled "YEAR" specifies the annual summary report from which statistics were collected and for which they are calculated. There is one line of output on the report for each annual summary.

The name of the pollutant, "Nitrogen Oxides", "Particulates", or a five digit pollutant code appears in the page header. On the annual summary reports for each pollutant, site, and year two statistics were selected. The first appears in the "MEAN" column, and the second is an estimate of the standard geometric deviation appearing in the "STD GEOM DEV" column. This value was estimated by taking the ratio of the value of the concentration at the 84th percentile to the value of the concentration at the 50th percentile. The other method is to calculate the antilog of the standard deviation of the logarithms of the individual data points. The former is

available from existing computer software by the first method, although for greater precision the second method would be preferable. The last two columns of the computer listing relate the sampling data collected to the ambient air quality standards. The column label says "Percent over x ug/m³" where x is one of the standards. Based on a probability distribution for the data, and based on all of the 24-hour samples taken during the year, a percentage is calculated to represent the proportion of 24-hour samples which will be expected, in the long run, to exceed the standard listed.

80

This is a handy number to know because it is independent of the number of observations taken, and can be used to estimate how many times in a whole year of 365 days, the standard will be exceeded.

As guidelines for reading the computer report there are two rules that may be used as alternatives. The Environmental Protection Agency says a standard can not be exceeded more frequently than one time per year - but how often must samples be taken?

If samples are taken once a day, for 365 days, then let

n = 365 days of sampling D = 1 day/year allowed. P = $\frac{100 \cdot D}{n} = \frac{100}{365} = .274\%$.

'But if samples are taken every sixth day, then the highest percent of observations, P, allowed to exceed the standard becomes 1.67%:

n = 61 days of sampling D = 1 day/year allowed. P = $\frac{100 \cdot D}{n} = \frac{100}{61} = 1.67\%$ The first guidelines says if the number from the "Percent over" column of the table is greater than .274, then the standard will be violated. The second says if greater than 1.67, then it will be violated.

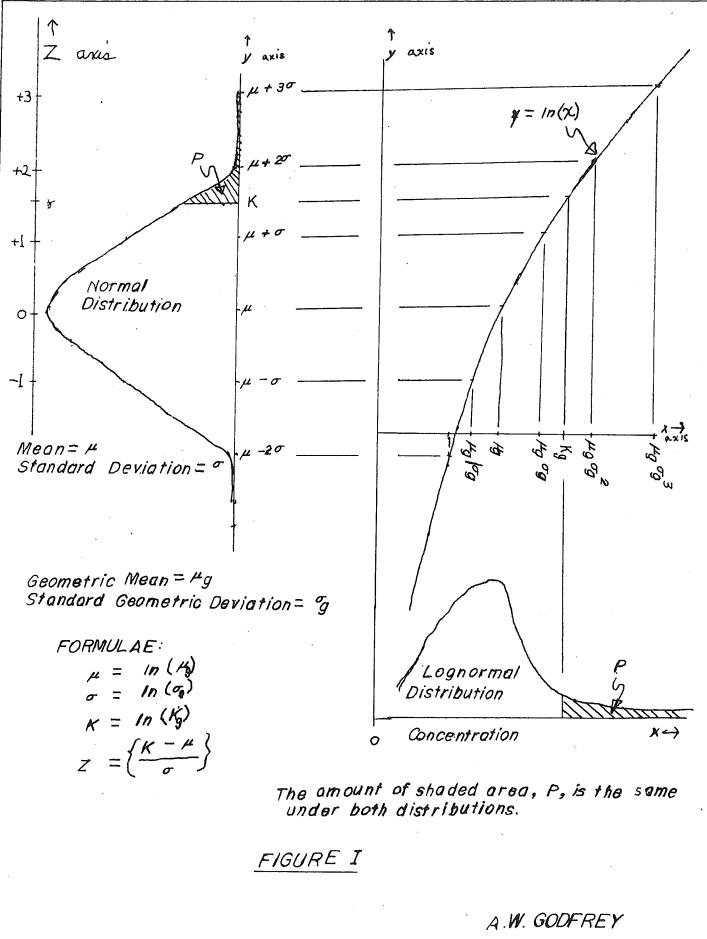
The .274% guidelines is of course stricter, and the percents reported should only be read to the first or second significant digit. Of major concern is the sites at which 10% or 20% of the observations are expected to exceed the standard.

Statistical Background.

The percents calculated used the lognormal distribution because Larsen states that ambient air concentrations of pollutants are lognormally distributed.

The discussion is presented graphically and analytically by calculus. Variable names in both parts are consistent. Capital letters describe a random variable with the associated distribution as set forth in the table below. Corresponding lower case letters represent the values that random variable can take on as the result of an experiment. The letter "g" signifies "geometric" as in the geometric mean μ g, or the standard geometric deviation $\int g$, or an air quality standard Kg.

¹Ralph I. Larsen, Ph.D. <u>A Mathematical Model For Relating Air Quality</u> <u>Measurements to Air Quality Standards</u>, Environmental Protection Agency, Pub. No. AP-89, 1971.


PAGE 82

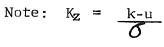
Distribution Name	Random Variable(r.v.)	Values r.v. takes on	Mean	Standard Deviation	Constant
Standard Unit Normal	Z	-∞ <z<+∞< td=""><td>0</td><td>1</td><td>K_z</td></z<+∞<>	0	1	K _z
Normal	Y	-~< y<+ ∞	M	6	К
Lognormal	X	0 ∢x∢+∞	Mg	Øg	Kg

The upper left hand corner of Figure I shows a Normal Distribution curve with two axes.

The percent of time Y will exceed the standard K equals the percent of time X will exceed K_z . For any curve that percent, P, corresponds to the area of the shaded portion of the graph. Widely published statistical tables of P as a function of K_z can be used to determine the size of the shaded area.

The random variable X represents concentrations in the ambient air. To say that X is lognormally distributed means that the logarithm of the concentrations measured has a normal distribution. Figure I shows how each value x of X can be mapped one for one onto a corresponding value y of Y using the logarithm function. The relationships among the variables defined will now be stated analytically.

Consider the relationship between the following three equations:


(1)For the standard unit normal.

$$P = \frac{100}{\sqrt{2\pi r}} \int_{K_z}^{+\infty} \exp \left[-\frac{1}{2} (z)^2\right] dz$$

For a Normal Distribution with mean μ standard (2)

deviation
$$\mathcal{O}$$
, air quality standard K.

$$P = \frac{100 \ \sqrt{n}}{\mathcal{O} \sqrt{2\pi}} \left(\begin{array}{c} +\infty \\ k-\mu \\ \mathcal{O} \end{array} \right) \exp \left[-\frac{n}{2} \left(\begin{array}{c} y-\mu \\ \mathcal{O} \end{array} \right)^2 \right] dz .$$

$$z = \left(\frac{y-\mu}{O}\right) Nn$$

$$\frac{dy}{dz} = \frac{\sqrt{n}}{\delta}$$

For a Lognormal Distribution with geometric mean \mathcal{M}_{g} , (3) standard geometric deviation δ g, and air quality standard K.

$$P = \frac{100 \sqrt{n}}{\ln (\mathcal{O}g) \sqrt{2\pi}} \int_{\left[\frac{\ln (K_g) - \ln (\mu_g)}{(\ln (\mathcal{O}g) / \sqrt{n})}\right]} \left[-\frac{n}{2} \frac{\ln (x) - \ln (\mu_g)}{\ln (\mathcal{O}g)} ^2 \right] \left(\frac{1}{x}\right) dx$$

PAGE 84

Note:
$$K_g = \frac{\ln (K_g) - \ln (\mathcal{M}g)}{(\ln (\mathcal{O} g) / \mathcal{N} n)}$$

 $z = \frac{\ln (x) - \ln (\mathcal{M}g)}{(\ln (\mathcal{O} g) / \mathcal{N} n)}$
 $dz = \mathcal{N} \overline{n}$

 $x \ln(\delta g)$